Mercurial > pub > ImplabNet
view Implab/Automaton/DFATransitionTable.cs @ 165:e227e78d72e4 ref20160224
DFA refactoring
author | cin |
---|---|
date | Mon, 29 Feb 2016 02:02:17 +0300 |
parents | ec35731ae299 |
children | 96681e9d0cea |
line wrap: on
line source
using Implab; using System; using System.Collections.Generic; using System.Linq; namespace Implab.Automaton { public class DFATransitionTable<TTag> : IDFATableBuilder { DFAStateDescriptior[] m_dfaTable; int m_stateCount; int m_symbolCount; int m_initialState; readonly Dictionary<int, TTag[]> m_finalStates = new Dictionary<int, TTag[]>(); readonly HashSet<AutomatonTransition> m_transitions = new HashSet<AutomatonTransition>(); #region IDFADefinition implementation public DFAStateDescriptior[] GetTransitionTable() { if (m_dfaTable == null) { if (m_stateCount <= 0) throw new InvalidOperationException("Invalid automaton definition: states count = {0}", m_stateCount); if (m_symbolCount <= 0) throw new InvalidOperationException("Invalid automaton definition: symbols count = {0}", m_symbolCount); m_dfaTable = ConstructTransitionTable(); } return m_dfaTable; } public bool IsFinalState(int s) { Safe.ArgumentInRange(s, 0, m_stateCount, "s"); return m_finalStates.ContainsKey(s); } public IEnumerable<KeyValuePair<int,TTag[]>> FinalStates { get { return m_finalStates; } } public int StateCount { get { return m_stateCount; } } public int AlphabetSize { get { return m_symbolCount; } } public int InitialState { get { return m_initialState; } } #endregion protected virtual DFAStateDescriptior<TTag>[] ConstructTransitionTable() { var dfaTable = new DFAStateDescriptior<TTag>[m_stateCount]; foreach (var pair in m_finalStates) { var idx = pair.Key; dfaTable[idx].final = true; dfaTable[idx].tag = pair.Value; } foreach (var t in m_transitions) { if (dfaTable[t.s1].transitions == null) { dfaTable[t.s1].transitions = new int[m_symbolCount]; for (int i = 0; i < dfaTable[t.s1].transitions.Length; i++) dfaTable[t.s1].transitions[i] = DFAConst.UNREACHABLE_STATE; } dfaTable[t.s1].transitions[t.edge] = t.s2; } } #region IDFADefinitionBuilder public void DefineTransition(int s1, int s2, int symbol) { if (m_dfaTable != null) throw new InvalidOperationException("The transition table is already built"); Safe.ArgumentAssert(s1 > 0, "s1"); Safe.ArgumentAssert(s2 > 0, "s2"); Safe.ArgumentAssert(symbol >= 0, "symbol"); m_stateCount = Math.Max(Math.Max(m_stateCount, s1 + 1), s2 + 1); m_symbolCount = Math.Max(m_symbolCount, symbol + 1); m_transitions.Add(new AutomatonTransition(s1, s2, symbol)); } public void MarkFinalState(int state, params TTag[] tags) { if (m_dfaTable != null) throw new InvalidOperationException("The transition table is already built"); m_finalStates[state] = tags; } public void SetInitialState(int s) { Safe.ArgumentAssert(s >= 0, "s"); m_initialState = s; } #endregion protected void Optimize<TInput, TState>( IDFATableBuilder<TTag> optimalDFA, IAlphabet<TInput> inputAlphabet, IAlphabetBuilder<TInput> optimalInputAlphabet, IAlphabet<TState> stateAlphabet, IAlphabetBuilder<TState> optimalStateAlphabet ) { Safe.ArgumentNotNull(optimalDFA, "dfa"); Safe.ArgumentNotNull(optimalInputAlphabet, "optimalInputAlphabet"); Safe.ArgumentNotNull(optimalStateAlphabet, "optimalStateAlphabet"); Safe.ArgumentNotNull(inputAlphabet, "inputAlphabet"); Safe.ArgumentNotNull(stateAlphabet, "stateAlphabet"); if (inputAlphabet.Count != m_symbolCount) throw new InvalidOperationException("The input symbols aphabet mismatch"); if (stateAlphabet.Count != m_stateCount) throw new InvalidOperationException("The states alphabet mismatch"); var setComparer = new CustomEqualityComparer<HashSet<int>>( (x, y) => x.SetEquals(y), s => s.Sum(x => x.GetHashCode()) ); var arrayComparer = new CustomEqualityComparer<TTag[]>( (x,y) => (new HashSet<int>(x)).SetEquals(new HashSet<int>(y)), a => a.Sum(x => x.GetHashCode()) ); var optimalStates = new HashSet<HashSet<int>>(setComparer); var queue = new HashSet<HashSet<int>>(setComparer); // получаем конечные состояния, сгруппированные по маркерам optimalStates.UnionWith( m_finalStates .GroupBy(pair => pair.Value, arrayComparer) .Select( g => new HashSet<int>( g.Select( pair => pair.Key) ) ) ); var state = new HashSet<int>( Enumerable .Range(0, m_stateCount - 1) .Where(i => !m_finalStates.ContainsKey(i)) ); optimalStates.Add(state); queue.Add(state); var rmap = m_transitions .GroupBy(t => t.s2) .ToLookup( g => g.Key, // s2 g => g.ToLookup(t => t.edge, t => t.s1) ); while (queue.Count > 0) { var stateA = queue.First(); queue.Remove(stateA); for (int c = 0; c < m_symbolCount; c++) { var stateX = new HashSet<int>(); foreach(var a in stateA) stateX.UnionWith(rmap[a][c]); // all states from wich 'c' leads to 'a' foreach (var stateY in optimalStates.ToArray()) { if (stateX.Overlaps(stateY) && !stateY.IsSubsetOf(stateX)) { var stateR1 = new HashSet<int>(stateY); var stateR2 = new HashSet<int>(stateY); stateR1.IntersectWith(stateX); stateR2.ExceptWith(stateX); optimalStates.Remove(stateY); optimalStates.Add(stateR1); optimalStates.Add(stateR2); if (queue.Contains(stateY)) { queue.Remove(stateY); queue.Add(stateR1); queue.Add(stateR2); } else { queue.Add(stateR1.Count <= stateR2.Count ? stateR1 : stateR2); } } } } } // карта получения оптимального состояния по соотвествующему ему простому состоянию var statesMap = stateAlphabet.Reclassify(optimalStateAlphabet, optimalStates); // получаем минимальный алфавит // входные символы не различимы, если Move(s,a1) == Move(s,a2) var optimalAlphabet = m_transitions .GroupBy(t => Tuple.Create(statesMap[t.s1], statesMap[t.s2]), t => t.edge); var alphabetMap = inputAlphabet.Reclassify(optimalInputAlphabet, optimalAlphabet); var optimalTags = m_finalStates .GroupBy(pair => statesMap[pair.Key]) .ToDictionary( g => g.Key, g => g.SelectMany(pair => pair.Value).ToArray() ); // построение автомата optimalDFA.SetInitialState(statesMap[m_initialState]); foreach (var pair in optimalTags) optimalDFA.MarkFinalState(pair.Key, pair.Value); foreach (var t in m_transitions.Select(t => new AutomatonTransition(statesMap[t.s1],statesMap[t.s2],alphabetMap[t.edge])).Distinct()) optimalDFA.DefineTransition(t.s1, t.s2, t.edge); } protected void PrintDFA<TInput, TState>(IAlphabet<TInput> inputAlphabet, IAlphabet<TState> stateAlphabet) { Safe.ArgumentNotNull(inputAlphabet, "inputAlphabet"); Safe.ArgumentNotNull(stateAlphabet, "stateAlphabet"); var inputMap = inputAlphabet.CreateReverseMap(); var stateMap = stateAlphabet.CreateReverseMap(); for (int i = 0; i < inputMap.Length; i++) Console.WriteLine("C{0}: {1}", i, String.Join(",", inputMap[i])); foreach(var t in m_transitions) Console.WriteLine( "[{0}] -{{{1}}}-> [{2}]{3}", stateMap[t.s1], String.Join(",", inputMap[t.edge]), stateMap[t.s2], m_finalStates.ContainsKey(t.s2) ? "$" : "" ); } } }