view Implab/Parallels/DispatchPool.cs @ 44:e5ec543feee3

Рефакторинг, журналирование
author cin
date Wed, 16 Apr 2014 19:02:58 +0400
parents 2fc0fbe7d58b
children 4f20870d0816
line wrap: on
line source

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;

namespace Implab.Parallels {
    public abstract class DispatchPool<TUnit> : IDisposable {
        readonly int m_minThreads;
        readonly int m_maxThreads;

        int m_createdThreads = 0; // the current size of the pool
        int m_activeThreads = 0; // the count of threads which are active
        int m_sleepingThreads = 0; // the count of currently inactive threads
        int m_maxRunningThreads = 0; // the meximum reached size of the pool
        int m_exitRequired = 0; // the pool is going to shutdown, all unused workers are released
        int m_releaseTimeout = 100; // the timeout while the working thread will wait for the new tasks before exit
        int m_wakeEvents = 0; // the count of wake events
        
        AutoResetEvent m_hasTasks = new AutoResetEvent(false);

        protected DispatchPool(int min, int max) {
            if (min < 0)
                throw new ArgumentOutOfRangeException("min");
            if (max <= 0)
                throw new ArgumentOutOfRangeException("max");

            if (min > max)
                min = max;
            m_minThreads = min;
            m_maxThreads = max;
        }

        protected DispatchPool(int threads)
            : this(threads, threads) {
        }

        protected DispatchPool() {
            int maxThreads, maxCP;
            ThreadPool.GetMaxThreads(out maxThreads, out maxCP);

            m_minThreads = 0;
            m_maxThreads = maxThreads;
        }

        protected void InitPool() {
            for (int i = 0; i < m_minThreads; i++)
                StartWorker();
        }

        public int PoolSize {
            get {
                return m_createdThreads;
            }
        }

        public int ActiveThreads {
            get {
                return m_activeThreads;
            }
        }

        public int MaxRunningThreads {
            get {
                return m_maxRunningThreads;
            }
        }

        protected bool IsDisposed {
            get {
                return m_exitRequired != 0;
            }
        }

        protected abstract bool TryDequeue(out TUnit unit);

        #region thread execution traits
        int SignalThread() {
            var signals = Interlocked.Increment(ref m_wakeEvents);
            if(signals == 1)
                m_hasTasks.Set();
            return signals;
        }

        bool FetchSignalOrWait(int timeout) {
            var start = Environment.TickCount;

            // означает, что поток владеет блокировкой и при успешном получении сигнала должен
            // ее вернуть, чтобы другой ожидающий поток смог 
            bool hasLock = false;
            do {
                int signals;
                do {
                    signals = m_wakeEvents;
                    if (signals == 0)
                        break;
                } while (Interlocked.CompareExchange(ref m_wakeEvents, signals - 1, signals) != signals);

                if (signals >= 1) {
                    if (signals > 1 && hasLock)
                        m_hasTasks.Set();
                    return true;
                }
                
                if (timeout != -1)
                    timeout = Math.Max(0, timeout - (Environment.TickCount - start));

                // если сигналов больше не осталось, то первый поток, который дошел сюда сбросит событие
                // и уйдет на пустой цикл, после чего заблокируется

                hasLock = true; 
            } while (m_hasTasks.WaitOne(timeout));

            return false;
        }

        bool Sleep(int timeout) {
            Interlocked.Increment(ref m_sleepingThreads);
            if (FetchSignalOrWait(timeout)) {
                Interlocked.Decrement(ref m_sleepingThreads);
                return true;
            } else {
                Interlocked.Decrement(ref m_sleepingThreads);
                return false;
            }
        }
        #endregion

        /// <summary>
        /// Запускает либо новый поток, если раньше не было ни одного потока, либо устанавливает событие пробуждение одного спящего потока
        /// </summary>
        protected void GrowPool() {
            if (m_exitRequired != 0)
                return;
            if (m_sleepingThreads > m_wakeEvents) {
                //Console.WriteLine("Waking threads (sleeps {0}, pending {1})", m_sleepingThreads, m_wakeEvents);

                // all sleeping threads may gone
                SignalThread(); // wake a sleeping thread;

                // we can't check whether signal has been processed
                // anyway it may take some time for the thread to start
                // we will ensure that at least one thread is running

                EnsurePoolIsAlive();
            } else {
                // if there is no sleeping threads in the pool
                if (!StartWorker()) {
                    // we haven't started a new thread, but the current can be on the way to terminate and it can't process the queue
                    // send it a signal to spin again
                    SignalThread();
                    EnsurePoolIsAlive();
                }
            }
        }

        protected void EnsurePoolIsAlive() {
            if (AllocateThreadSlot(1)) {
                // if there were no threads in the pool
                var worker = new Thread(this.Worker);
                worker.IsBackground = true;
                worker.Start();
            }
        }

        protected virtual bool Suspend() {
            //no tasks left, exit if the thread is no longer needed
            bool last;
            bool requestExit;

            // if threads have a timeout before releasing
            if (m_releaseTimeout > 0)
                requestExit = !Sleep(m_releaseTimeout);
            else
                requestExit = true;

            if (!requestExit)
                return true;

            // release unsused thread
            if (requestExit && ReleaseThreadSlot(out last)) {
                // in case at the moment the last thread was being released
                // a new task was added to the queue, we need to try
                // to revoke the thread to avoid the situation when the task is left unprocessed
                if (last && FetchSignalOrWait(0)) { // FetchSignalOrWait(0) will fetch pending task or will return false
                    SignalThread(); // since FetchSignalOrWait(0) has fetched the signal we need to reschedule it
                    return AllocateThreadSlot(1); // ensure that at least one thread is alive
                }

                return false;
            }

            // wait till infinity
            Sleep(-1);

            return true;
        }

        #region thread slots traits

        bool AllocateThreadSlot() {
            int current;
            // use spins to allocate slot for the new thread
            do {
                current = m_createdThreads;
                if (current >= m_maxThreads || m_exitRequired != 0)
                    // no more slots left or the pool has been disposed
                    return false;
            } while (current != Interlocked.CompareExchange(ref m_createdThreads, current + 1, current));

            UpdateMaxThreads(current + 1);

            return true;
        }

        bool AllocateThreadSlot(int desired) {
            if (desired - 1 != Interlocked.CompareExchange(ref m_createdThreads, desired, desired - 1))
                return false;

            UpdateMaxThreads(desired);

            return true;
        }

        bool ReleaseThreadSlot(out bool last) {
            last = false;
            int current;
            // use spins to release slot for the new thread
            do {
                current = m_createdThreads;
                if (current <= m_minThreads && m_exitRequired == 0)
                    // the thread is reserved
                    return false;
            } while (current != Interlocked.CompareExchange(ref m_createdThreads, current - 1, current));

            last = (current == 1);

            return true;
        }

        /// <summary>
        /// releases thread slot unconditionally, used during cleanup
        /// </summary>
        /// <returns>true - no more threads left</returns>
        bool ReleaseThreadSlotAnyway() {
            var left = Interlocked.Decrement(ref m_createdThreads);
            return left == 0;
        }

        void UpdateMaxThreads(int count) {
            int max;
            do {
                max = m_maxRunningThreads;
                if (max >= count)
                    break;
            } while(max != Interlocked.CompareExchange(ref m_maxRunningThreads, count, max));
        }

        #endregion

        bool StartWorker() {
            if (AllocateThreadSlot()) {
                // slot successfully allocated
                var worker = new Thread(this.Worker);
                worker.IsBackground = true;
                worker.Start();

                return true;
            } else {
                return false;
            }
        }

        protected abstract void InvokeUnit(TUnit unit);

        protected virtual void Worker() {
            TUnit unit;
            //Console.WriteLine("{0}: Active", Thread.CurrentThread.ManagedThreadId);
            Interlocked.Increment(ref m_activeThreads);
            do {
                // exit if requested
                if (m_exitRequired != 0) {
                    // release the thread slot
                    Interlocked.Decrement(ref m_activeThreads);
                    if (ReleaseThreadSlotAnyway()) // it was the last worker
                        m_hasTasks.Dispose();
                    else
                        SignalThread(); // wake next worker
                    break;
                }

                // fetch task
                if (TryDequeue(out unit)) {
                    InvokeUnit(unit);
                    continue;
                }
                Interlocked.Decrement(ref m_activeThreads);

                // entering suspend state
                // keep this thread and wait                
                if (!Suspend())
                    break;
                //Console.WriteLine("{0}: Awake", Thread.CurrentThread.ManagedThreadId);
                Interlocked.Increment(ref m_activeThreads);
            } while (true);
            //Console.WriteLine("{0}: Exited", Thread.CurrentThread.ManagedThreadId);
        }

        protected virtual void Dispose(bool disposing) {
            if (disposing) {
                if (m_exitRequired == 0) {
                    if (Interlocked.CompareExchange(ref m_exitRequired, 1, 0) != 0)
                        return;

                    // wake sleeping threads
                    if (m_createdThreads > 0)
                        SignalThread();
                    else
                        m_hasTasks.Dispose();
                    GC.SuppressFinalize(this);
                }
            }
        }

        public void Dispose() {
            Dispose(true);
        }

        ~DispatchPool() {
            Dispose(false);
        }
    }
}