Development rules and regulations

Version 1.1

Author:
Igor Tkachev

Date:
February 10, 2006
1.0Introduction
4
2.0C# naming conventions
4
2.1General naming rules
4
2.2Capitalization Styles
4
2.3Abbreviations
5
2.4Word Choice
5
2.5Namespace Naming Guidelines
6
2.6Class Naming Guidelines
7
2.7Extended Types Naming Guidelines
7
2.8Interface Naming Guidelines
7
2.9Attribute Naming Guidelines
8
2.10Enumeration Type Naming Guidelines
8
2.11Parameter Naming Guidelines
8
2.12Method Naming Guidelines
9
2.13Property Naming Guidelines
9
2.14Protected/Privet Field Naming Guidelines
10
2.15Event Naming Guidelines
10
2.16Variable Naming Guidelines
11
3.0C# coding conventions
11
3.1Indentation
11
3.2Comments
12
3.3Declarations
13
3.4Statements
14
3.5White Spaces
16
4.0C# Best Practices
17
4.1Common Rules
17
4.2The "Using" Statement and IDisposable
18
4.3File Organization
19
5.0Database naming conventions
20
5.1General naming rules
20
5.2Tables
20
5.3Columns
21
5.4View
21
5.5Stored procedures
21
5.6User defined functions
22
5.7Triggers
22
5.8Indexes/Keys
22
6.0Database coding conventions
23
6.1Design
23
6.2Performance
24
6.3Maintenance
26
6.4Source Code Style
27

1.0 Introduction

The purpose of this document is to define one style of programming to the team.

2.0 C# naming conventions

2.1 General naming rules

2.1.1 Generally the use of Hungarian notation is not allowed, except naming controls (see 2.14).

2.1.2 Do not use the underscore character (_), except naming private fields (see 2.14).

2.1.3 Use abbreviations sparingly.

2.1.4 Identifiers which conflict in whole or in part with commonly used namespace should be avoided. Names that describe the purpose or contents of a type are preferred.

2.1.5 Do not use names that require case sensitivity for uniqueness. Components must be fully usable from both case-sensitive and case-insensitive languages. Since case-insensitive languages cannot distinguish between two names within the same context that differ only by case, components must avoid this situation.

2.2 Capitalization Styles

2.2.1 Pascal case

The first letter in the identifier and the first letter of each subsequent concatenated word are capitalized. You can use Pascal case for identifiers of three or more characters. For example:

BackColor

2.2.2 Camel case

The first letter of an identifier is lowercase and the first letter of each subsequent concatenated word is capitalized. For example:

backColor

2.2.3 Uppercase

Only use all upper case for identifiers if it contains an abbreviation that is two characters long or one, identifiers of three or more characters should use Pascal Casing instead. For example:

System.IO

System.Web.UI

public class Math

{

 public const PI = ...

 public const E = ...

}

2.2.4 Capitalization summary

The following table summarizes the capitalization rules and provides examples for the different types of identifiers.

Identifier
Case
Example

Namespace
Pascal
System.Drawing

Class / Structure
Pascal
AppDomain

Interface
Pascal
IDisposable

Note Always begins with the prefix I.

Enum type
Pascal
ErrorLevel

Enum values
Pascal
FatalError

Event
Pascal
ValueChange

Exception class
Pascal
WebException

Note Always ends with the suffix Exception

Method
Pascal
ToString

Parameter
Camel
typeName

Property
Pascal
BackColor

Public field
Pascal
RedValue

Note Rarely used. A property is preferable to using a protected instance field.

Protected/private field
Camel
_redValue

Note Always begins with the prefix ‘_’.

Local variables
Camel
redValue

2.3 Abbreviations

2.3.1 Do not use abbreviations or contractions as parts of identifier names. For example, use GetWindow instead of GetWin.

2.3.2 Do not use acronyms that are not generally accepted in the computing field.

2.3.3 Where appropriate, use well-known acronyms to replace lengthy phrase names. For example, use UI for User Interface and OLAP for On-line Analytical Processing.

2.3.4 When using acronyms, use Pascal case for acronyms more than two characters long. For example, use XmlSpace rather than XMLSpace. However, you should capitalize acronyms that consist of only two characters, such as System.IO instead of System.Io.

2.4 Word Choice

2.4.1 Avoid using class names that duplicate commonly used .NET Framework namespaces. For example, do not use any of the following names as a class name: System, Collections, Forms, or UI.

2.4.2 In addition, avoid using identifiers that conflict with the following keywords.

AddHandler
AddressOf
Alias
And
Ansi

As
Assembly
Auto
Base
Boolean

ByRef
Byte
ByVal
Call
Case

Catch
CBool
CByte
CChar
CDate

CDec
CDbl
Char
CInt
Class

CLng
CObj
Const
CShort
CSng

CStr
CType
Date
Decimal
Declare

Default
Delegate
Dim
Do
Double

Each
Else
ElseIf
End
Enum

Erase
Error
Event
Exit
ExternalSource

False
Finalize
Finally
Float
For

Friend
Function
Get
GetType
Goto

Handles
If
Implements
Imports
In

Inherits
Integer
Interface
Is
Let

Lib
Like
Long
Loop
Me

Mod
Module
MustInherit
MustOverride
MyBase

MyClass
Namespace
New
Next
Not

Nothing
NotInheritable
NotOverridable
Object
On

Option
Optional
Or
Overloads
Overridable

Overrides
ParamArray
Preserve
Private
Property

Protected
Public
RaiseEvent
ReadOnly
ReDim

Region
REM
RemoveHandler
Resume
Return

Select
Set
Shadows
Shared
Short

Single
Static
Step
Stop
String

Structure
Sub
SyncLock
Then
Throw

To
True
Try
TypeOf
Unicode

Until
volatile
When
While
With

WithEvents
WriteOnly
Xor
eval
extends

instanceof
package
var

2.5 Namespace Naming Guidelines

2.5.1 The general rule for naming namespace is to use the company name followed by product name and optionally the subsystem and feature as follows.

CompanyName.ProductName.Framework

CompanyName.ProductName.DataAccess.Account

2.5.2 Use Pascal case.

2.5.3 Use plural namespace names if it is semantically appropriated. For example, use System.Collections rather than System.Collection.

2.5.4 Do not use the same name for namespace and a class. For example, do not provide both a Debug namespace and a Debug class.

2.5.5 List imported name spaces in the following order: .NET Framework name spaces, third party product name spaces, external project namespaces, and current project namespaces. Each group should be sorted in alphabetical order and should be divided by blank line. Aliases follow the proper groups.

2.6 Class Naming Guidelines

2.6.1 Use a noun or noun phrase to name a class.

2.6.2 Use Pascal case.

2.6.3 Do not use a type prefix, such as C for class, on a class name. For example, use the class name FileStream rather than CFileStream.

2.6.4 Where appropriate, use a compound word to name a derived class. The second part of the derived class's name should be the name of the base class. For example, ApplicationException is an appropriate name for a class derived from a class named Exception, because ApplicationException is a kind of Exception. Use reasonable judgment in applying this rule. For example, Button is an appropriate name for a class derived from Control. Although a button is a kind of control, making Control a part of the class name would lengthen the name unnecessarily.

2.6.5 Use the Base suffix to name an abstract base class. For example, DataAccessorBase.

2.6.6 The following are examples of correctly named classes.

public class FileStream

public class Button

public class String

2.7 Extended Types Naming Guidelines

2.7.1 A type that extends Collection and nothing more should be suffixed with Collection, as in StringCollection. If a collection is a queue, it may also be suffixed with Queue, or if it is a stack, it may also be suffixed with Stack or List. This is because these collections have semantic differences in use from other collections. Types that do not extend Collection do not have the Collection, Queue, List or Stack suffix.

2.7.2 A type that extends Dictionary should be suffixed with Dictionary, as in StringDictionary. Types that do not extend Dictionary do not have the Dictionary suffix.

2.7.3 Do not use Delegate as a suffix on a Delegate type's name. Consider using Callback instead.

2.7.4 A type that extends System.Exception should be suffixed with Exception, as in DiskException. Types that do not extend Exception do not have the Exception suffix.

2.7.5 The name of a type that extends System.IO.Stream should be suffixed with Stream, as in MemoryStream. Types that do not extend System.IO.Stream do not have the Stream suffix.

2.8 Interface Naming Guidelines

2.8.1 Name interfaces with nouns or noun phrases, or adjectives that describe behavior. For example, the interface name IComponent uses a descriptive noun. The interface name ICustomAttributeProvider uses a noun phrase. The name IPersistable uses an adjective.

2.8.2 Use Pascal case.

2.8.3 Prefix interface names with the letter I, to indicate that the type is an interface.

2.8.4 Use similar names when you define a class/interface pair where the class is a standard implementation of the interface. The names should differ only by the letter I prefix on the interface name.

2.8.5 The following are examples of correctly named interfaces.

public interface IServiceProvider

public interface IFormatable

The following code example illustrates how to define the interface IComponent and its standard implementation, the class Component.

public interface IComponent

{

 // Implementation code goes here.

}

public class Component: IComponent

{

 // Implementation code goes here.

}

2.9 Attribute Naming Guidelines

2.9.1 You should always add the suffix Attribute to custom attribute classes. Types that do not extend Attribute do not have the Attribute suffix.

2.9.2 The following is an example of a correctly named attribute class.

public class ObsoleteAttribute{};

2.10 Enumeration Type Naming Guidelines

2.10.1 Use Pascal case for Enum types and value names.

2.10.2 Do not use an Enum suffix on Enum type names.

2.11 Parameter Naming Guidelines

2.11.1 Use descriptive parameter names. Parameter names should be descriptive enough that the name of the parameter and its type can be used to determine its meaning in most scenarios.

2.11.2 Use Camel case for parameter names.

2.11.3 Use names that describe a parameter's meaning rather than names that describe a parameter's type. Development tools should provide meaningful information about a parameter's type. Therefore, a parameter's name can be put to better use by describing meaning. Use type-based parameter names sparingly and only where it is appropriate.

2.11.4 Do not use reserved parameters. Reserved parameters are private parameters that might be exposed in a future version if they are needed. Instead, if more data is needed in a future version of your class library, add a new overload for a method.

2.11.5 Parameter names should be distinct from member names.

2.11.6 The following are examples of correctly named parameters.

Type GetType(string typeName);

string Format (string format, params object[] args);

2.12 Method Naming Guidelines

2.12.1 Use verbs or verb phrases to name methods.

2.12.2 Use Pascal case.

2.12.3 The following are examples of correctly named methods.

RemoveAll();

GetCharArray();

Invoke();

2.13 Property Naming Guidelines

2.13.1 Use a noun or noun phrase to name properties.

2.13.2 Use Pascal case.

2.13.3 Consider creating a property with the same name as its underlying type. For example, if you declare a property named Color, the type of the property should likewise be Color. See the example later in this topic.

2.13.4 The following code example illustrates correct property naming.

public class SampleClass

{

 public Color BackColor

 {

 // Code for Get and Set accessors goes here.

 }

}

The following code example illustrates providing a property with the same name as a type.

public enum Color

{

 // Insert code for Enum here.

}

public class Control

{

 public Color Color

 {

 get {/* Insert code here. */}

 set {/* Insert code here. */}

 }

}

The following code example is incorrect because the property Color is of type int.

public enum Color { /* Insert code for Enum here. */ }

public class Control

{

 public int Color

 {

 get {/* Insert code here. */}

 set {/* Insert code here. */}

 }

}

In the incorrect example, it is not possible to refer to the members of the Color enumeration. Color.Xxx will be interpreted as accessing a member that first gets the value of the Color property and then accesses a member of that value (which would have to be an instance member of System.Int32).

2.14 Protected/Private Field Naming Guidelines

2.14.1 Use nouns or noun phrases to name static fields.

2.14.2 Use prefix ‘_’ and Camel case.

2.14.3 Use similar names when you define a field/property pair. The names should differ only by the prefix ‘_’ and Camel case on the private field name.

private string _name;

public string Name

{

 get { return _name; }

 set { _name = value; }

}

2.14.4 Use modified Hungarian notation using .NET class names, or a common “control” or “ui” prefix for all controls on Forms. This keeps the controls together in intellisense and makes UI programming much easier.

protected System.Web.UI.WebControls.TextBox tbFirstName;

protected System.Web.UI.WebControls.Button btnSubmit;

2.15 Event Naming Guidelines

2.15.1 Use an EventHandler suffix on event handler names. The name of a type that is not an event handler should not be suffixed with EventHandler.

2.15.2 Specify two parameters named sender and e. The sender parameter represents the object that raised the event. The sender parameter is always of type object, even if it is possible to use a more specific type. The state associated with the event is encapsulated in an instance of an event class named e. Use an appropriate and specific event class for the e parameter type.

2.15.3 Name an event argument class with the EventArgs suffix. The names of types that do not extend EventArgs should not be suffixed with EventArgs.

2.15.4 Consider naming events with a verb.

2.15.5 Do not use a prefix or suffix on the event declaration on the type. For example, use Close instead of OnClose.

2.15.6 Use present and past tense for pre-events and post-events, instead of using Before and After. For example, use Closing and Closed rather than BeforeClose and AfterClose.

2.15.7 In general, you should provide a protected method called OnXxx on types with events that can be overridden in a derived class. This method should only have the event parameter e, because the sender is always the instance of the type.

2.15.8 The following example illustrates an event handler with an appropriate name and parameters.

public delegate void MouseEventHandler(object sender,MouseEventArgs e);

The following example illustrates a correctly named event argument class.

public class MouseEventArgs : EventArgs

{

 public MouseEventArgs(int x, int y)

 {

 _x = x;

 _y = y;

 }

 private int _x;

 private int _y;

 public int X { get { return _x; } }

 public int Y { get { return _y; } }

}

2.16 Variable Naming Guidelines

2.16.1 Use Camel case.

2.16.2 Variables with a large scope should have long descriptive names. Variables with a small scope can have short names.

2.16.3 Counting variables are preferable called i, j, k, l, m, n.

3.0 C# coding conventions

3.1 Indentation

3.1.1 Line Length

Consider avoiding (if possible) lines longer than 132 characters, switch on the ruler in your editor to get that managed, wrap lines if necessary.

3.1.2 Wrapping Lines

When an expression will not fit on a single line, break it according to these general principles:

· Break after a comma.

· Break after an operator.

· Break before a dot.

· Prefer higher-level breaks to lower-level breaks.

· Align the new line with the beginning of the expression at the same level on the previous line

Example of breaking method calls.

longMethodCall(expr1, expr2, expr3,

 expr4, expr5);

sb

 .Append(“text”)

 .Append(“more text”)

 .AppendLine()

 ;

Examples of breaking an arithmetic expression. The first is preferred, since the break occurs outside of the parenthesized expression (higher level rule).

var = a * b / (c - g + f) +

 4 * z; // PREFER

var = a * b / (c - g +

 f) + 4 * z; // AVOID

3.1.3 Whitespaces

DON’T USE SPACES FOR INDENTATION! USE TABS!

3.2 Comments

3.2.1 Block Comments

Try to avoid block comments, use the /// comments for descriptions to give C# standard descriptions. When you wish to use block comments you should use the following style:

/*

 * Line 1

 * Line 2

 * Line 3

 */

or (In this case a return should follow, don’t put comments before code)

/* blabla */

3.2.2 End of Line Comments

You should use the // comment style to ”comment out” code. It can be used for commenting sections of code too. For example:

// Line 1

//

ArrayList list = new ArrayList(10);

// Line 1

// Line 2

//

for (int i = 0; i < list.Count; i++)

 ...

Note the sample uses blank comment line to improve readability

Use // comment style at the end of line if you comment declarations.

int level; // indentation level

int size; // size of table

3.2.3 Documentation Comments

For documentation comments see chapter XML Documentation in the Microsoft documentation.

3.3 Declarations

3.3.1 Number of Declarations per Line

One declaration per line is recommended since it encourages commenting. In other words

int level; // indentation level

int size; // size of table

Do not put different types on the same line. Example:

int a, b; // WRONG!

3.3.2 Initialization

Try to initialize local variables where they’re declared. Example:

string name = myObject.Name;

int val = time.Hours;

3.3.3 Class and Interface Declarations

When coding C# classes and interfaces, the following formatting rules should be followed:

· No space between a method name and the parenthesis ”(” starting its parameter list.

· The open brace ”{” appears in the next line as the declaration statement.

· The source code starts in the next as the open brace and has one tab indentation.

· The closing brace ”}” starts a line by itself indented to match its corresponding opening statement.

Example:

class MySample : MyClass, IMyInterface

{

 int _myInt;

 public MySample(int myInt)

 {

 _myInt = myInt;

 }

 void Inc()

 {

 ++myInt;

 }

 void EmptyMethod()

 {

 }

}

3.4 Statements

3.4.1 Simple Statements

Each line should contain only one statement.

3.4.2 Return Statements

A return statement should not use parentheses.

3.4.3 If, if-else, if else-if else Statements

if, if-else and if else-if else statements should look like:

if (condition)

{

 DoSomething();

 ...

}

if (condition)

{

 DoSomething();

 ...

}

else

{

 DoSomethingOther();

 ...

}

if (condition)

{

 DoSomething();

 ...

}

else if (condition)

{

 DoSomethingOther();

 ...

}

else

{

 DoSomethingOtherAgain();

 ...

}

3.4.4 For / foreach Statements

A for statement should have the following form:

for (int i = 0; i < 5; ++i)

{

 ...

}

or single lined:

for (initialization; condition; update);

A foreach should look like:

foreach (int i in IntList)

{

 ...

}

3.4.5 While / do-while Statements

A while statement should have the following form:

while (condition)

{

 ...

}

An empty while should have the following form:

while (condition);

A do-while statement should have the following form:

do

{

 ...

}

while (condition);

3.4.6 Switch Statements

A switch statement should have the following form:

switch (condition)

{

 case 1:

 case 2:

 ...

 break;

 case 3:

 ...

 break;

 default:

 ...

 break;

}

3.4.7 Try-catch Statements

A try-catch statement should have the following form:

try

{

 ...

}

catch

{

}

try

{

 ...

}

catch (Exception e)

{

 ...

}

try

{

 ...

}

catch (Exception e)

{

 ...

}

finally

{

 ...

}

3.4.8 Using Statements

A using statement should have the following form:

using (initialization)

{

 ...

}

Nested using statements should have the following form if they follow each other:

using (initialization1)

using (initialization2)

{

 ...

}

3.5 White Spaces

3.5.1 Blank Lines

Blank lines improve readability, set off code blocks which are logically related. Two blank lines should always be used between:

· Sections of a source file.

· Class and interface definitions.

One blank line should always be used between:

· Methods.

· Local variables in a method and its first statement.

· Logical sections inside a method to improve readability.

3.5.2 Inter-term spacing

There will be a single space after a comma or a semicolon, example:

TestMethod(a, b, c);

don't use

TestMethod(a,b,c)

or

TestMethod(a, b, c);

A single space will surround operators, example:

a = b; // don't use a=b;

for (int i = 0; i < 10; ++i) // don't use for (int i=0; i<10; ++i)

 // or

 // for(int i=0;i<10;++i)

3.5.3 Table like formatting

A logical block of lines should be formatted as a table:

string name = "Mr. Ed";

int myValue = 5;

Test aTest = Test.TestYou;

4.0 C# Best Practices

4.1 Common Rules

4.1.1 Do not make any instance or class variable public, make them private. Do use properties instead. You may use public static fields (or const) as an exception, but it should not be a rule.

Classes should not have public member variables. Public instance fields limit your ability to change the implementation details for those data items. Use properties instead. They do not compromise usability or performance and they do provide flexibility in that they conceal the implementation of the underlying data.

However, public fields are allowed for classes used as simple data containers (business entities).

4.1.2 Consider replacing Get/Set methods with properties. Properties should be used instead of Get/Set methods in most situations. Methods are preferable to properties in the following situations:

· The operation is a conversion, is expensive or has an observable side-effect.

· The order of execution is important.

· Calling the member twice in succession creates different results.

4.1.3 Properties should not be write-only. Write-only properties usually indicate a flawed design.

4.1.4 Abstract types should not have public constructors. Public constructors for abstract types do not make sense because you cannot create instance of abstract types.

4.1.5 Sealed types do not declare protected and virtual members. Sealed types cannot be extended, and protected or virtual members are only useful if you can extend the declaring type.

4.1.6 Disposable types should extend System.MarshalByRefObject. Implementing IDisposable suggests that an object contains unmanaged resources, such as operating system handles. Unmanaged resources cannot be marshaled by value in remoting contexts.

4.1.7 Types with only static members should not have public or protected constructors. Instances of type that define only static members do not need to be created

4.1.8 Don't use magic number, instead declare a const variable which contains the number:

public class MyMath

{

 public const double PI = 3.14159...

}

4.2 The "Using" Statement and IDisposable

A cardinal rule of .NET resource acquisition and release is this: If an object is an instantiation of a class that has a Dispose method, or implements IDisposable, you need to call Dispose as soon as you are done with that object.

IDisposable.Dispose() releases unmanaged resources (file handles, windows handles, database connections, etc.) that are expensive to keep around until the next garbage collection run. Note: IDisposable is not supposed to do anything with managed resources like managed objects. It simply deals with unmanaged resources.

When you call the dispose method, what typically happens is the unmanaged resources are released, and the finalizer for that instance of the class is suppressed. This is a nice performance optimization as Finalization can be costly, especially if you have a large number of objects waiting to be finalized.

If you do not call the Dispose method, what typically happens is the garbage collector tries to collect your object, and sees that it has a finalizer that must be called. It is then put on a finalization queue. When the finalizer is run the object can then be collected and the memory returned back to the pool.

C# has a nice statement that automates dealing with the Dispose method. You can use this statement with any class that implements IDisposable. If the class does not implement IDisposable, you will get a compile error

using (MyClass myClass = new MyClass())

{

 // do something with myClass

}

The above C# code is equivalent to:

MyClass myClass = new MyClass();

try

{

 // do something with myClass

}

finally

{

 myClass.Dispose();

}

As you can see, Dispose will always be called, even in the case of an exception.

You can nest using statements and you can include multiple comma-separated instantiations in the parentheses.

Most folks will run into Dispose with ADO.NET and also with streams.

4.3 File Organization

4.3.1 C# Source Files

Keep your classes/files short, don’t exceed 2000 line of code, divide it up, make your structure clearer. Put every class in a separate file and name the file like the class name (with .cs as extension of course)

4.3.2 Directory Layout

Make a directory for every namespace. (for MyProject.TestSuite.TestTier use MyProject/ TestSuite/TestTier as the path)

5.0 Database naming conventions

5.1 General naming rules

5.1.1 All identifiers, tables, views and column names are in English.

5.1.2 Only letters, numbers, and the underscore are allowed in names. No spaces, punctuation, or extended characters are allowed. Spaces confuse front-end data access tools and applications. This avoids the need to use square brackets as delimiters around identifier names in SQL statements. This provides considerable simplification when writing code and SQL statements with little or no loss in readability. A column name of FirstName is just as easy to understand as First Name. But if you must use spaces within the name of a database object, make sure you surround the name with square brackets as shown here: [First Name].

5.1.3 The first character in a name must be a letter.

5.1.4 When your database engine supports case-sensitive identifiers, the first letter in the identifier and the first letter of each subsequent concatenated word are capitalized (Pascal case). Use Pascal case names instead of using underscores to separate two worlds of a name (not CUSTOMER_ORDER but CustomerOrder).

5.1.5 Use underscores only between the prefix/suffix and the actual object name. The underscore can also be used to separate words, but only in exceptional circumstances.

5.1.6 Use the name without using pointless or obscure abbreviations. Abbreviations should be avoided entirely if possible, and only used if it is a commonly known meaning. A good “rule of thumb” for identifier names is that you should be able to read them over the phone without needing to spell them out.

5.1.7 Make sure you are not using any reserved words for naming your database objects, as that can lead to some unpredictable situations.

5.2 Tables

5.2.1 Regular Tables are named using the singular form of the object they represent. For example, if the table contains customer data, the name should be Customer, not Customers.

5.2.2 Junction Tables are used to break many-to-many relationships down. Junction tables are also known as Composite Tables or Intersections. Such tables are named using the names of both tables. For example, if table is the junction between an Order table and Item table, the name should be OrderItem.

5.2.3 Extension Tables used as extensions to a base table in one-to-one relationship are named using the base name, the underscore, and then a word describing the nature of the extension. For example, you may have a generic Person table that has a one-to-one relationship with an extension for only a few individuals. If, for example, you have an extension table storing information specifically about people who are doctors, info for the doctors would be in the Person_Doctor table.

5.2.4 If your database deals with different logical functions and you want to group your tables according to the logical group they belong to, prefix your table name with a two or three character prefix that can identify the group. This kind of naming convention makes sure, all the related tables are grouped together when you list all your tables in alphabetical order. However, if your database deals with only one logical group of tables, you do not need to use this naming convention.

5.2.5 Test and Temporary Tables must have prefix TST_, TMP_ or postfix _Test, _Temp, if they belong to a logical group. This rule will help DBA to keep track of unnecessary tables.

5.2.6 Every table should have a primary key, preferably consisting of one field called TableNameID or TABLENAME_ID for case-insensitive databases. Group prefix of the table that was discussed in 5.2 does not need to be included in the field name. For example, if you have an account namespace named ACC and an address table ACC_Address, the key field of the table should be AddressID, not ACC_AddressID.

5.2.7 If referring to another table you should use the following conventions. A table Account referring to Person contains the field PersonID or PERSON_ID to implement the link to Person.

5.3 Columns

5.3.1 Columns are attributes of an entity, that is, columns describe the properties of an entity. Use meaningful and natural names for columns.

5.3.2 Do not prefix the column names with the entity that they are representing (not CustomerFirstName but FirstName).
Advantage of prefixing the column names with the entity could be that in multi-table queries involving complex joins, you don't have to worry about ambiguous column names, and don't have to use table aliases to prefix the columns. But what is the difference between following names: CustomerFirstName and Customer.FirstName? In addition you can always use a short alias instead of long table name in your query, and you can use the same attribute name of different entity, if they have the same meaning.

5.3.3 According to the item 5.2, name for the primary key field should be TableNameID.

5.3.4 According to the item 5.2, if you have to name the columns in a junction/mapping table, concatenate the table codes of mapped tables and the postfix ID. For example, CustomerID.

5.4 View

5.4.1 A view is nothing but a table for any application that is accessing it. The same naming convention defined above for tables (5.2), applies to views as well.

5.4.2 If view represents a combination of two tables based on a join condition, thus, effectively representing two entities, use the same naming convention as Junction Tables.

5.4.3 Views can summarize data from existing base tables in the form of reports. In this case the name of the view can be, for example, SummaryOfSalesByYear.

5.5 Stored procedures

5.5.1 Stored procedures always do some work, they are action oriented. Their name should describe the work they do. Use a verb to describe the work. For example, GetCustomerDetails, InsertCustomerInfo, etc.

5.5.2 As explained above in the case of tables, you can use a prefix, to group stored procedures also, depending upon the logical group they belong to.

5.5.3 Never prefix your stored procedures with sp_, unless you are storing the procedure in the master database. If you call a stored procedure prefixed with sp_, SQL Server always looks for this procedure in the master database. Only after checking in the master database (if not found) it searches the current database.

5.5.4 Do not prefix stored procedures with prefixes like sproc_ just to make it obvious that the object is a stored procedure. Any database developer/DBA can identify stored procedures as the procedures are always preceded by EXEC or EXECUTE keyword

5.6 User defined functions

5.6.1 UDFs are almost similar to stored procedures, except for the fact that UDFs can be used in SELECT statements. The naming conventions discussed above for stored procedures, apply to UDFs as well.

5.6.2 You can use a prefix to logically group your UDFs. For example, you can name all your string manipulation UDFs as str_MakeProperCase, str_ParseString, etc.

5.6.3 Inline UDFs functions are a subset of UDFs that return a table. Inline functions can be used to achieve the functionality of parameterized views. The naming conventions discussed above for views (5.4) are applied to Inline UDFs.

5.7 Triggers

5.7.1 As triggers always depend on a base table and can't exist on their own, link the base table's name with the trigger name.

5.7.2 As triggers are associated with one or more of the following operations: Insert, Update, Delete, the name of the trigger should reflect it's nature. For example, Customer_Ins, Customer_Updt, Customer_Del.

5.7.3 If you have more than one trigger per action per table, use action name to distinguish triggers. For example, Customer_ValidateData_Ins, Customer_MakeAuditEntries_Ins.

5.7.4 If you have a single trigger for more than one action, use the postfixes Ins, Updt, Del together in the name of the trigger. Here's an example: Customer_InsUpdt.

5.8 Indexes/Keys

5.8.1 Primary key is the column(s) that can uniquely identify each row in a table. Use the prefix PK_TableName for naming primary keys. SQL Server uses this rule by default.

5.8.2 Foreign key are used to represent the relationships between tables that are related. Use the following naming convention for foreign keys: FK_ReferencingTable_ReferencedTable. For example, FK_Order_Customer. SQL Server uses this rule by default.

5.8.3 You usually don't need more than one relation between the same tables. But if you do, use postfix, which describes meaning of the relation.

5.8.4 Use the following naming convention for indexes: IX_TableName_Column1(Desc)…_ColumnN(Desc).

6.0 Database coding conventions

6.1 Design

6.1.1 Make sure you normalize your data at least till 3rd normal form. At the same time, do not compromise on query performance. A little bit of denormalization helps queries perform faster.

6.1.2 While designing your database, design it keeping 'performance' in mind. You can't really tune performance later, when your database is in production, as it involves rebuilding tables/indexes, re-writing queries. Use the graphical execution plan in Query Analyzer or SHOWPLAN_TEXT or SHOWPLAN_ALL commands to analyze your queries. Make sure your queries do 'Index seeks' instead of 'Index scans' or 'Table scans'. A table scan or an index scan is a very bad thing and should be avoided where possible (sometimes when the table is too small or when the whole table needs to be processed, the optimizer will choose a table or index scan).

6.1.3 Try not to use system tables directly. System table structures may change in a future release. Wherever possible, use the sp_help* stored procedures or INFORMATION_SCHEMA views.

6.1.4 Views are generally used to show specific data to specific users based on their interest. Views are also used to restrict access to the base tables by granting permission on only views. Yet another significant use of views is that, they simplify your queries. Incorporate your frequently required complicated joins and calculations into a view, so that you don't have to repeat those joins/calculations in all your queries, instead just select from the view.

6.1.5 Use Unicode datatypes like nchar, nvarchar, ntext, if your database is going to store not just plain English characters, but a variety of characters used all over the world. Use these datatypes, only when they are absolutely needed as they need twice as much space as non-unicode datatypes.

6.1.6 If you have a choice, do not store binary files, image files (Binary large objects or BLOBs) etc. inside the database. Instead store the path to the binary/image file in the database and use that as a pointer to the actual binary file. Retrieving, manipulating these large binary files is better performed outside the database and after all, database is not meant for storing files.

6.1.7 Do not let your front-end applications query/manipulate the data directly using SELECT or INSERT/UPDATE/DELETE statements. Instead, create stored procedures, and let your applications access these stored procedures. This keeps the data access clean and consistent across all the modules of your application.

6.1.8 NULLs may confuse the front-end applications, unless the applications are coded intelligently to eliminate NULLs or convert the NULLs into some other form. Any expression that deals with NULL results in a NULL output. ISNULL and COALESCE functions are helpful in dealing with NULL values. Here's an example that explains the problem:

Consider the following table, Customer which stores the names of the customers and the middle name can be NULL.

CREATE TABLE Customer

(

 FirstName varchar(20),

 MiddleName varchar(20),

 LastName varchar(20)

)

Now insert a customer into the table whose name is Tony Blair, without a middle name:

INSERT INTO Customers (FirstName, MiddleName, LastName)

VALUES ('Tony', NULL, 'Blair')

The following SELECT statement returns NULL, instead of the customer name:

SELECT FirstName + ' ' + MiddleName + ' ' + LastName

FROM Customer

To avoid this problem, use ISNULL as shown below:

SELECT FirstName + ' ' + ISNULL(MiddleName + ' ','') + LastName

FROM Customer

6.1.9 Always access tables in the same order in all your stored procedures/triggers consistently. This helps in avoiding deadlocks.

6.1.10 Other things to keep in mind to avoid deadlocks are: Keep your transactions as short as possible. Touch as less data as possible during a transaction. Never
 ever wait for user input in the middle of a transaction. Do not use higher level locking hints or restrictive isolation levels unless they are absolutely needed. Make your front-end applications deadlock-intelligent, that is, these applications should be able to resubmit the transaction in case the previous transaction fails with error 1205. In your applications, process all the results returned by SQL Server immediately, so that the locks on the processed rows are released, hence no blocking.

6.1.11 Always check the global variable @@ERROR immediately after executing a data manipulation statement (like INSERT/UPDATE/DELETE), so that you can rollback the transaction in case of an error (@@ERROR will be greater than 0 in case of an error). This is important, because, by default, SQL Server will not rollback all the previous changes within a transaction if a particular statement fails. This behavior can be changed by executing SET XACT_ABORT ON. The @@ROWCOUNT variable also plays an important role in determining how many rows were affected by a previous data manipulation (also, retrieval) statement, and based on that you could choose to commit or rollback a particular transaction.

6.2 Performance

6.2.1 Do not use SELECT * in your queries. Always write the required column names after the SELECT statement, like SELECT CustomerID, FirstName, City. This technique results in less disk IO and less network traffic and hence better performance.

6.2.2 Try to avoid server side cursors as much as possible. Always stick to 'set based approach' instead of a 'procedural approach' for accessing/manipulating data. Cursors can be easily avoided by SELECT statements in many cases.

6.2.3 Avoid the creation of temporary tables while processing data, as much as possible, as creating a temporary table means more disk IO. Consider advanced SQL or views or table variables of SQL Server 2000 or derived tables, instead of temporary tables. Keep in mind that, in some cases, using a temporary table performs better than a highly complicated query.

6.2.4 Try to avoid wildcard characters at the beginning of a word while searching using the LIKE keyword, as that results in an index scan, which is defeating the purpose of having an index. The following statement results in an index scan, while the second statement results in an index seek:

1. SELECT LocationID FROM Location WHERE Specialities LIKE '%pples'

2. SELECT LocationID FROM Location WHERE Specialities LIKE 'A%s'

6.2.5 Also avoid searching with not equals operators (<> and NOT) as they result in table and index scans. If you must do heavy text-based searches, consider using the Full-Text search feature of SQL Server for better performance.

6.2.6 Use 'Derived tables' wherever possible, as they perform better. Consider the following query to find the second highest salary from Employee table:

SELECT MIN(Salary)

FROM Employee

WHERE EmployeeID IN

(

 SELECT TOP 2 EmployeeID

 FROM Employees

 ORDER BY Salary Desc

)

The same query can be re-written using a derived table as shown below, and it performs twice as fast as the above query:

SELECT MIN(Salary)

FROM

(

 SELECT TOP 2 Salary

 FROM Employees

 ORDER BY Salary Desc

) AS A

This is just an example, the results might differ in different scenarios depending upon the database design, indexes, volume of data etc. So, test all the possible ways a query could be written and go with the efficient one. With some practice and understanding of 'how SQL Server optimizer works', you will be able to come up with the best possible queries without this trial and error method.

6.2.7 Avoid dynamic SQL statements as much as possible. Dynamic SQL tends to be slower than static SQL, as SQL Server must generate an execution plan every time at runtime. IF and CASE statements come in handy to avoid dynamic SQL. Another major disadvantage of using dynamic SQL is that, it requires the users to have direct access permissions on all accessed objects like tables and views. Generally, users are given access to the stored procedures, which reference the tables, but not directly on the tables. In this case, dynamic SQL will not work.

6.2.8 Use char data type for a column, only when length of the column is not more then 15 characters. A char(100) column will eat 100 bytes even if you need to store only 1, resulting in space wastage. So, use varchar(100) instead. Of course, variable length columns do have a very little processing overhead over fixed length columns. Carefully choose between char and varchar depending up on the length of the data you are going to store.

6.2.9 Perform all your referential integrity checks, data validations using constraints (foreign key and check constraints). These constraints are faster than triggers. So, use triggers only for auditing, custom tasks and validations that cannot be performed using these constraints. Do not forget to enforce unique constraints on your alternate keys.

6.2.10 Offload tasks like string manipulations, concatenations, row numbering, case conversions, type conversions etc. to the front-end applications, if these operations are going to consume more CPU cycles on the database server (It's okay to perform simple string manipulations on the database end though). Also try to do basic validations in the front-end itself during data entry. This saves unnecessary network roundtrips.

6.2.11 Do not call functions repeatedly within your stored procedures, triggers, functions and batches. For example, you might need the length of a string variable in many places of your procedure, but don't call the LEN function whenever it's needed, instead, call the LEN function once, and store the result in a variable, for later use.

6.3 Maintenance

6.3.1 Always use a column list in your INSERT statements. This helps in avoiding problems when the table structure changes (like adding a column). Here's an example, which shows the problem.

Consider the following table:

CREATE TABLE EuropeanCountry

(

 EuropeanCountryID int PRIMARY KEY,

 Name varchar(25)

)

Here's an INSERT statement without a column list that works perfectly:

INSERT INTO EuropeanCountry

VALUES (1, 'Ireland')

Now, let's add a new column to this table:

ALTER TABLE EuropeanCountry

ADD EuroSupport bit

Now run the above INSERT statement. You get the following error from SQL Server:

Server: Msg 213, Level 16, State 4, Line 1

Insert Error: Column name or number of supplied values does not match table definition.

This problem can be avoided by writing an INSERT statement with a column list as shown below:

INSERT INTO EuropeanCountry (EuropeanCountryID, Name)

VALUES (1, 'England')

6.3.2 Make sure your stored procedures always return a value indicating the status. The RETURN statement is meant for returning the execution status only, but not data. If you need to return data, use OUTPUT parameters.

6.3.3 Do not use the column numbers in the ORDER BY clause as it impairs the readability of the SQL statement. Further, changing the order of columns in the SELECT list has no impact on the ORDER BY when the columns are referred by names instead of numbers. Consider the following example, in which the second query is more readable than the first one:

SELECT OrderID, OrderDate

FROM Order

ORDER BY 2

SELECT OrderID, OrderDate

FROM Order

ORDER BY OrderDate

6.4 Source Code Style

6.4.1 Write comments in your stored procedures, triggers and SQL batches generously, whenever something is not very obvious. This helps other programmers understand your code clearly. Don't worry about the length of the comments, as it won't impact the performance.

6.4.2 Use the more readable ANSI-Standard Join clauses instead of the old style joins. With ANSI joins the WHERE clause is used only for filtering data. Where as with older style joins, the WHERE clause handles both the join condition and filtering data. The first of the following two queries shows an old style join, while the second one shows the new ANSI join syntax:

SELECT a.AuthorID, t.Title

FROM

 Title t, Author a, TitleAuthor ta

WHERE

 a.AuthorID = ta.AuthorID AND

 ta.TitleID = t.TitleID AND

 t.Title LIKE '%Computer%'

SELECT a.AuthorID, t.Title

FROM

 Author a

 INNER JOIN TitleAuthor ta

 INNER JOIN Title t

 ON t.TitleID = ta.TitleID

 ON ta.AuthorID = a.AuthorID

WHERE

 t.Title LIKE '%Computer%'

Be aware that the old style *= and =* left and right outer join syntax may not be supported in a future release of SQL Server, so you are better off adopting the ANSI standard outer join syntax.

6.4.3 Use indentation when you write Join clause and nested Join clauses as shown in the above example. It helps to read your program without "decoding" it first.

6.4.4 To make SQL Statements more readable, start each clause on a new line and indent when needed. Following is an example:

SELECT

 TitleID, Title

FROM

 Title

WHERE

 Title LIKE 'Computing%' AND

 Title LIKE 'Gardening%'

6.4.5 Though we survived the Y2K, always store 4 digit years in dates (especially, when using char or int datatype columns), instead of 2 digit years to avoid any confusion and problems. This is not a problem with datetime columns, as the century is stored even if you specify a 2 digit year. But it's always a good practice to specify 4 digit years even with datetime datatype columns.

6.4.6 In your queries and other SQL statements, always represent date in yyyy/mm/dd format. This format will always be interpreted correctly, no matter what the default date format on the SQL Server is. This also prevents the following error, while working with dates:

Server: Msg 242, Level 16, State 3, Line 2

The conversion of a char data type to a datetime data type resulted in an out-of-range datetime value.

6.4.7 Though T-SQL has no concept of constants (like the ones in C language), variables will serve the same purpose. Using variables instead of constant values within your SQL statements, improves readability and maintainability of your code. Consider the following example:

UPDATE Order

SET Status = 5

WHERE OrderDate < '2001/10/25'

The same update statement can be re-written in a mode readable form as shown below:

DECLARE @ORDER_PENDING int

SET @ORDER_PENDING = 5

UPDATE Order

SET Status = @ORDER_PENDING

WHERE OrderDate < '2001/10/25'

6.4.8 As is true with any other programming language, do not use GOTO or use it sparingly. Excessive usage of GOTO can lead to hard-to-read-and-understand code.

