comparison f103c8/Drivers/CMSIS/DSP_Lib/Source/StatisticsFunctions/arm_power_q31.c @ 2:0c59e7a7782a

Working on GPIO and RCC
author cin
date Mon, 16 Jan 2017 11:04:47 +0300
parents
children
comparison
equal deleted inserted replaced
1:a0b14b11ad9f 2:0c59e7a7782a
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_power_q31.c
9 *
10 * Description: Sum of the squares of the elements of a Q31 vector.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupStats
45 */
46
47 /**
48 * @addtogroup power
49 * @{
50 */
51
52 /**
53 * @brief Sum of the squares of the elements of a Q31 vector.
54 * @param[in] *pSrc points to the input vector
55 * @param[in] blockSize length of the input vector
56 * @param[out] *pResult sum of the squares value returned here
57 * @return none.
58 *
59 * @details
60 * <b>Scaling and Overflow Behavior:</b>
61 *
62 * \par
63 * The function is implemented using a 64-bit internal accumulator.
64 * The input is represented in 1.31 format.
65 * Intermediate multiplication yields a 2.62 format, and this
66 * result is truncated to 2.48 format by discarding the lower 14 bits.
67 * The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format.
68 * With 15 guard bits in the accumulator, there is no risk of overflow, and the
69 * full precision of the intermediate multiplication is preserved.
70 * Finally, the return result is in 16.48 format.
71 *
72 */
73
74 void arm_power_q31(
75 q31_t * pSrc,
76 uint32_t blockSize,
77 q63_t * pResult)
78 {
79 q63_t sum = 0; /* Temporary result storage */
80 q31_t in;
81 uint32_t blkCnt; /* loop counter */
82
83
84 #ifndef ARM_MATH_CM0_FAMILY
85
86 /* Run the below code for Cortex-M4 and Cortex-M3 */
87
88 /*loop Unrolling */
89 blkCnt = blockSize >> 2u;
90
91 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
92 ** a second loop below computes the remaining 1 to 3 samples. */
93 while(blkCnt > 0u)
94 {
95 /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
96 /* Compute Power then shift intermediate results by 14 bits to maintain 16.48 format and then store the result in a temporary variable sum, providing 15 guard bits. */
97 in = *pSrc++;
98 sum += ((q63_t) in * in) >> 14u;
99
100 in = *pSrc++;
101 sum += ((q63_t) in * in) >> 14u;
102
103 in = *pSrc++;
104 sum += ((q63_t) in * in) >> 14u;
105
106 in = *pSrc++;
107 sum += ((q63_t) in * in) >> 14u;
108
109 /* Decrement the loop counter */
110 blkCnt--;
111 }
112
113 /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
114 ** No loop unrolling is used. */
115 blkCnt = blockSize % 0x4u;
116
117 #else
118
119 /* Run the below code for Cortex-M0 */
120
121 /* Loop over blockSize number of values */
122 blkCnt = blockSize;
123
124 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
125
126 while(blkCnt > 0u)
127 {
128 /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */
129 /* Compute Power and then store the result in a temporary variable, sum. */
130 in = *pSrc++;
131 sum += ((q63_t) in * in) >> 14u;
132
133 /* Decrement the loop counter */
134 blkCnt--;
135 }
136
137 /* Store the results in 16.48 format */
138 *pResult = sum;
139 }
140
141 /**
142 * @} end of power group
143 */