158
|
1 using Implab;
|
|
2 using System;
|
|
3 using System.Collections.Generic;
|
|
4 using System.Diagnostics;
|
|
5 using System.Linq;
|
|
6
|
|
7 namespace Implab.Parsing {
|
|
8 public class DFADefinition : IDFADefinition {
|
|
9 readonly List<DFAStateDescriptior> m_states;
|
|
10
|
|
11 public const int INITIAL_STATE = 1;
|
|
12 public const int UNREACHEBLE_STATE = 0;
|
|
13
|
|
14 DFAStateDescriptior[] m_statesArray;
|
|
15 readonly int m_alpabetSize;
|
|
16
|
|
17 public DFADefinition(int alphabetSize) {
|
|
18 m_states = new List<DFAStateDescriptior>();
|
|
19 m_alpabetSize = alphabetSize;
|
|
20
|
|
21 m_states.Add(new DFAStateDescriptior());
|
|
22 }
|
|
23
|
|
24 public DFAStateDescriptior[] States {
|
|
25 get {
|
|
26 if (m_statesArray == null)
|
|
27 m_statesArray = m_states.ToArray();
|
|
28 return m_statesArray;
|
|
29 }
|
|
30 }
|
|
31
|
|
32 public bool InitialStateIsFinal {
|
|
33 get {
|
|
34 return m_states[INITIAL_STATE].final;
|
|
35 }
|
|
36 }
|
|
37
|
|
38 public int AddState() {
|
|
39 var index = m_states.Count;
|
|
40 m_states.Add(new DFAStateDescriptior {
|
|
41 final = false,
|
|
42 transitions = new int[AlphabetSize]
|
|
43 });
|
|
44 m_statesArray = null;
|
|
45
|
|
46 return index;
|
|
47 }
|
|
48
|
|
49 public int AddState(int[] tag) {
|
|
50 var index = m_states.Count;
|
|
51 bool final = tag != null && tag.Length != 0;
|
|
52 m_states.Add(new DFAStateDescriptior {
|
|
53 final = final,
|
|
54 transitions = new int[AlphabetSize],
|
|
55 tag = final ? tag : null
|
|
56 });
|
|
57 m_statesArray = null;
|
|
58 return index;
|
|
59 }
|
|
60
|
|
61 public void DefineTransition(int s1,int s2, int symbol) {
|
|
62 Safe.ArgumentInRange(s1, 0, m_states.Count-1, "s1");
|
|
63 Safe.ArgumentInRange(s2, 0, m_states.Count-1, "s2");
|
|
64 Safe.ArgumentInRange(symbol, 0, AlphabetSize-1, "symbol");
|
|
65
|
|
66 m_states[s1].transitions[symbol] = s2;
|
|
67 }
|
|
68
|
160
|
69 protected IDFADefinition Optimize<TA>(Func<IAlphabet<TA>, IDFADefinition> dfaFactory,IAlphabet<TA> sourceAlphabet, IAlphabet<TA> minimalAlphabet) {
|
|
70 Safe.ArgumentNotNull(dfaFactory, "dfaFactory");
|
158
|
71 Safe.ArgumentNotNull(minimalAlphabet, "minimalAlphabet");
|
|
72
|
|
73 var setComparer = new CustomEqualityComparer<HashSet<int>>(
|
|
74 (x, y) => x.SetEquals(y),
|
|
75 (s) => s.Sum(x => x.GetHashCode())
|
|
76 );
|
|
77
|
|
78 var arrayComparer = new CustomEqualityComparer<int[]>(
|
|
79 (x,y) => (new HashSet<int>(x)).SetEquals(new HashSet<int>(y)),
|
|
80 (a) => a.Sum(x => x.GetHashCode())
|
|
81 );
|
|
82
|
|
83 var optimalStates = new HashSet<HashSet<int>>(setComparer);
|
|
84 var queue = new HashSet<HashSet<int>>(setComparer);
|
|
85
|
|
86 foreach (var g in Enumerable
|
|
87 .Range(INITIAL_STATE, m_states.Count-1)
|
|
88 .Select(i => new {
|
|
89 index = i,
|
|
90 descriptor = m_states[i]
|
|
91 })
|
|
92 .Where(x => x.descriptor.final)
|
|
93 .GroupBy(x => x.descriptor.tag, arrayComparer)
|
|
94 ) {
|
|
95 optimalStates.Add(new HashSet<int>(g.Select(x => x.index)));
|
|
96 }
|
|
97
|
|
98 var state = new HashSet<int>(
|
|
99 Enumerable
|
|
100 .Range(INITIAL_STATE, m_states.Count - 1)
|
|
101 .Where(i => !m_states[i].final)
|
|
102 );
|
|
103 optimalStates.Add(state);
|
|
104 queue.Add(state);
|
|
105
|
|
106 while (queue.Count > 0) {
|
|
107 var stateA = queue.First();
|
|
108 queue.Remove(stateA);
|
|
109
|
|
110 for (int c = 0; c < AlphabetSize; c++) {
|
|
111 var stateX = new HashSet<int>();
|
|
112
|
|
113 for(int s = 1; s < m_states.Count; s++) {
|
|
114 if (stateA.Contains(m_states[s].transitions[c]))
|
|
115 stateX.Add(s);
|
|
116 }
|
|
117
|
|
118 foreach (var stateY in optimalStates.ToArray()) {
|
|
119 if (stateX.Overlaps(stateY) && !stateY.IsSubsetOf(stateX)) {
|
|
120 var stateR1 = new HashSet<int>(stateY);
|
|
121 var stateR2 = new HashSet<int>(stateY);
|
|
122
|
|
123 stateR1.IntersectWith(stateX);
|
|
124 stateR2.ExceptWith(stateX);
|
|
125
|
|
126 optimalStates.Remove(stateY);
|
|
127 optimalStates.Add(stateR1);
|
|
128 optimalStates.Add(stateR2);
|
|
129
|
|
130 if (queue.Contains(stateY)) {
|
|
131 queue.Remove(stateY);
|
|
132 queue.Add(stateR1);
|
|
133 queue.Add(stateR2);
|
|
134 } else {
|
|
135 queue.Add(stateR1.Count <= stateR2.Count ? stateR1 : stateR2);
|
|
136 }
|
|
137 }
|
|
138 }
|
|
139 }
|
|
140 }
|
|
141
|
|
142 // строим карты соотвествия оптимальных состояний с оригинальными
|
|
143
|
|
144 var initialState = optimalStates.Single(x => x.Contains(INITIAL_STATE));
|
|
145
|
|
146 // карта получения оптимального состояния по соотвествующему ему простому состоянию
|
|
147 int[] reveseOptimalMap = new int[m_states.Count];
|
|
148 // карта с индексами оптимальных состояний
|
|
149 HashSet<int>[] optimalMap = new HashSet<int>[optimalStates.Count + 1];
|
|
150 {
|
|
151 optimalMap[0] = new HashSet<int>(); // unreachable state
|
|
152 optimalMap[1] = initialState; // initial state
|
|
153 foreach (var ss in initialState)
|
|
154 reveseOptimalMap[ss] = 1;
|
|
155
|
|
156 int i = 2;
|
|
157 foreach (var s in optimalStates) {
|
|
158 if (s.SetEquals(initialState))
|
|
159 continue;
|
|
160 optimalMap[i] = s;
|
|
161 foreach (var ss in s)
|
|
162 reveseOptimalMap[ss] = i;
|
|
163 i++;
|
|
164 }
|
|
165 }
|
|
166
|
|
167 // получаем минимальный алфавит
|
|
168
|
|
169 var minClasses = new HashSet<HashSet<int>>(setComparer);
|
|
170 var alphaQueue = new Queue<HashSet<int>>();
|
|
171 alphaQueue.Enqueue(new HashSet<int>(Enumerable.Range(0,AlphabetSize)));
|
|
172
|
|
173 for (int s = 1 ; s < optimalMap.Length; s++) {
|
|
174 var newQueue = new Queue<HashSet<int>>();
|
|
175
|
|
176 foreach (var A in alphaQueue) {
|
|
177 if (A.Count == 1) {
|
|
178 minClasses.Add(A);
|
|
179 continue;
|
|
180 }
|
|
181
|
|
182 // различаем классы символов, которые переводят в различные оптимальные состояния
|
|
183 // optimalState -> alphaClass
|
|
184 var classes = new Dictionary<int, HashSet<int>>();
|
|
185
|
|
186 foreach (var term in A) {
|
|
187 // ищем все переходы класса по символу term
|
|
188 var s2 = reveseOptimalMap[
|
|
189 optimalMap[s].Select(x => m_states[x].transitions[term]).FirstOrDefault(x => x != 0) // первое допустимое элементарное состояние, если есть
|
|
190 ];
|
|
191
|
|
192 HashSet<int> A2;
|
|
193 if (!classes.TryGetValue(s2, out A2)) {
|
|
194 A2 = new HashSet<int>();
|
|
195 newQueue.Enqueue(A2);
|
|
196 classes[s2] = A2;
|
|
197 }
|
|
198 A2.Add(term);
|
|
199 }
|
|
200 }
|
|
201
|
|
202 if (newQueue.Count == 0)
|
|
203 break;
|
|
204 alphaQueue = newQueue;
|
|
205 }
|
|
206
|
|
207 foreach (var A in alphaQueue)
|
|
208 minClasses.Add(A);
|
|
209
|
|
210 var alphabetMap = sourceAlphabet.Reclassify(minimalAlphabet, minClasses);
|
|
211
|
|
212 // построение автомата
|
|
213
|
160
|
214 var minimalDFA = dfaFactory(minimalAlphabet);
|
|
215
|
158
|
216 var states = new int[ optimalMap.Length ];
|
|
217 states[0] = UNREACHEBLE_STATE;
|
|
218
|
|
219 for(var s = INITIAL_STATE; s < states.Length; s++) {
|
|
220 var tags = optimalMap[s].SelectMany(x => m_states[x].tag ?? Enumerable.Empty<int>()).Distinct().ToArray();
|
|
221 if (tags.Length > 0)
|
|
222 states[s] = minimalDFA.AddState(tags);
|
|
223 else
|
|
224 states[s] = minimalDFA.AddState();
|
|
225 }
|
|
226
|
|
227 Debug.Assert(states[INITIAL_STATE] == INITIAL_STATE);
|
|
228
|
|
229 for (int s1 = 1; s1 < m_states.Count; s1++) {
|
|
230 for (int c = 0; c < AlphabetSize; c++) {
|
|
231 var s2 = m_states[s1].transitions[c];
|
|
232 if (s2 != UNREACHEBLE_STATE) {
|
|
233 minimalDFA.DefineTransition(
|
|
234 reveseOptimalMap[s1],
|
|
235 reveseOptimalMap[s2],
|
|
236 alphabetMap[c]
|
|
237 );
|
|
238 }
|
|
239 }
|
|
240 }
|
|
241
|
160
|
242 return minimalDFA;
|
158
|
243 }
|
|
244
|
|
245 public void PrintDFA<TA>(IAlphabet<TA> alphabet) {
|
|
246
|
|
247 var reverseMap = alphabet.CreateReverseMap();
|
|
248
|
|
249 for (int i = 1; i < reverseMap.Length; i++) {
|
|
250 Console.WriteLine("C{0}: {1}", i, String.Join(",", reverseMap[i]));
|
|
251 }
|
|
252
|
|
253 for (int i = 1; i < m_states.Count; i++) {
|
|
254 var s = m_states[i];
|
|
255 for (int c = 0; c < AlphabetSize; c++)
|
|
256 if (s.transitions[c] != UNREACHEBLE_STATE)
|
|
257 Console.WriteLine("S{0} -{1}-> S{2}{3}", i, String.Join(",", reverseMap[c]), s.transitions[c], m_states[s.transitions[c]].final ? "$" : "");
|
|
258 }
|
|
259 }
|
|
260
|
|
261 public int AlphabetSize {
|
159
|
262 get {
|
|
263 return m_alpabetSize;
|
|
264 }
|
158
|
265 }
|
|
266 }
|
|
267 }
|