2
|
1 /**
|
|
2 ******************************************************************************
|
|
3 * @file stm32f1xx_hal_rcc.c
|
|
4 * @author MCD Application Team
|
|
5 * @version V1.0.4
|
|
6 * @date 29-April-2016
|
|
7 * @brief RCC HAL module driver.
|
|
8 * This file provides firmware functions to manage the following
|
|
9 * functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
10 * + Initialization and de-initialization functions
|
|
11 * + Peripheral Control functions
|
|
12 *
|
|
13 @verbatim
|
|
14 ==============================================================================
|
|
15 ##### RCC specific features #####
|
|
16 ==============================================================================
|
|
17 [..]
|
|
18 After reset the device is running from Internal High Speed oscillator
|
|
19 (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled,
|
|
20 and all peripherals are off except internal SRAM, Flash and JTAG.
|
|
21 (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
|
|
22 all peripherals mapped on these buses are running at HSI speed.
|
|
23 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
24 (+) All GPIOs are in input floating state, except the JTAG pins which
|
|
25 are assigned to be used for debug purpose.
|
|
26 [..] Once the device started from reset, the user application has to:
|
|
27 (+) Configure the clock source to be used to drive the System clock
|
|
28 (if the application needs higher frequency/performance)
|
|
29 (+) Configure the System clock frequency and Flash settings
|
|
30 (+) Configure the AHB and APB buses prescalers
|
|
31 (+) Enable the clock for the peripheral(s) to be used
|
|
32 (+) Configure the clock source(s) for peripherals whose clocks are not
|
|
33 derived from the System clock (I2S, RTC, ADC, USB OTG FS)
|
|
34
|
|
35 ##### RCC Limitations #####
|
|
36 ==============================================================================
|
|
37 [..]
|
|
38 A delay between an RCC peripheral clock enable and the effective peripheral
|
|
39 enabling should be taken into account in order to manage the peripheral read/write
|
|
40 from/to registers.
|
|
41 (+) This delay depends on the peripheral mapping.
|
|
42 (++) AHB & APB peripherals, 1 dummy read is necessary
|
|
43
|
|
44 [..]
|
|
45 Workarounds:
|
|
46 (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
|
|
47 inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
|
|
48
|
|
49 @endverbatim
|
|
50 ******************************************************************************
|
|
51 * @attention
|
|
52 *
|
|
53 * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
|
|
54 *
|
|
55 * Redistribution and use in source and binary forms, with or without modification,
|
|
56 * are permitted provided that the following conditions are met:
|
|
57 * 1. Redistributions of source code must retain the above copyright notice,
|
|
58 * this list of conditions and the following disclaimer.
|
|
59 * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
60 * this list of conditions and the following disclaimer in the documentation
|
|
61 * and/or other materials provided with the distribution.
|
|
62 * 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
63 * may be used to endorse or promote products derived from this software
|
|
64 * without specific prior written permission.
|
|
65 *
|
|
66 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
67 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
69 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
72 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
73 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
74 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
75 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
76 *
|
|
77 ******************************************************************************
|
|
78 */
|
|
79
|
|
80 /* Includes ------------------------------------------------------------------*/
|
|
81 #include "stm32f1xx_hal.h"
|
|
82
|
|
83 /** @addtogroup STM32F1xx_HAL_Driver
|
|
84 * @{
|
|
85 */
|
|
86
|
|
87 /** @defgroup RCC RCC
|
|
88 * @brief RCC HAL module driver
|
|
89 * @{
|
|
90 */
|
|
91
|
|
92 #ifdef HAL_RCC_MODULE_ENABLED
|
|
93
|
|
94 /* Private typedef -----------------------------------------------------------*/
|
|
95 /* Private define ------------------------------------------------------------*/
|
|
96 /** @defgroup RCC_Private_Constants RCC Private Constants
|
|
97 * @{
|
|
98 */
|
|
99 /* Bits position in in the CFGR register */
|
|
100 #define RCC_CFGR_HPRE_BITNUMBER POSITION_VAL(RCC_CFGR_HPRE)
|
|
101 #define RCC_CFGR_PPRE1_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE1)
|
|
102 #define RCC_CFGR_PPRE2_BITNUMBER POSITION_VAL(RCC_CFGR_PPRE2)
|
|
103 /**
|
|
104 * @}
|
|
105 */
|
|
106 /* Private macro -------------------------------------------------------------*/
|
|
107 /** @defgroup RCC_Private_Macros RCC Private Macros
|
|
108 * @{
|
|
109 */
|
|
110
|
|
111 #define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
112 #define MCO1_GPIO_PORT GPIOA
|
|
113 #define MCO1_PIN GPIO_PIN_8
|
|
114
|
|
115 /**
|
|
116 * @}
|
|
117 */
|
|
118
|
|
119 /* Private variables ---------------------------------------------------------*/
|
|
120 /** @defgroup RCC_Private_Variables RCC Private Variables
|
|
121 * @{
|
|
122 */
|
|
123 /**
|
|
124 * @}
|
|
125 */
|
|
126
|
|
127 /* Private function prototypes -----------------------------------------------*/
|
|
128 /* Exported functions ---------------------------------------------------------*/
|
|
129
|
|
130 /** @defgroup RCC_Exported_Functions RCC Exported Functions
|
|
131 * @{
|
|
132 */
|
|
133
|
|
134 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
135 * @brief Initialization and Configuration functions
|
|
136 *
|
|
137 @verbatim
|
|
138 ===============================================================================
|
|
139 ##### Initialization and de-initialization functions #####
|
|
140 ===============================================================================
|
|
141 [..]
|
|
142 This section provides functions allowing to configure the internal/external oscillators
|
|
143 (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
|
|
144 and APB2).
|
|
145
|
|
146 [..] Internal/external clock and PLL configuration
|
|
147 (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
|
|
148 the PLL as System clock source.
|
|
149 (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
|
|
150 clock source.
|
|
151
|
|
152 (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or
|
|
153 through the PLL as System clock source. Can be used also as RTC clock source.
|
|
154
|
|
155 (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
|
|
156
|
|
157 (#) PLL (clocked by HSI or HSE), featuring different output clocks:
|
|
158 (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
|
|
159 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
|
|
160
|
|
161 (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
|
|
162 and if a HSE clock failure occurs(HSE used directly or through PLL as System
|
|
163 clock source), the System clocks automatically switched to HSI and an interrupt
|
|
164 is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
|
|
165 (Non-Maskable Interrupt) exception vector.
|
|
166
|
|
167 (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,
|
|
168 HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x
|
|
169
|
|
170 [..] System, AHB and APB buses clocks configuration
|
|
171 (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
|
|
172 HSE and PLL.
|
|
173 The AHB clock (HCLK) is derived from System clock through configurable
|
|
174 prescaler and used to clock the CPU, memory and peripherals mapped
|
|
175 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
|
|
176 from AHB clock through configurable prescalers and used to clock
|
|
177 the peripherals mapped on these buses. You can use
|
|
178 "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
|
|
179
|
|
180 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
|
181 (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
|
|
182 divided by 128.
|
|
183 (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
|
|
184 to work correctly. This clock is derived of the main PLL through PLL Multiplier.
|
|
185 (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
|
|
186 (+@) IWDG clock which is always the LSI clock.
|
|
187
|
|
188 (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
|
|
189 For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.
|
|
190 Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
|
|
191 @endverbatim
|
|
192 * @{
|
|
193 */
|
|
194
|
|
195 /*
|
|
196 Additional consideration on the SYSCLK based on Latency settings:
|
|
197 +-----------------------------------------------+
|
|
198 | Latency | SYSCLK clock frequency (MHz) |
|
|
199 |---------------|-------------------------------|
|
|
200 |0WS(1CPU cycle)| 0 < SYSCLK <= 24 |
|
|
201 |---------------|-------------------------------|
|
|
202 |1WS(2CPU cycle)| 24 < SYSCLK <= 48 |
|
|
203 |---------------|-------------------------------|
|
|
204 |2WS(3CPU cycle)| 48 < SYSCLK <= 72 |
|
|
205 +-----------------------------------------------+
|
|
206 */
|
|
207
|
|
208 /**
|
|
209 * @brief Resets the RCC clock configuration to the default reset state.
|
|
210 * @note The default reset state of the clock configuration is given below:
|
|
211 * - HSI ON and used as system clock source
|
|
212 * - HSE and PLL OFF
|
|
213 * - AHB, APB1 and APB2 prescaler set to 1.
|
|
214 * - CSS and MCO1 OFF
|
|
215 * - All interrupts disabled
|
|
216 * @note This function does not modify the configuration of the
|
|
217 * - Peripheral clocks
|
|
218 * - LSI, LSE and RTC clocks
|
|
219 * @retval None
|
|
220 */
|
|
221 void HAL_RCC_DeInit(void)
|
|
222 {
|
|
223 /* Switch SYSCLK to HSI */
|
|
224 CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);
|
|
225
|
|
226 /* Reset HSEON, CSSON, & PLLON bits */
|
|
227 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON);
|
|
228
|
|
229 /* Reset HSEBYP bit */
|
|
230 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
|
|
231
|
|
232 /* Reset CFGR register */
|
|
233 CLEAR_REG(RCC->CFGR);
|
|
234
|
|
235 /* Set HSITRIM bits to the reset value */
|
|
236 MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, ((uint32_t)0x10 << POSITION_VAL(RCC_CR_HSITRIM)));
|
|
237
|
|
238 #if (defined(STM32F105xC) || defined(STM32F107xC) || defined (STM32F100xB) || defined (STM32F100xE))
|
|
239 /* Reset CFGR2 register */
|
|
240 CLEAR_REG(RCC->CFGR2);
|
|
241
|
|
242 #endif /* STM32F105xC || STM32F107xC || STM32F100xB || STM32F100xE */
|
|
243 /* Disable all interrupts */
|
|
244 CLEAR_REG(RCC->CIR);
|
|
245
|
|
246 /* Update the SystemCoreClock global variable */
|
|
247 SystemCoreClock = HSI_VALUE;
|
|
248 }
|
|
249
|
|
250 /**
|
|
251 * @brief Initializes the RCC Oscillators according to the specified parameters in the
|
|
252 * RCC_OscInitTypeDef.
|
|
253 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
254 * contains the configuration information for the RCC Oscillators.
|
|
255 * @note The PLL is not disabled when used as system clock.
|
|
256 * @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
|
|
257 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
|
|
258 * supported by this macro. User should request a transition to LSE Off
|
|
259 * first and then LSE On or LSE Bypass.
|
|
260 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
|
|
261 * supported by this macro. User should request a transition to HSE Off
|
|
262 * first and then HSE On or HSE Bypass.
|
|
263 * @retval HAL status
|
|
264 */
|
|
265 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
266 {
|
|
267 uint32_t tickstart = 0;
|
|
268
|
|
269 /* Check the parameters */
|
|
270 assert_param(RCC_OscInitStruct != NULL);
|
|
271 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
272
|
|
273 /*------------------------------- HSE Configuration ------------------------*/
|
|
274 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
275 {
|
|
276 /* Check the parameters */
|
|
277 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
278
|
|
279 /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
|
|
280 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE)
|
|
281 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
|
|
282 {
|
|
283 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
|
|
284 {
|
|
285 return HAL_ERROR;
|
|
286 }
|
|
287 }
|
|
288 else
|
|
289 {
|
|
290 /* Set the new HSE configuration ---------------------------------------*/
|
|
291 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
292
|
|
293
|
|
294 /* Check the HSE State */
|
|
295 if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
|
|
296 {
|
|
297 /* Get Start Tick */
|
|
298 tickstart = HAL_GetTick();
|
|
299
|
|
300 /* Wait till HSE is ready */
|
|
301 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
|
|
302 {
|
|
303 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
|
|
304 {
|
|
305 return HAL_TIMEOUT;
|
|
306 }
|
|
307 }
|
|
308 }
|
|
309 else
|
|
310 {
|
|
311 /* Get Start Tick */
|
|
312 tickstart = HAL_GetTick();
|
|
313
|
|
314 /* Wait till HSE is disabled */
|
|
315 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
|
|
316 {
|
|
317 if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
|
|
318 {
|
|
319 return HAL_TIMEOUT;
|
|
320 }
|
|
321 }
|
|
322 }
|
|
323 }
|
|
324 }
|
|
325 /*----------------------------- HSI Configuration --------------------------*/
|
|
326 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
327 {
|
|
328 /* Check the parameters */
|
|
329 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
330 assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
331
|
|
332 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
|
|
333 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI)
|
|
334 || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
|
|
335 {
|
|
336 /* When HSI is used as system clock it will not disabled */
|
|
337 if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
|
|
338 {
|
|
339 return HAL_ERROR;
|
|
340 }
|
|
341 /* Otherwise, just the calibration is allowed */
|
|
342 else
|
|
343 {
|
|
344 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
345 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
346 }
|
|
347 }
|
|
348 else
|
|
349 {
|
|
350 /* Check the HSI State */
|
|
351 if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
|
|
352 {
|
|
353 /* Enable the Internal High Speed oscillator (HSI). */
|
|
354 __HAL_RCC_HSI_ENABLE();
|
|
355
|
|
356 /* Get Start Tick */
|
|
357 tickstart = HAL_GetTick();
|
|
358
|
|
359 /* Wait till HSI is ready */
|
|
360 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
|
|
361 {
|
|
362 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
|
|
363 {
|
|
364 return HAL_TIMEOUT;
|
|
365 }
|
|
366 }
|
|
367
|
|
368 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
369 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
370 }
|
|
371 else
|
|
372 {
|
|
373 /* Disable the Internal High Speed oscillator (HSI). */
|
|
374 __HAL_RCC_HSI_DISABLE();
|
|
375
|
|
376 /* Get Start Tick */
|
|
377 tickstart = HAL_GetTick();
|
|
378
|
|
379 /* Wait till HSI is disabled */
|
|
380 while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
|
|
381 {
|
|
382 if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
|
|
383 {
|
|
384 return HAL_TIMEOUT;
|
|
385 }
|
|
386 }
|
|
387 }
|
|
388 }
|
|
389 }
|
|
390 /*------------------------------ LSI Configuration -------------------------*/
|
|
391 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
|
|
392 {
|
|
393 /* Check the parameters */
|
|
394 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
395
|
|
396 /* Check the LSI State */
|
|
397 if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
|
|
398 {
|
|
399 /* Enable the Internal Low Speed oscillator (LSI). */
|
|
400 __HAL_RCC_LSI_ENABLE();
|
|
401
|
|
402 /* Get Start Tick */
|
|
403 tickstart = HAL_GetTick();
|
|
404
|
|
405 /* Wait till LSI is ready */
|
|
406 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
|
|
407 {
|
|
408 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
|
|
409 {
|
|
410 return HAL_TIMEOUT;
|
|
411 }
|
|
412 }
|
|
413 /* To have a fully stabilized clock in the specified range, a software delay of 1ms
|
|
414 should be added.*/
|
|
415 HAL_Delay(1);
|
|
416 }
|
|
417 else
|
|
418 {
|
|
419 /* Disable the Internal Low Speed oscillator (LSI). */
|
|
420 __HAL_RCC_LSI_DISABLE();
|
|
421
|
|
422 /* Get Start Tick */
|
|
423 tickstart = HAL_GetTick();
|
|
424
|
|
425 /* Wait till LSI is disabled */
|
|
426 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
|
|
427 {
|
|
428 if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
|
|
429 {
|
|
430 return HAL_TIMEOUT;
|
|
431 }
|
|
432 }
|
|
433 }
|
|
434 }
|
|
435 /*------------------------------ LSE Configuration -------------------------*/
|
|
436 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
437 {
|
|
438 /* Check the parameters */
|
|
439 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
440
|
|
441 /* Enable Power Clock*/
|
|
442 __HAL_RCC_PWR_CLK_ENABLE();
|
|
443
|
|
444 /* Enable write access to Backup domain */
|
|
445 SET_BIT(PWR->CR, PWR_CR_DBP);
|
|
446
|
|
447 /* Wait for Backup domain Write protection disable */
|
|
448 tickstart = HAL_GetTick();
|
|
449
|
|
450 while((PWR->CR & PWR_CR_DBP) == RESET)
|
|
451 {
|
|
452 if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
|
453 {
|
|
454 return HAL_TIMEOUT;
|
|
455 }
|
|
456 }
|
|
457
|
|
458 /* Set the new LSE configuration -----------------------------------------*/
|
|
459 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
460 /* Check the LSE State */
|
|
461 if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
|
|
462 {
|
|
463 /* Get Start Tick */
|
|
464 tickstart = HAL_GetTick();
|
|
465
|
|
466 /* Wait till LSE is ready */
|
|
467 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
|
|
468 {
|
|
469 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
|
|
470 {
|
|
471 return HAL_TIMEOUT;
|
|
472 }
|
|
473 }
|
|
474 }
|
|
475 else
|
|
476 {
|
|
477 /* Get Start Tick */
|
|
478 tickstart = HAL_GetTick();
|
|
479
|
|
480 /* Wait till LSE is disabled */
|
|
481 while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
|
|
482 {
|
|
483 if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
|
|
484 {
|
|
485 return HAL_TIMEOUT;
|
|
486 }
|
|
487 }
|
|
488 }
|
|
489 }
|
|
490
|
|
491 #if defined(RCC_CR_PLL2ON)
|
|
492 /*-------------------------------- PLL2 Configuration -----------------------*/
|
|
493 /* Check the parameters */
|
|
494 assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
|
|
495 if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE)
|
|
496 {
|
|
497 /* This bit can not be cleared if the PLL2 clock is used indirectly as system
|
|
498 clock (i.e. it is used as PLL clock entry that is used as system clock). */
|
|
499 if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
|
|
500 (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
|
|
501 ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
|
|
502 {
|
|
503 return HAL_ERROR;
|
|
504 }
|
|
505 else
|
|
506 {
|
|
507 if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON)
|
|
508 {
|
|
509 /* Check the parameters */
|
|
510 assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
|
|
511 assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));
|
|
512
|
|
513 /* Prediv2 can be written only when the PLLI2S is disabled. */
|
|
514 /* Return an error only if new value is different from the programmed value */
|
|
515 if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
|
|
516 (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value))
|
|
517 {
|
|
518 return HAL_ERROR;
|
|
519 }
|
|
520
|
|
521 /* Disable the main PLL2. */
|
|
522 __HAL_RCC_PLL2_DISABLE();
|
|
523
|
|
524 /* Get Start Tick */
|
|
525 tickstart = HAL_GetTick();
|
|
526
|
|
527 /* Wait till PLL2 is disabled */
|
|
528 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
|
|
529 {
|
|
530 if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
|
|
531 {
|
|
532 return HAL_TIMEOUT;
|
|
533 }
|
|
534 }
|
|
535
|
|
536 /* Configure the HSE prediv2 factor --------------------------------*/
|
|
537 __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);
|
|
538
|
|
539 /* Configure the main PLL2 multiplication factors. */
|
|
540 __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
|
|
541
|
|
542 /* Enable the main PLL2. */
|
|
543 __HAL_RCC_PLL2_ENABLE();
|
|
544
|
|
545 /* Get Start Tick */
|
|
546 tickstart = HAL_GetTick();
|
|
547
|
|
548 /* Wait till PLL2 is ready */
|
|
549 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET)
|
|
550 {
|
|
551 if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
|
|
552 {
|
|
553 return HAL_TIMEOUT;
|
|
554 }
|
|
555 }
|
|
556 }
|
|
557 else
|
|
558 {
|
|
559 /* Set PREDIV1 source to HSE */
|
|
560 CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);
|
|
561
|
|
562 /* Disable the main PLL2. */
|
|
563 __HAL_RCC_PLL2_DISABLE();
|
|
564
|
|
565 /* Get Start Tick */
|
|
566 tickstart = HAL_GetTick();
|
|
567
|
|
568 /* Wait till PLL2 is disabled */
|
|
569 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
|
|
570 {
|
|
571 if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
|
|
572 {
|
|
573 return HAL_TIMEOUT;
|
|
574 }
|
|
575 }
|
|
576 }
|
|
577 }
|
|
578 }
|
|
579
|
|
580 #endif /* RCC_CR_PLL2ON */
|
|
581 /*-------------------------------- PLL Configuration -----------------------*/
|
|
582 /* Check the parameters */
|
|
583 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
584 if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
|
|
585 {
|
|
586 /* Check if the PLL is used as system clock or not */
|
|
587 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
|
|
588 {
|
|
589 if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
|
|
590 {
|
|
591 /* Check the parameters */
|
|
592 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
593 assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
|
|
594
|
|
595 /* Disable the main PLL. */
|
|
596 __HAL_RCC_PLL_DISABLE();
|
|
597
|
|
598 /* Get Start Tick */
|
|
599 tickstart = HAL_GetTick();
|
|
600
|
|
601 /* Wait till PLL is disabled */
|
|
602 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
|
|
603 {
|
|
604 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
|
|
605 {
|
|
606 return HAL_TIMEOUT;
|
|
607 }
|
|
608 }
|
|
609
|
|
610 /* Configure the HSE prediv factor --------------------------------*/
|
|
611 /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
|
|
612 if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
|
|
613 {
|
|
614 /* Check the parameter */
|
|
615 assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
|
|
616 #if defined(RCC_CFGR2_PREDIV1SRC)
|
|
617 assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
|
|
618
|
|
619 /* Set PREDIV1 source */
|
|
620 SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
|
|
621 #endif /* RCC_CFGR2_PREDIV1SRC */
|
|
622
|
|
623 /* Set PREDIV1 Value */
|
|
624 __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
|
|
625 }
|
|
626
|
|
627 /* Configure the main PLL clock source and multiplication factors. */
|
|
628 __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
629 RCC_OscInitStruct->PLL.PLLMUL);
|
|
630 /* Enable the main PLL. */
|
|
631 __HAL_RCC_PLL_ENABLE();
|
|
632
|
|
633 /* Get Start Tick */
|
|
634 tickstart = HAL_GetTick();
|
|
635
|
|
636 /* Wait till PLL is ready */
|
|
637 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
|
|
638 {
|
|
639 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
|
|
640 {
|
|
641 return HAL_TIMEOUT;
|
|
642 }
|
|
643 }
|
|
644 }
|
|
645 else
|
|
646 {
|
|
647 /* Disable the main PLL. */
|
|
648 __HAL_RCC_PLL_DISABLE();
|
|
649
|
|
650 /* Get Start Tick */
|
|
651 tickstart = HAL_GetTick();
|
|
652
|
|
653 /* Wait till PLL is disabled */
|
|
654 while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
|
|
655 {
|
|
656 if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
|
|
657 {
|
|
658 return HAL_TIMEOUT;
|
|
659 }
|
|
660 }
|
|
661 }
|
|
662 }
|
|
663 else
|
|
664 {
|
|
665 return HAL_ERROR;
|
|
666 }
|
|
667 }
|
|
668
|
|
669 return HAL_OK;
|
|
670 }
|
|
671
|
|
672 /**
|
|
673 * @brief Initializes the CPU, AHB and APB buses clocks according to the specified
|
|
674 * parameters in the RCC_ClkInitStruct.
|
|
675 * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
676 * contains the configuration information for the RCC peripheral.
|
|
677 * @param FLatency FLASH Latency
|
|
678 * The value of this parameter depend on device used within the same series
|
|
679 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
680 * and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
|
|
681 *
|
|
682 * @note The HSI is used (enabled by hardware) as system clock source after
|
|
683 * start-up from Reset, wake-up from STOP and STANDBY mode, or in case
|
|
684 * of failure of the HSE used directly or indirectly as system clock
|
|
685 * (if the Clock Security System CSS is enabled).
|
|
686 *
|
|
687 * @note A switch from one clock source to another occurs only if the target
|
|
688 * clock source is ready (clock stable after start-up delay or PLL locked).
|
|
689 * If a clock source which is not yet ready is selected, the switch will
|
|
690 * occur when the clock source will be ready.
|
|
691 * You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
|
|
692 * currently used as system clock source.
|
|
693 * @retval HAL status
|
|
694 */
|
|
695 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
696 {
|
|
697 uint32_t tickstart = 0;
|
|
698
|
|
699 /* Check the parameters */
|
|
700 assert_param(RCC_ClkInitStruct != NULL);
|
|
701 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
702 assert_param(IS_FLASH_LATENCY(FLatency));
|
|
703
|
|
704 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
705 must be correctly programmed according to the frequency of the CPU clock
|
|
706 (HCLK) of the device. */
|
|
707
|
|
708 #if defined(FLASH_ACR_LATENCY)
|
|
709 /* Increasing the number of wait states because of higher CPU frequency */
|
|
710 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
|
|
711 {
|
|
712 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
713 __HAL_FLASH_SET_LATENCY(FLatency);
|
|
714
|
|
715 /* Check that the new number of wait states is taken into account to access the Flash
|
|
716 memory by reading the FLASH_ACR register */
|
|
717 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
718 {
|
|
719 return HAL_ERROR;
|
|
720 }
|
|
721 }
|
|
722
|
|
723 #endif /* FLASH_ACR_LATENCY */
|
|
724 /*-------------------------- HCLK Configuration --------------------------*/
|
|
725 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
726 {
|
|
727 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
728 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
729 }
|
|
730
|
|
731 /*------------------------- SYSCLK Configuration ---------------------------*/
|
|
732 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
733 {
|
|
734 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
735
|
|
736 /* HSE is selected as System Clock Source */
|
|
737 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
738 {
|
|
739 /* Check the HSE ready flag */
|
|
740 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
|
|
741 {
|
|
742 return HAL_ERROR;
|
|
743 }
|
|
744 }
|
|
745 /* PLL is selected as System Clock Source */
|
|
746 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
747 {
|
|
748 /* Check the PLL ready flag */
|
|
749 if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
|
|
750 {
|
|
751 return HAL_ERROR;
|
|
752 }
|
|
753 }
|
|
754 /* HSI is selected as System Clock Source */
|
|
755 else
|
|
756 {
|
|
757 /* Check the HSI ready flag */
|
|
758 if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
|
|
759 {
|
|
760 return HAL_ERROR;
|
|
761 }
|
|
762 }
|
|
763 __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
|
|
764
|
|
765 /* Get Start Tick */
|
|
766 tickstart = HAL_GetTick();
|
|
767
|
|
768 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
769 {
|
|
770 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
|
|
771 {
|
|
772 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
773 {
|
|
774 return HAL_TIMEOUT;
|
|
775 }
|
|
776 }
|
|
777 }
|
|
778 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
779 {
|
|
780 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
|
|
781 {
|
|
782 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
783 {
|
|
784 return HAL_TIMEOUT;
|
|
785 }
|
|
786 }
|
|
787 }
|
|
788 else
|
|
789 {
|
|
790 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
|
|
791 {
|
|
792 if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
793 {
|
|
794 return HAL_TIMEOUT;
|
|
795 }
|
|
796 }
|
|
797 }
|
|
798 }
|
|
799 #if defined(FLASH_ACR_LATENCY)
|
|
800 /* Decreasing the number of wait states because of lower CPU frequency */
|
|
801 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
|
|
802 {
|
|
803 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
804 __HAL_FLASH_SET_LATENCY(FLatency);
|
|
805
|
|
806 /* Check that the new number of wait states is taken into account to access the Flash
|
|
807 memory by reading the FLASH_ACR register */
|
|
808 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
809 {
|
|
810 return HAL_ERROR;
|
|
811 }
|
|
812 }
|
|
813 #endif /* FLASH_ACR_LATENCY */
|
|
814
|
|
815 /*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
816 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
817 {
|
|
818 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
|
|
819 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
|
|
820 }
|
|
821
|
|
822 /*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
823 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
824 {
|
|
825 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
|
|
826 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
|
|
827 }
|
|
828
|
|
829 /* Update the SystemCoreClock global variable */
|
|
830 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_BITNUMBER];
|
|
831
|
|
832 /* Configure the source of time base considering new system clocks settings*/
|
|
833 HAL_InitTick (TICK_INT_PRIORITY);
|
|
834
|
|
835 return HAL_OK;
|
|
836 }
|
|
837
|
|
838 /**
|
|
839 * @}
|
|
840 */
|
|
841
|
|
842 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
|
|
843 * @brief RCC clocks control functions
|
|
844 *
|
|
845 @verbatim
|
|
846 ===============================================================================
|
|
847 ##### Peripheral Control functions #####
|
|
848 ===============================================================================
|
|
849 [..]
|
|
850 This subsection provides a set of functions allowing to control the RCC Clocks
|
|
851 frequencies.
|
|
852
|
|
853 @endverbatim
|
|
854 * @{
|
|
855 */
|
|
856
|
|
857 /**
|
|
858 * @brief Selects the clock source to output on MCO pin.
|
|
859 * @note MCO pin should be configured in alternate function mode.
|
|
860 * @param RCC_MCOx specifies the output direction for the clock source.
|
|
861 * This parameter can be one of the following values:
|
|
862 * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
|
|
863 * @param RCC_MCOSource specifies the clock source to output.
|
|
864 * This parameter can be one of the following values:
|
|
865 * @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock
|
|
866 * @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock
|
|
867 * @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock
|
|
868 * @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock
|
|
869 @if STM32F105xC
|
|
870 * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
|
|
871 * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
|
|
872 * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
|
|
873 * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
|
|
874 * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
|
|
875 @endif
|
|
876 @if STM32F107xC
|
|
877 * @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source
|
|
878 * @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source
|
|
879 * @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
|
|
880 * @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source
|
|
881 * @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source
|
|
882 @endif
|
|
883 * @param RCC_MCODiv specifies the MCO DIV.
|
|
884 * This parameter can be one of the following values:
|
|
885 * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
|
|
886 * @retval None
|
|
887 */
|
|
888 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
889 {
|
|
890 GPIO_InitTypeDef gpio = {0};
|
|
891
|
|
892 /* Check the parameters */
|
|
893 assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
894 assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
895 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
896
|
|
897 /* Configure the MCO1 pin in alternate function mode */
|
|
898 gpio.Mode = GPIO_MODE_AF_PP;
|
|
899 gpio.Speed = GPIO_SPEED_FREQ_HIGH;
|
|
900 gpio.Pull = GPIO_NOPULL;
|
|
901 gpio.Pin = MCO1_PIN;
|
|
902
|
|
903 /* MCO1 Clock Enable */
|
|
904 MCO1_CLK_ENABLE();
|
|
905
|
|
906 HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
|
|
907
|
|
908 /* Configure the MCO clock source */
|
|
909 __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
|
|
910 }
|
|
911
|
|
912 /**
|
|
913 * @brief Enables the Clock Security System.
|
|
914 * @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
915 * is automatically disabled and an interrupt is generated to inform the
|
|
916 * software about the failure (Clock Security System Interrupt, CSSI),
|
|
917 * allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
918 * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
|
|
919 * @retval None
|
|
920 */
|
|
921 void HAL_RCC_EnableCSS(void)
|
|
922 {
|
|
923 *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
|
|
924 }
|
|
925
|
|
926 /**
|
|
927 * @brief Disables the Clock Security System.
|
|
928 * @retval None
|
|
929 */
|
|
930 void HAL_RCC_DisableCSS(void)
|
|
931 {
|
|
932 *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
|
|
933 }
|
|
934
|
|
935 /**
|
|
936 * @brief Returns the SYSCLK frequency
|
|
937 * @note The system frequency computed by this function is not the real
|
|
938 * frequency in the chip. It is calculated based on the predefined
|
|
939 * constant and the selected clock source:
|
|
940 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
|
|
941 * @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE
|
|
942 * divided by PREDIV factor(**)
|
|
943 * @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE
|
|
944 * divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
|
|
945 * @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
|
|
946 * 8 MHz) but the real value may vary depending on the variations
|
|
947 * in voltage and temperature.
|
|
948 * @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
|
|
949 * 8 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
950 * frequency of the crystal used. Otherwise, this function may
|
|
951 * have wrong result.
|
|
952 *
|
|
953 * @note The result of this function could be not correct when using fractional
|
|
954 * value for HSE crystal.
|
|
955 *
|
|
956 * @note This function can be used by the user application to compute the
|
|
957 * baud-rate for the communication peripherals or configure other parameters.
|
|
958 *
|
|
959 * @note Each time SYSCLK changes, this function must be called to update the
|
|
960 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
961 *
|
|
962 * @retval SYSCLK frequency
|
|
963 */
|
|
964 uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
965 {
|
|
966 #if defined(RCC_CFGR2_PREDIV1SRC)
|
|
967 const uint8_t aPLLMULFactorTable[12] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 13};
|
|
968 const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
|
|
969 #else
|
|
970 const uint8_t aPLLMULFactorTable[16] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
|
|
971 #if defined(RCC_CFGR2_PREDIV1)
|
|
972 const uint8_t aPredivFactorTable[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16};
|
|
973 #else
|
|
974 const uint8_t aPredivFactorTable[2] = { 1, 2};
|
|
975 #endif /*RCC_CFGR2_PREDIV1*/
|
|
976
|
|
977 #endif
|
|
978 uint32_t tmpreg = 0, prediv = 0, pllclk = 0, pllmul = 0;
|
|
979 uint32_t sysclockfreq = 0;
|
|
980 #if defined(RCC_CFGR2_PREDIV1SRC)
|
|
981 uint32_t prediv2 = 0, pll2mul = 0;
|
|
982 #endif /*RCC_CFGR2_PREDIV1SRC*/
|
|
983
|
|
984 tmpreg = RCC->CFGR;
|
|
985
|
|
986 /* Get SYSCLK source -------------------------------------------------------*/
|
|
987 switch (tmpreg & RCC_CFGR_SWS)
|
|
988 {
|
|
989 case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */
|
|
990 {
|
|
991 sysclockfreq = HSE_VALUE;
|
|
992 break;
|
|
993 }
|
|
994 case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */
|
|
995 {
|
|
996 pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> POSITION_VAL(RCC_CFGR_PLLMULL)];
|
|
997 if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
|
|
998 {
|
|
999 #if defined(RCC_CFGR2_PREDIV1)
|
|
1000 prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> POSITION_VAL(RCC_CFGR2_PREDIV1)];
|
|
1001 #else
|
|
1002 prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> POSITION_VAL(RCC_CFGR_PLLXTPRE)];
|
|
1003 #endif /*RCC_CFGR2_PREDIV1*/
|
|
1004 #if defined(RCC_CFGR2_PREDIV1SRC)
|
|
1005
|
|
1006 if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
|
|
1007 {
|
|
1008 /* PLL2 selected as Prediv1 source */
|
|
1009 /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
|
|
1010 prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> POSITION_VAL(RCC_CFGR2_PREDIV2)) + 1;
|
|
1011 pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> POSITION_VAL(RCC_CFGR2_PLL2MUL)) + 2;
|
|
1012 pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv) * pllmul);
|
|
1013 }
|
|
1014 else
|
|
1015 {
|
|
1016 /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
|
|
1017 pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
|
|
1018 }
|
|
1019
|
|
1020 /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
|
|
1021 /* In this case need to divide pllclk by 2 */
|
|
1022 if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> POSITION_VAL(RCC_CFGR_PLLMULL)])
|
|
1023 {
|
|
1024 pllclk = pllclk / 2;
|
|
1025 }
|
|
1026 #else
|
|
1027 /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
|
|
1028 pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
|
|
1029 #endif /*RCC_CFGR2_PREDIV1SRC*/
|
|
1030 }
|
|
1031 else
|
|
1032 {
|
|
1033 /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
|
|
1034 pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
|
|
1035 }
|
|
1036 sysclockfreq = pllclk;
|
|
1037 break;
|
|
1038 }
|
|
1039 case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */
|
|
1040 default: /* HSI used as system clock */
|
|
1041 {
|
|
1042 sysclockfreq = HSI_VALUE;
|
|
1043 break;
|
|
1044 }
|
|
1045 }
|
|
1046 return sysclockfreq;
|
|
1047 }
|
|
1048
|
|
1049 /**
|
|
1050 * @brief Returns the HCLK frequency
|
|
1051 * @note Each time HCLK changes, this function must be called to update the
|
|
1052 * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
1053 *
|
|
1054 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
1055 * and updated within this function
|
|
1056 * @retval HCLK frequency
|
|
1057 */
|
|
1058 uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
1059 {
|
|
1060 return SystemCoreClock;
|
|
1061 }
|
|
1062
|
|
1063 /**
|
|
1064 * @brief Returns the PCLK1 frequency
|
|
1065 * @note Each time PCLK1 changes, this function must be called to update the
|
|
1066 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
1067 * @retval PCLK1 frequency
|
|
1068 */
|
|
1069 uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
1070 {
|
|
1071 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
1072 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_BITNUMBER]);
|
|
1073 }
|
|
1074
|
|
1075 /**
|
|
1076 * @brief Returns the PCLK2 frequency
|
|
1077 * @note Each time PCLK2 changes, this function must be called to update the
|
|
1078 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
|
|
1079 * @retval PCLK2 frequency
|
|
1080 */
|
|
1081 uint32_t HAL_RCC_GetPCLK2Freq(void)
|
|
1082 {
|
|
1083 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
|
|
1084 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_BITNUMBER]);
|
|
1085 }
|
|
1086
|
|
1087 /**
|
|
1088 * @brief Configures the RCC_OscInitStruct according to the internal
|
|
1089 * RCC configuration registers.
|
|
1090 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
1091 * will be configured.
|
|
1092 * @retval None
|
|
1093 */
|
|
1094 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
1095 {
|
|
1096 /* Check the parameters */
|
|
1097 assert_param(RCC_OscInitStruct != NULL);
|
|
1098
|
|
1099 /* Set all possible values for the Oscillator type parameter ---------------*/
|
|
1100 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \
|
|
1101 | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
|
|
1102
|
|
1103 #if defined(RCC_CFGR2_PREDIV1SRC)
|
|
1104 /* Get the Prediv1 source --------------------------------------------------*/
|
|
1105 RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC);
|
|
1106 #endif /* RCC_CFGR2_PREDIV1SRC */
|
|
1107
|
|
1108 /* Get the HSE configuration -----------------------------------------------*/
|
|
1109 if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
1110 {
|
|
1111 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
1112 }
|
|
1113 else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
1114 {
|
|
1115 RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
1116 }
|
|
1117 else
|
|
1118 {
|
|
1119 RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
1120 }
|
|
1121 RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();
|
|
1122
|
|
1123 /* Get the HSI configuration -----------------------------------------------*/
|
|
1124 if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
|
|
1125 {
|
|
1126 RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
1127 }
|
|
1128 else
|
|
1129 {
|
|
1130 RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
1131 }
|
|
1132
|
|
1133 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
|
|
1134
|
|
1135 /* Get the LSE configuration -----------------------------------------------*/
|
|
1136 if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
1137 {
|
|
1138 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
1139 }
|
|
1140 else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
1141 {
|
|
1142 RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
1143 }
|
|
1144 else
|
|
1145 {
|
|
1146 RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
1147 }
|
|
1148
|
|
1149 /* Get the LSI configuration -----------------------------------------------*/
|
|
1150 if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
1151 {
|
|
1152 RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
1153 }
|
|
1154 else
|
|
1155 {
|
|
1156 RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
1157 }
|
|
1158
|
|
1159
|
|
1160 /* Get the PLL configuration -----------------------------------------------*/
|
|
1161 if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
1162 {
|
|
1163 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
1164 }
|
|
1165 else
|
|
1166 {
|
|
1167 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
1168 }
|
|
1169 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
|
|
1170 RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
|
|
1171 #if defined(RCC_CR_PLL2ON)
|
|
1172 /* Get the PLL2 configuration -----------------------------------------------*/
|
|
1173 if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON)
|
|
1174 {
|
|
1175 RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
|
|
1176 }
|
|
1177 else
|
|
1178 {
|
|
1179 RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
|
|
1180 }
|
|
1181 RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
|
|
1182 RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
|
|
1183 #endif /* RCC_CR_PLL2ON */
|
|
1184 }
|
|
1185
|
|
1186 /**
|
|
1187 * @brief Get the RCC_ClkInitStruct according to the internal
|
|
1188 * RCC configuration registers.
|
|
1189 * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
|
|
1190 * contains the current clock configuration.
|
|
1191 * @param pFLatency Pointer on the Flash Latency.
|
|
1192 * @retval None
|
|
1193 */
|
|
1194 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
1195 {
|
|
1196 /* Check the parameters */
|
|
1197 assert_param(RCC_ClkInitStruct != NULL);
|
|
1198 assert_param(pFLatency != NULL);
|
|
1199
|
|
1200 /* Set all possible values for the Clock type parameter --------------------*/
|
|
1201 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
|
1202
|
|
1203 /* Get the SYSCLK configuration --------------------------------------------*/
|
|
1204 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
|
|
1205
|
|
1206 /* Get the HCLK configuration ----------------------------------------------*/
|
|
1207 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
|
|
1208
|
|
1209 /* Get the APB1 configuration ----------------------------------------------*/
|
|
1210 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
|
|
1211
|
|
1212 /* Get the APB2 configuration ----------------------------------------------*/
|
|
1213 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
|
|
1214
|
|
1215 #if defined(FLASH_ACR_LATENCY)
|
|
1216 /* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
1217 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
|
|
1218 #else
|
|
1219 /* For VALUE lines devices, only LATENCY_0 can be set*/
|
|
1220 *pFLatency = (uint32_t)FLASH_LATENCY_0;
|
|
1221 #endif
|
|
1222 }
|
|
1223
|
|
1224 /**
|
|
1225 * @brief This function handles the RCC CSS interrupt request.
|
|
1226 * @note This API should be called under the NMI_Handler().
|
|
1227 * @retval None
|
|
1228 */
|
|
1229 void HAL_RCC_NMI_IRQHandler(void)
|
|
1230 {
|
|
1231 /* Check RCC CSSF flag */
|
|
1232 if(__HAL_RCC_GET_IT(RCC_IT_CSS))
|
|
1233 {
|
|
1234 /* RCC Clock Security System interrupt user callback */
|
|
1235 HAL_RCC_CSSCallback();
|
|
1236
|
|
1237 /* Clear RCC CSS pending bit */
|
|
1238 __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
|
|
1239 }
|
|
1240 }
|
|
1241
|
|
1242 /**
|
|
1243 * @brief RCC Clock Security System interrupt callback
|
|
1244 * @retval none
|
|
1245 */
|
|
1246 __weak void HAL_RCC_CSSCallback(void)
|
|
1247 {
|
|
1248 /* NOTE : This function Should not be modified, when the callback is needed,
|
|
1249 the HAL_RCC_CSSCallback could be implemented in the user file
|
|
1250 */
|
|
1251 }
|
|
1252
|
|
1253 /**
|
|
1254 * @}
|
|
1255 */
|
|
1256
|
|
1257 /**
|
|
1258 * @}
|
|
1259 */
|
|
1260
|
|
1261 #endif /* HAL_RCC_MODULE_ENABLED */
|
|
1262 /**
|
|
1263 * @}
|
|
1264 */
|
|
1265
|
|
1266 /**
|
|
1267 * @}
|
|
1268 */
|
|
1269
|
|
1270 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|