view Implab/Parallels/AsyncQueue.cs @ 251:7c7e9ad6fe4a v3

Prerelease version of RunnableComponent Added draft messaging interfaces Added more more helpers to Xml/SerializationHelpers
author cin
date Sun, 11 Feb 2018 00:49:51 +0300
parents 8dd666e6b6bf
children
line wrap: on
line source

using System.Threading;
using System.Collections.Generic;
using System;
using System.Collections;
using System.Diagnostics;
using System.Runtime.CompilerServices;

namespace Implab.Parallels {
    public class AsyncQueue<T> : IEnumerable<T> {
        class Chunk {
            public volatile Chunk next;

            volatile int m_low;
            volatile int m_hi;
            volatile int m_alloc;
            readonly int m_size;
            readonly T[] m_data;

            public Chunk(int size) {
                m_size = size;
                m_data = new T[size];
            }

            public Chunk(int size, T value) {
                m_size = size;
                m_hi = 1;
                m_alloc = 1;
                m_data = new T[size];
                m_data[0] = value;
            }

            public Chunk(int size, int allocated) {
                m_size = size;
                m_hi = allocated;
                m_alloc = allocated;
                m_data = new T[size];
            }

            public void WriteData(T[] data, int offset, int dest, int length) {
                Array.Copy(data, offset, m_data, dest, length);
            }

            public int Low {
                get { return m_low; }
            }

            public int Hi {
                get { return m_hi; }
            }

            public int Size {
                get { return m_size; }
            }

            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            void AwaitWrites(int mark) {
                if (m_hi != mark) {
                    SpinWait spin = new SpinWait();
                    do {
                        spin.SpinOnce();
                    } while (m_hi != mark);
                }
            }

            public bool TryEnqueue(T value) {
                int alloc;
                do {
                    alloc = m_alloc;
                    if (alloc >= m_size)
                        return false;
                } while(alloc != Interlocked.CompareExchange(ref m_alloc, alloc + 1, alloc));
                
                m_data[alloc] = value;

                AwaitWrites(alloc);
                m_hi = alloc + 1;

                return true;
            }

            /// <summary>
            /// Prevents from allocating new space in the chunk and waits for all write operations to complete
            /// </summary>
            public void Seal() {
                var actual = Math.Min(Interlocked.Exchange(ref m_alloc, m_size), m_size);
                AwaitWrites(actual);
            }

            public bool TryDequeue(out T value, out bool recycle) {
                int low;
                do {
                    low = m_low;
                    if (low >= m_hi) {
                        value = default(T);
                        recycle = (low == m_size);
                        return false;
                    }
                } while (low != Interlocked.CompareExchange(ref m_low, low + 1, low));

                recycle = (low + 1 == m_size);
                value = m_data[low];

                return true;
            }

            public bool TryEnqueueBatch(T[] batch, int offset, int length, out int enqueued) {
                int alloc;
                do {
                    alloc = m_alloc;
                    if (alloc >= m_size) {
                        enqueued = 0;
                        return false;
                    } else {
                        enqueued = Math.Min(length, m_size - alloc);
                    }
                } while (alloc != Interlocked.CompareExchange(ref m_alloc, alloc + enqueued, alloc));
                
                Array.Copy(batch, offset, m_data, alloc, enqueued);

                AwaitWrites(alloc);
                m_hi = alloc + enqueued;
                return true;
            }

            public bool TryDequeueBatch(T[] buffer, int offset, int length, out int dequeued, out bool recycle) {
                int low, hi, batchSize;

                do {
                    low = m_low;
                    hi = m_hi;
                    if (low >= hi) {
                        dequeued = 0;
                        recycle = (low == m_size);
                        return false;
                    }
                    batchSize = Math.Min(hi - low, length);
                } while (low != Interlocked.CompareExchange(ref m_low, low + batchSize, low));

                dequeued = batchSize;
                recycle = (low + batchSize == m_size);
                Array.Copy(m_data, low, buffer, offset, batchSize);

                return true;
            }

            public T GetAt(int pos) {
                return m_data[pos];
            }
        }

        public const int DEFAULT_CHUNK_SIZE = 32;
        public const int MAX_CHUNK_SIZE = 256;

        Chunk m_first;
        Chunk m_last;

        public AsyncQueue() {
            m_first = m_last = new Chunk(DEFAULT_CHUNK_SIZE);
        }

        /// <summary>
        /// Adds the specified value to the queue.
        /// </summary>
        /// <param name="value">Tha value which will be added to the queue.</param>
        public void Enqueue(T value) {
            var last = m_last;
            SpinWait spin = new SpinWait();
            while (!last.TryEnqueue(value)) {
                // try to extend queue
                var chunk = new Chunk(DEFAULT_CHUNK_SIZE, value);
                var t = Interlocked.CompareExchange(ref m_last, chunk, last);
                if (t == last) {
                    last.next = chunk;
                    break;
                } else {
                    last = t;
                }
                spin.SpinOnce();
            }
        }

        /// <summary>
        /// Adds the specified data to the queue.
        /// </summary>
        /// <param name="data">The buffer which contains the data to be enqueued.</param>
        /// <param name="offset">The offset of the data in the buffer.</param>
        /// <param name="length">The size of the data to read from the buffer.</param>
        public void EnqueueRange(T[] data, int offset, int length) {
            if (data == null)
                throw new ArgumentNullException("data");
            if (offset < 0)
                throw new ArgumentOutOfRangeException("offset");
            if (length < 1 || offset + length > data.Length)
                throw new ArgumentOutOfRangeException("length");

            while (length > 0) {
                var last = m_last;
                int enqueued;

                if (last.TryEnqueueBatch(data, offset, length, out enqueued)) {
                    length -= enqueued;
                    offset += enqueued;
                }

                if (length > 0) {
                    // we have something to enqueue

                    var tail = length % MAX_CHUNK_SIZE;

                    var chunk = new Chunk(Math.Max(tail, DEFAULT_CHUNK_SIZE), tail);

                    if (last != Interlocked.CompareExchange(ref m_last, chunk, last))
                        continue; // we wasn't able to catch the writer, roundtrip

                    // we are lucky
                    // we can exclusively write our batch, the other writers will continue their work

                    length -= tail;

                    
                    for(var i = 0; i < length; i+= MAX_CHUNK_SIZE) {
                        var node = new Chunk(MAX_CHUNK_SIZE, MAX_CHUNK_SIZE);
                        node.WriteData(data, offset, 0, MAX_CHUNK_SIZE);
                        offset += MAX_CHUNK_SIZE;
                        // fence last.next is volatile
                        last.next = node;
                        last = node;
                    }

                    if (tail > 0)
                        chunk.WriteData(data, offset, 0, tail);
                    
                    // fence last.next is volatile
                    last.next = chunk;
                    return;
                }
            }
        }

        /// <summary>
        /// Tries to retrieve the first element from the queue.
        /// </summary>
        /// <returns><c>true</c>, if element is dequeued, <c>false</c> otherwise.</returns>
        /// <param name="value">The value of the dequeued element.</param>
        public bool TryDequeue(out T value) {
            var chunk = m_first;
            do {
                bool recycle;

                var result = chunk.TryDequeue(out value, out recycle);

                if (recycle && chunk.next != null) {
                    // this chunk is waste
                    chunk = Interlocked.CompareExchange(ref m_first, chunk.next, chunk);
                } else {
                    return result; // this chunk is usable and returned actual result
                }

                if (result) // this chunk is waste but the true result is always actual
                    return true;
            } while (true);
        }

        /// <summary>
        /// Tries to dequeue the specified amount of data from the queue.
        /// </summary>
        /// <returns><c>true</c>, if data was deuqueued, <c>false</c> otherwise.</returns>
        /// <param name="buffer">The buffer to which the data will be written.</param>
        /// <param name="offset">The offset in the buffer at which the data will be written.</param>
        /// <param name="length">The maximum amount of data to be retrieved.</param>
        /// <param name="dequeued">The actual amout of the retrieved data.</param>
        public bool TryDequeueRange(T[] buffer, int offset, int length, out int dequeued) {
            if (buffer == null)
                throw new ArgumentNullException("buffer");
            if (offset < 0)
                throw new ArgumentOutOfRangeException("offset");
            if (length < 1 || offset + length > buffer.Length)
                throw new ArgumentOutOfRangeException("length");

            var chunk = m_first;
            dequeued = 0;
            do {
                bool recycle;
                int actual;
                if (chunk.TryDequeueBatch(buffer, offset, length, out actual, out recycle)) {
                    offset += actual;
                    length -= actual;
                    dequeued += actual;
                }

                if (recycle && chunk.next != null) {
                    // this chunk is waste
                    chunk = Interlocked.CompareExchange(ref m_first, chunk.next, chunk);
                } else {
                    chunk = null;
                }

                if (length == 0)
                    return true;
            } while (chunk != null);

            return dequeued != 0;
        }

        /// <summary>
        /// Tries to dequeue all remaining data in the first chunk.
        /// </summary>
        /// <returns><c>true</c>, if data was dequeued, <c>false</c> otherwise.</returns>
        /// <param name="buffer">The buffer to which the data will be written.</param>
        /// <param name="offset">The offset in the buffer at which the data will be written.</param>
        /// <param name="length">Tha maximum amount of the data to be dequeued.</param>
        /// <param name="dequeued">The actual amount of the dequeued data.</param>
        public bool TryDequeueChunk(T[] buffer, int offset, int length, out int dequeued) {
            if (buffer == null)
                throw new ArgumentNullException("buffer");
            if (offset < 0)
                throw new ArgumentOutOfRangeException("offset");
            if (length < 1 || offset + length > buffer.Length)
                throw new ArgumentOutOfRangeException("length");

            var chunk = m_first;
            do {
                bool recycle;
                chunk.TryDequeueBatch(buffer, offset, length, out dequeued, out recycle);

                if (recycle && chunk.next != null) {
                    // this chunk is waste
                    chunk = Interlocked.CompareExchange(ref m_first, chunk.next, chunk);
                } else {
                    chunk = null;
                }

                // if we have dequeued any data, then return
                if (dequeued != 0)
                    return true;

            } while (chunk != null);

            return false;
        }
        

        public void Clear() {
            // start the new queue
            var chunk = new Chunk(DEFAULT_CHUNK_SIZE);
            do {
                var first = m_first;
                if (first.next == null && first != m_last) {
                    continue;
                }

                // here we will create inconsistency which will force others to spin
                // and prevent from fetching. chunk.next = null
                if (first != Interlocked.CompareExchange(ref m_first, chunk, first))
                    continue;// inconsistent

                m_last = chunk;
                return;
            } while (true);
        }

        public List<T> Drain() {
            Chunk chunk = null;
            do {
                var first = m_first;
                // first.next is volatile
                if (first.next == null) {
                    if (first != m_last)
                        continue;
                    else if (first.Hi == first.Low)
                        return new List<T>();
                }

                // start the new queue
                if (chunk == null)
                    chunk = new Chunk(DEFAULT_CHUNK_SIZE);

                // here we will create inconsistency which will force others to spin
                // and prevent from fetching. chunk.next = null
                if (first != Interlocked.CompareExchange(ref m_first, chunk, first))
                    continue;// inconsistent

                var last = Interlocked.Exchange(ref m_last, chunk);

                return ReadChunks(first, last);

            } while (true);
        }

        static List<T> ReadChunks(Chunk chunk, object last) {
            var result = new List<T>();
            var buffer = new T[MAX_CHUNK_SIZE];
            int actual;
            bool recycle;
            SpinWait spin = new SpinWait();
            while (chunk != null) {
                // ensure all write operations on the chunk are complete
                chunk.Seal();

                // we need to read the chunk using this way
                // since some client still may completing the dequeue
                // operation, such clients most likely won't get results
                while (chunk.TryDequeueBatch(buffer, 0, buffer.Length, out actual, out recycle))
                    result.AddRange(new ArraySegmentCollection(buffer, 0, actual));

                if (chunk == last) {
                    chunk = null;
                } else {
                    while (chunk.next == null)
                        spin.SpinOnce();
                    chunk = chunk.next;
                }
            }

            return result;
        }

        struct ArraySegmentCollection : ICollection<T> {
            readonly T[] m_data;
            readonly int m_offset;
            readonly int m_length;

            public ArraySegmentCollection(T[] data, int offset, int length) {
                m_data = data;
                m_offset = offset;
                m_length = length;
            }

            #region ICollection implementation

            public void Add(T item) {
                throw new NotSupportedException();
            }

            public void Clear() {
                throw new NotSupportedException();
            }

            public bool Contains(T item) {
                return false;
            }

            public void CopyTo(T[] array, int arrayIndex) {
                Array.Copy(m_data, m_offset, array, arrayIndex, m_length);
            }

            public bool Remove(T item) {
                throw new NotSupportedException();
            }

            public int Count {
                get {
                    return m_length;
                }
            }

            public bool IsReadOnly {
                get {
                    return true;
                }
            }

            #endregion

            #region IEnumerable implementation

            public IEnumerator<T> GetEnumerator() {
                for (int i = m_offset; i < m_length + m_offset; i++)
                    yield return m_data[i];
            }

            #endregion

            #region IEnumerable implementation

            IEnumerator IEnumerable.GetEnumerator() {
                return GetEnumerator();
            }

            #endregion
        }

        #region IEnumerable implementation

        class Enumerator : IEnumerator<T> {
            Chunk m_current;
            int m_pos = -1;

            public Enumerator(Chunk fisrt) {
                m_current = fisrt;
            }

            #region IEnumerator implementation

            public bool MoveNext() {
                if (m_current == null)
                    return false;

                if (m_pos == -1)
                    m_pos = m_current.Low;
                else
                    m_pos++;

                if (m_pos == m_current.Hi) {

                    m_current = m_pos == m_current.Size ? m_current.next : null;

                    m_pos = 0;

                    if (m_current == null)
                        return false;
                }

                return true;
            }

            public void Reset() {
                throw new NotSupportedException();
            }

            object IEnumerator.Current {
                get {
                    return Current;
                }
            }

            #endregion

            #region IDisposable implementation

            public void Dispose() {
            }

            #endregion

            #region IEnumerator implementation

            public T Current {
                get {
                    if (m_pos == -1 || m_current == null)
                        throw new InvalidOperationException();
                    return m_current.GetAt(m_pos);
                }
            }

            #endregion
        }

        public IEnumerator<T> GetEnumerator() {
            return new Enumerator(m_first);
        }

        #endregion

        #region IEnumerable implementation

        IEnumerator IEnumerable.GetEnumerator() {
            return GetEnumerator();
        }

        #endregion
    }
}