comparison f103c8/Drivers/CMSIS/Include/arm_math.h @ 2:0c59e7a7782a

Working on GPIO and RCC
author cin
date Mon, 16 Jan 2017 11:04:47 +0300
parents
children
comparison
equal deleted inserted replaced
1:a0b14b11ad9f 2:0c59e7a7782a
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
3 *
4 * $Date: 20. October 2015
5 * $Revision: V1.4.5 b
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_math.h
9 *
10 * Description: Public header file for CMSIS DSP Library
11 *
12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 /**
42 \mainpage CMSIS DSP Software Library
43 *
44 * Introduction
45 * ------------
46 *
47 * This user manual describes the CMSIS DSP software library,
48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
49 *
50 * The library is divided into a number of functions each covering a specific category:
51 * - Basic math functions
52 * - Fast math functions
53 * - Complex math functions
54 * - Filters
55 * - Matrix functions
56 * - Transforms
57 * - Motor control functions
58 * - Statistical functions
59 * - Support functions
60 * - Interpolation functions
61 *
62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
63 * 32-bit integer and 32-bit floating-point values.
64 *
65 * Using the Library
66 * ------------
67 *
68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
83 *
84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
89 *
90 * Examples
91 * --------
92 *
93 * The library ships with a number of examples which demonstrate how to use the library functions.
94 *
95 * Toolchain Support
96 * ------------
97 *
98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
100 *
101 * Building the Library
102 * ------------
103 *
104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
105 * - arm_cortexM_math.uvprojx
106 *
107 *
108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
109 *
110 * Pre-processor Macros
111 * ------------
112 *
113 * Each library project have differant pre-processor macros.
114 *
115 * - UNALIGNED_SUPPORT_DISABLE:
116 *
117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
118 *
119 * - ARM_MATH_BIG_ENDIAN:
120 *
121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
122 *
123 * - ARM_MATH_MATRIX_CHECK:
124 *
125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
126 *
127 * - ARM_MATH_ROUNDING:
128 *
129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
130 *
131 * - ARM_MATH_CMx:
132 *
133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
135 * ARM_MATH_CM7 for building the library on cortex-M7.
136 *
137 * - __FPU_PRESENT:
138 *
139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
140 *
141 * <hr>
142 * CMSIS-DSP in ARM::CMSIS Pack
143 * -----------------------------
144 *
145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
146 * |File/Folder |Content |
147 * |------------------------------|------------------------------------------------------------------------|
148 * |\b CMSIS\\Documentation\\DSP | This documentation |
149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
152 *
153 * <hr>
154 * Revision History of CMSIS-DSP
155 * ------------
156 * Please refer to \ref ChangeLog_pg.
157 *
158 * Copyright Notice
159 * ------------
160 *
161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
162 */
163
164
165 /**
166 * @defgroup groupMath Basic Math Functions
167 */
168
169 /**
170 * @defgroup groupFastMath Fast Math Functions
171 * This set of functions provides a fast approximation to sine, cosine, and square root.
172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
173 * operate on individual values and not arrays.
174 * There are separate functions for Q15, Q31, and floating-point data.
175 *
176 */
177
178 /**
179 * @defgroup groupCmplxMath Complex Math Functions
180 * This set of functions operates on complex data vectors.
181 * The data in the complex arrays is stored in an interleaved fashion
182 * (real, imag, real, imag, ...).
183 * In the API functions, the number of samples in a complex array refers
184 * to the number of complex values; the array contains twice this number of
185 * real values.
186 */
187
188 /**
189 * @defgroup groupFilters Filtering Functions
190 */
191
192 /**
193 * @defgroup groupMatrix Matrix Functions
194 *
195 * This set of functions provides basic matrix math operations.
196 * The functions operate on matrix data structures. For example,
197 * the type
198 * definition for the floating-point matrix structure is shown
199 * below:
200 * <pre>
201 * typedef struct
202 * {
203 * uint16_t numRows; // number of rows of the matrix.
204 * uint16_t numCols; // number of columns of the matrix.
205 * float32_t *pData; // points to the data of the matrix.
206 * } arm_matrix_instance_f32;
207 * </pre>
208 * There are similar definitions for Q15 and Q31 data types.
209 *
210 * The structure specifies the size of the matrix and then points to
211 * an array of data. The array is of size <code>numRows X numCols</code>
212 * and the values are arranged in row order. That is, the
213 * matrix element (i, j) is stored at:
214 * <pre>
215 * pData[i*numCols + j]
216 * </pre>
217 *
218 * \par Init Functions
219 * There is an associated initialization function for each type of matrix
220 * data structure.
221 * The initialization function sets the values of the internal structure fields.
222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
224 *
225 * \par
226 * Use of the initialization function is optional. However, if initialization function is used
227 * then the instance structure cannot be placed into a const data section.
228 * To place the instance structure in a const data
229 * section, manually initialize the data structure. For example:
230 * <pre>
231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
234 * </pre>
235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
236 * specifies the number of columns, and <code>pData</code> points to the
237 * data array.
238 *
239 * \par Size Checking
240 * By default all of the matrix functions perform size checking on the input and
241 * output matrices. For example, the matrix addition function verifies that the
242 * two input matrices and the output matrix all have the same number of rows and
243 * columns. If the size check fails the functions return:
244 * <pre>
245 * ARM_MATH_SIZE_MISMATCH
246 * </pre>
247 * Otherwise the functions return
248 * <pre>
249 * ARM_MATH_SUCCESS
250 * </pre>
251 * There is some overhead associated with this matrix size checking.
252 * The matrix size checking is enabled via the \#define
253 * <pre>
254 * ARM_MATH_MATRIX_CHECK
255 * </pre>
256 * within the library project settings. By default this macro is defined
257 * and size checking is enabled. By changing the project settings and
258 * undefining this macro size checking is eliminated and the functions
259 * run a bit faster. With size checking disabled the functions always
260 * return <code>ARM_MATH_SUCCESS</code>.
261 */
262
263 /**
264 * @defgroup groupTransforms Transform Functions
265 */
266
267 /**
268 * @defgroup groupController Controller Functions
269 */
270
271 /**
272 * @defgroup groupStats Statistics Functions
273 */
274 /**
275 * @defgroup groupSupport Support Functions
276 */
277
278 /**
279 * @defgroup groupInterpolation Interpolation Functions
280 * These functions perform 1- and 2-dimensional interpolation of data.
281 * Linear interpolation is used for 1-dimensional data and
282 * bilinear interpolation is used for 2-dimensional data.
283 */
284
285 /**
286 * @defgroup groupExamples Examples
287 */
288 #ifndef _ARM_MATH_H
289 #define _ARM_MATH_H
290
291 /* ignore some GCC warnings */
292 #if defined ( __GNUC__ )
293 #pragma GCC diagnostic push
294 #pragma GCC diagnostic ignored "-Wsign-conversion"
295 #pragma GCC diagnostic ignored "-Wconversion"
296 #pragma GCC diagnostic ignored "-Wunused-parameter"
297 #endif
298
299 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
300
301 #if defined(ARM_MATH_CM7)
302 #include "core_cm7.h"
303 #elif defined (ARM_MATH_CM4)
304 #include "core_cm4.h"
305 #elif defined (ARM_MATH_CM3)
306 #include "core_cm3.h"
307 #elif defined (ARM_MATH_CM0)
308 #include "core_cm0.h"
309 #define ARM_MATH_CM0_FAMILY
310 #elif defined (ARM_MATH_CM0PLUS)
311 #include "core_cm0plus.h"
312 #define ARM_MATH_CM0_FAMILY
313 #else
314 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
315 #endif
316
317 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
318 #include "string.h"
319 #include "math.h"
320 #ifdef __cplusplus
321 extern "C"
322 {
323 #endif
324
325
326 /**
327 * @brief Macros required for reciprocal calculation in Normalized LMS
328 */
329
330 #define DELTA_Q31 (0x100)
331 #define DELTA_Q15 0x5
332 #define INDEX_MASK 0x0000003F
333 #ifndef PI
334 #define PI 3.14159265358979f
335 #endif
336
337 /**
338 * @brief Macros required for SINE and COSINE Fast math approximations
339 */
340
341 #define FAST_MATH_TABLE_SIZE 512
342 #define FAST_MATH_Q31_SHIFT (32 - 10)
343 #define FAST_MATH_Q15_SHIFT (16 - 10)
344 #define CONTROLLER_Q31_SHIFT (32 - 9)
345 #define TABLE_SIZE 256
346 #define TABLE_SPACING_Q31 0x400000
347 #define TABLE_SPACING_Q15 0x80
348
349 /**
350 * @brief Macros required for SINE and COSINE Controller functions
351 */
352 /* 1.31(q31) Fixed value of 2/360 */
353 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
354 #define INPUT_SPACING 0xB60B61
355
356 /**
357 * @brief Macro for Unaligned Support
358 */
359 #ifndef UNALIGNED_SUPPORT_DISABLE
360 #define ALIGN4
361 #else
362 #if defined (__GNUC__)
363 #define ALIGN4 __attribute__((aligned(4)))
364 #else
365 #define ALIGN4 __align(4)
366 #endif
367 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
368
369 /**
370 * @brief Error status returned by some functions in the library.
371 */
372
373 typedef enum
374 {
375 ARM_MATH_SUCCESS = 0, /**< No error */
376 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
377 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
378 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
379 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
380 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
381 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
382 } arm_status;
383
384 /**
385 * @brief 8-bit fractional data type in 1.7 format.
386 */
387 typedef int8_t q7_t;
388
389 /**
390 * @brief 16-bit fractional data type in 1.15 format.
391 */
392 typedef int16_t q15_t;
393
394 /**
395 * @brief 32-bit fractional data type in 1.31 format.
396 */
397 typedef int32_t q31_t;
398
399 /**
400 * @brief 64-bit fractional data type in 1.63 format.
401 */
402 typedef int64_t q63_t;
403
404 /**
405 * @brief 32-bit floating-point type definition.
406 */
407 typedef float float32_t;
408
409 /**
410 * @brief 64-bit floating-point type definition.
411 */
412 typedef double float64_t;
413
414 /**
415 * @brief definition to read/write two 16 bit values.
416 */
417 #if defined __CC_ARM
418 #define __SIMD32_TYPE int32_t __packed
419 #define CMSIS_UNUSED __attribute__((unused))
420
421 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
422 #define __SIMD32_TYPE int32_t
423 #define CMSIS_UNUSED __attribute__((unused))
424
425 #elif defined __GNUC__
426 #define __SIMD32_TYPE int32_t
427 #define CMSIS_UNUSED __attribute__((unused))
428
429 #elif defined __ICCARM__
430 #define __SIMD32_TYPE int32_t __packed
431 #define CMSIS_UNUSED
432
433 #elif defined __CSMC__
434 #define __SIMD32_TYPE int32_t
435 #define CMSIS_UNUSED
436
437 #elif defined __TASKING__
438 #define __SIMD32_TYPE __unaligned int32_t
439 #define CMSIS_UNUSED
440
441 #else
442 #error Unknown compiler
443 #endif
444
445 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
446 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
447 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
448 #define __SIMD64(addr) (*(int64_t **) & (addr))
449
450 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
451 /**
452 * @brief definition to pack two 16 bit values.
453 */
454 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
455 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
456 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
457 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
458
459 #endif
460
461
462 /**
463 * @brief definition to pack four 8 bit values.
464 */
465 #ifndef ARM_MATH_BIG_ENDIAN
466
467 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
468 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
469 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
470 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
471 #else
472
473 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
474 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
475 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
476 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
477
478 #endif
479
480
481 /**
482 * @brief Clips Q63 to Q31 values.
483 */
484 static __INLINE q31_t clip_q63_to_q31(
485 q63_t x)
486 {
487 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
488 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
489 }
490
491 /**
492 * @brief Clips Q63 to Q15 values.
493 */
494 static __INLINE q15_t clip_q63_to_q15(
495 q63_t x)
496 {
497 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
498 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
499 }
500
501 /**
502 * @brief Clips Q31 to Q7 values.
503 */
504 static __INLINE q7_t clip_q31_to_q7(
505 q31_t x)
506 {
507 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
508 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
509 }
510
511 /**
512 * @brief Clips Q31 to Q15 values.
513 */
514 static __INLINE q15_t clip_q31_to_q15(
515 q31_t x)
516 {
517 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
518 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
519 }
520
521 /**
522 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
523 */
524
525 static __INLINE q63_t mult32x64(
526 q63_t x,
527 q31_t y)
528 {
529 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
530 (((q63_t) (x >> 32) * y)));
531 }
532
533 /*
534 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
535 #define __CLZ __clz
536 #endif
537 */
538 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
539 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
540 static __INLINE uint32_t __CLZ(
541 q31_t data);
542
543 static __INLINE uint32_t __CLZ(
544 q31_t data)
545 {
546 uint32_t count = 0;
547 uint32_t mask = 0x80000000;
548
549 while((data & mask) == 0)
550 {
551 count += 1u;
552 mask = mask >> 1u;
553 }
554
555 return (count);
556 }
557 #endif
558
559 /**
560 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
561 */
562
563 static __INLINE uint32_t arm_recip_q31(
564 q31_t in,
565 q31_t * dst,
566 q31_t * pRecipTable)
567 {
568 q31_t out;
569 uint32_t tempVal;
570 uint32_t index, i;
571 uint32_t signBits;
572
573 if(in > 0)
574 {
575 signBits = ((uint32_t) (__CLZ( in) - 1));
576 }
577 else
578 {
579 signBits = ((uint32_t) (__CLZ(-in) - 1));
580 }
581
582 /* Convert input sample to 1.31 format */
583 in = (in << signBits);
584
585 /* calculation of index for initial approximated Val */
586 index = (uint32_t)(in >> 24);
587 index = (index & INDEX_MASK);
588
589 /* 1.31 with exp 1 */
590 out = pRecipTable[index];
591
592 /* calculation of reciprocal value */
593 /* running approximation for two iterations */
594 for (i = 0u; i < 2u; i++)
595 {
596 tempVal = (uint32_t) (((q63_t) in * out) >> 31);
597 tempVal = 0x7FFFFFFFu - tempVal;
598 /* 1.31 with exp 1 */
599 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
600 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
601 }
602
603 /* write output */
604 *dst = out;
605
606 /* return num of signbits of out = 1/in value */
607 return (signBits + 1u);
608 }
609
610
611 /**
612 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
613 */
614 static __INLINE uint32_t arm_recip_q15(
615 q15_t in,
616 q15_t * dst,
617 q15_t * pRecipTable)
618 {
619 q15_t out = 0;
620 uint32_t tempVal = 0;
621 uint32_t index = 0, i = 0;
622 uint32_t signBits = 0;
623
624 if(in > 0)
625 {
626 signBits = ((uint32_t)(__CLZ( in) - 17));
627 }
628 else
629 {
630 signBits = ((uint32_t)(__CLZ(-in) - 17));
631 }
632
633 /* Convert input sample to 1.15 format */
634 in = (in << signBits);
635
636 /* calculation of index for initial approximated Val */
637 index = (uint32_t)(in >> 8);
638 index = (index & INDEX_MASK);
639
640 /* 1.15 with exp 1 */
641 out = pRecipTable[index];
642
643 /* calculation of reciprocal value */
644 /* running approximation for two iterations */
645 for (i = 0u; i < 2u; i++)
646 {
647 tempVal = (uint32_t) (((q31_t) in * out) >> 15);
648 tempVal = 0x7FFFu - tempVal;
649 /* 1.15 with exp 1 */
650 out = (q15_t) (((q31_t) out * tempVal) >> 14);
651 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
652 }
653
654 /* write output */
655 *dst = out;
656
657 /* return num of signbits of out = 1/in value */
658 return (signBits + 1);
659 }
660
661
662 /*
663 * @brief C custom defined intrinisic function for only M0 processors
664 */
665 #if defined(ARM_MATH_CM0_FAMILY)
666 static __INLINE q31_t __SSAT(
667 q31_t x,
668 uint32_t y)
669 {
670 int32_t posMax, negMin;
671 uint32_t i;
672
673 posMax = 1;
674 for (i = 0; i < (y - 1); i++)
675 {
676 posMax = posMax * 2;
677 }
678
679 if(x > 0)
680 {
681 posMax = (posMax - 1);
682
683 if(x > posMax)
684 {
685 x = posMax;
686 }
687 }
688 else
689 {
690 negMin = -posMax;
691
692 if(x < negMin)
693 {
694 x = negMin;
695 }
696 }
697 return (x);
698 }
699 #endif /* end of ARM_MATH_CM0_FAMILY */
700
701
702 /*
703 * @brief C custom defined intrinsic function for M3 and M0 processors
704 */
705 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
706
707 /*
708 * @brief C custom defined QADD8 for M3 and M0 processors
709 */
710 static __INLINE uint32_t __QADD8(
711 uint32_t x,
712 uint32_t y)
713 {
714 q31_t r, s, t, u;
715
716 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
717 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
718 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
719 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
720
721 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
722 }
723
724
725 /*
726 * @brief C custom defined QSUB8 for M3 and M0 processors
727 */
728 static __INLINE uint32_t __QSUB8(
729 uint32_t x,
730 uint32_t y)
731 {
732 q31_t r, s, t, u;
733
734 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
735 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
736 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
737 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
738
739 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
740 }
741
742
743 /*
744 * @brief C custom defined QADD16 for M3 and M0 processors
745 */
746 static __INLINE uint32_t __QADD16(
747 uint32_t x,
748 uint32_t y)
749 {
750 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
751 q31_t r = 0, s = 0;
752
753 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
754 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
755
756 return ((uint32_t)((s << 16) | (r )));
757 }
758
759
760 /*
761 * @brief C custom defined SHADD16 for M3 and M0 processors
762 */
763 static __INLINE uint32_t __SHADD16(
764 uint32_t x,
765 uint32_t y)
766 {
767 q31_t r, s;
768
769 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
770 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
771
772 return ((uint32_t)((s << 16) | (r )));
773 }
774
775
776 /*
777 * @brief C custom defined QSUB16 for M3 and M0 processors
778 */
779 static __INLINE uint32_t __QSUB16(
780 uint32_t x,
781 uint32_t y)
782 {
783 q31_t r, s;
784
785 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
786 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
787
788 return ((uint32_t)((s << 16) | (r )));
789 }
790
791
792 /*
793 * @brief C custom defined SHSUB16 for M3 and M0 processors
794 */
795 static __INLINE uint32_t __SHSUB16(
796 uint32_t x,
797 uint32_t y)
798 {
799 q31_t r, s;
800
801 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
802 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
803
804 return ((uint32_t)((s << 16) | (r )));
805 }
806
807
808 /*
809 * @brief C custom defined QASX for M3 and M0 processors
810 */
811 static __INLINE uint32_t __QASX(
812 uint32_t x,
813 uint32_t y)
814 {
815 q31_t r, s;
816
817 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
818 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
819
820 return ((uint32_t)((s << 16) | (r )));
821 }
822
823
824 /*
825 * @brief C custom defined SHASX for M3 and M0 processors
826 */
827 static __INLINE uint32_t __SHASX(
828 uint32_t x,
829 uint32_t y)
830 {
831 q31_t r, s;
832
833 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
834 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
835
836 return ((uint32_t)((s << 16) | (r )));
837 }
838
839
840 /*
841 * @brief C custom defined QSAX for M3 and M0 processors
842 */
843 static __INLINE uint32_t __QSAX(
844 uint32_t x,
845 uint32_t y)
846 {
847 q31_t r, s;
848
849 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
850 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
851
852 return ((uint32_t)((s << 16) | (r )));
853 }
854
855
856 /*
857 * @brief C custom defined SHSAX for M3 and M0 processors
858 */
859 static __INLINE uint32_t __SHSAX(
860 uint32_t x,
861 uint32_t y)
862 {
863 q31_t r, s;
864
865 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
866 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
867
868 return ((uint32_t)((s << 16) | (r )));
869 }
870
871
872 /*
873 * @brief C custom defined SMUSDX for M3 and M0 processors
874 */
875 static __INLINE uint32_t __SMUSDX(
876 uint32_t x,
877 uint32_t y)
878 {
879 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
880 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
881 }
882
883 /*
884 * @brief C custom defined SMUADX for M3 and M0 processors
885 */
886 static __INLINE uint32_t __SMUADX(
887 uint32_t x,
888 uint32_t y)
889 {
890 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
891 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
892 }
893
894
895 /*
896 * @brief C custom defined QADD for M3 and M0 processors
897 */
898 static __INLINE int32_t __QADD(
899 int32_t x,
900 int32_t y)
901 {
902 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
903 }
904
905
906 /*
907 * @brief C custom defined QSUB for M3 and M0 processors
908 */
909 static __INLINE int32_t __QSUB(
910 int32_t x,
911 int32_t y)
912 {
913 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
914 }
915
916
917 /*
918 * @brief C custom defined SMLAD for M3 and M0 processors
919 */
920 static __INLINE uint32_t __SMLAD(
921 uint32_t x,
922 uint32_t y,
923 uint32_t sum)
924 {
925 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
926 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
927 ( ((q31_t)sum ) ) ));
928 }
929
930
931 /*
932 * @brief C custom defined SMLADX for M3 and M0 processors
933 */
934 static __INLINE uint32_t __SMLADX(
935 uint32_t x,
936 uint32_t y,
937 uint32_t sum)
938 {
939 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
940 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
941 ( ((q31_t)sum ) ) ));
942 }
943
944
945 /*
946 * @brief C custom defined SMLSDX for M3 and M0 processors
947 */
948 static __INLINE uint32_t __SMLSDX(
949 uint32_t x,
950 uint32_t y,
951 uint32_t sum)
952 {
953 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
954 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
955 ( ((q31_t)sum ) ) ));
956 }
957
958
959 /*
960 * @brief C custom defined SMLALD for M3 and M0 processors
961 */
962 static __INLINE uint64_t __SMLALD(
963 uint32_t x,
964 uint32_t y,
965 uint64_t sum)
966 {
967 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
968 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
969 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
970 ( ((q63_t)sum ) ) ));
971 }
972
973
974 /*
975 * @brief C custom defined SMLALDX for M3 and M0 processors
976 */
977 static __INLINE uint64_t __SMLALDX(
978 uint32_t x,
979 uint32_t y,
980 uint64_t sum)
981 {
982 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
983 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
984 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
985 ( ((q63_t)sum ) ) ));
986 }
987
988
989 /*
990 * @brief C custom defined SMUAD for M3 and M0 processors
991 */
992 static __INLINE uint32_t __SMUAD(
993 uint32_t x,
994 uint32_t y)
995 {
996 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
997 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
998 }
999
1000
1001 /*
1002 * @brief C custom defined SMUSD for M3 and M0 processors
1003 */
1004 static __INLINE uint32_t __SMUSD(
1005 uint32_t x,
1006 uint32_t y)
1007 {
1008 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
1009 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
1010 }
1011
1012
1013 /*
1014 * @brief C custom defined SXTB16 for M3 and M0 processors
1015 */
1016 static __INLINE uint32_t __SXTB16(
1017 uint32_t x)
1018 {
1019 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
1020 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
1021 }
1022
1023 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
1024
1025
1026 /**
1027 * @brief Instance structure for the Q7 FIR filter.
1028 */
1029 typedef struct
1030 {
1031 uint16_t numTaps; /**< number of filter coefficients in the filter. */
1032 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1033 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
1034 } arm_fir_instance_q7;
1035
1036 /**
1037 * @brief Instance structure for the Q15 FIR filter.
1038 */
1039 typedef struct
1040 {
1041 uint16_t numTaps; /**< number of filter coefficients in the filter. */
1042 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1043 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
1044 } arm_fir_instance_q15;
1045
1046 /**
1047 * @brief Instance structure for the Q31 FIR filter.
1048 */
1049 typedef struct
1050 {
1051 uint16_t numTaps; /**< number of filter coefficients in the filter. */
1052 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1053 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
1054 } arm_fir_instance_q31;
1055
1056 /**
1057 * @brief Instance structure for the floating-point FIR filter.
1058 */
1059 typedef struct
1060 {
1061 uint16_t numTaps; /**< number of filter coefficients in the filter. */
1062 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
1063 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
1064 } arm_fir_instance_f32;
1065
1066
1067 /**
1068 * @brief Processing function for the Q7 FIR filter.
1069 * @param[in] S points to an instance of the Q7 FIR filter structure.
1070 * @param[in] pSrc points to the block of input data.
1071 * @param[out] pDst points to the block of output data.
1072 * @param[in] blockSize number of samples to process.
1073 */
1074 void arm_fir_q7(
1075 const arm_fir_instance_q7 * S,
1076 q7_t * pSrc,
1077 q7_t * pDst,
1078 uint32_t blockSize);
1079
1080
1081 /**
1082 * @brief Initialization function for the Q7 FIR filter.
1083 * @param[in,out] S points to an instance of the Q7 FIR structure.
1084 * @param[in] numTaps Number of filter coefficients in the filter.
1085 * @param[in] pCoeffs points to the filter coefficients.
1086 * @param[in] pState points to the state buffer.
1087 * @param[in] blockSize number of samples that are processed.
1088 */
1089 void arm_fir_init_q7(
1090 arm_fir_instance_q7 * S,
1091 uint16_t numTaps,
1092 q7_t * pCoeffs,
1093 q7_t * pState,
1094 uint32_t blockSize);
1095
1096
1097 /**
1098 * @brief Processing function for the Q15 FIR filter.
1099 * @param[in] S points to an instance of the Q15 FIR structure.
1100 * @param[in] pSrc points to the block of input data.
1101 * @param[out] pDst points to the block of output data.
1102 * @param[in] blockSize number of samples to process.
1103 */
1104 void arm_fir_q15(
1105 const arm_fir_instance_q15 * S,
1106 q15_t * pSrc,
1107 q15_t * pDst,
1108 uint32_t blockSize);
1109
1110
1111 /**
1112 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
1113 * @param[in] S points to an instance of the Q15 FIR filter structure.
1114 * @param[in] pSrc points to the block of input data.
1115 * @param[out] pDst points to the block of output data.
1116 * @param[in] blockSize number of samples to process.
1117 */
1118 void arm_fir_fast_q15(
1119 const arm_fir_instance_q15 * S,
1120 q15_t * pSrc,
1121 q15_t * pDst,
1122 uint32_t blockSize);
1123
1124
1125 /**
1126 * @brief Initialization function for the Q15 FIR filter.
1127 * @param[in,out] S points to an instance of the Q15 FIR filter structure.
1128 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
1129 * @param[in] pCoeffs points to the filter coefficients.
1130 * @param[in] pState points to the state buffer.
1131 * @param[in] blockSize number of samples that are processed at a time.
1132 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
1133 * <code>numTaps</code> is not a supported value.
1134 */
1135 arm_status arm_fir_init_q15(
1136 arm_fir_instance_q15 * S,
1137 uint16_t numTaps,
1138 q15_t * pCoeffs,
1139 q15_t * pState,
1140 uint32_t blockSize);
1141
1142
1143 /**
1144 * @brief Processing function for the Q31 FIR filter.
1145 * @param[in] S points to an instance of the Q31 FIR filter structure.
1146 * @param[in] pSrc points to the block of input data.
1147 * @param[out] pDst points to the block of output data.
1148 * @param[in] blockSize number of samples to process.
1149 */
1150 void arm_fir_q31(
1151 const arm_fir_instance_q31 * S,
1152 q31_t * pSrc,
1153 q31_t * pDst,
1154 uint32_t blockSize);
1155
1156
1157 /**
1158 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
1159 * @param[in] S points to an instance of the Q31 FIR structure.
1160 * @param[in] pSrc points to the block of input data.
1161 * @param[out] pDst points to the block of output data.
1162 * @param[in] blockSize number of samples to process.
1163 */
1164 void arm_fir_fast_q31(
1165 const arm_fir_instance_q31 * S,
1166 q31_t * pSrc,
1167 q31_t * pDst,
1168 uint32_t blockSize);
1169
1170
1171 /**
1172 * @brief Initialization function for the Q31 FIR filter.
1173 * @param[in,out] S points to an instance of the Q31 FIR structure.
1174 * @param[in] numTaps Number of filter coefficients in the filter.
1175 * @param[in] pCoeffs points to the filter coefficients.
1176 * @param[in] pState points to the state buffer.
1177 * @param[in] blockSize number of samples that are processed at a time.
1178 */
1179 void arm_fir_init_q31(
1180 arm_fir_instance_q31 * S,
1181 uint16_t numTaps,
1182 q31_t * pCoeffs,
1183 q31_t * pState,
1184 uint32_t blockSize);
1185
1186
1187 /**
1188 * @brief Processing function for the floating-point FIR filter.
1189 * @param[in] S points to an instance of the floating-point FIR structure.
1190 * @param[in] pSrc points to the block of input data.
1191 * @param[out] pDst points to the block of output data.
1192 * @param[in] blockSize number of samples to process.
1193 */
1194 void arm_fir_f32(
1195 const arm_fir_instance_f32 * S,
1196 float32_t * pSrc,
1197 float32_t * pDst,
1198 uint32_t blockSize);
1199
1200
1201 /**
1202 * @brief Initialization function for the floating-point FIR filter.
1203 * @param[in,out] S points to an instance of the floating-point FIR filter structure.
1204 * @param[in] numTaps Number of filter coefficients in the filter.
1205 * @param[in] pCoeffs points to the filter coefficients.
1206 * @param[in] pState points to the state buffer.
1207 * @param[in] blockSize number of samples that are processed at a time.
1208 */
1209 void arm_fir_init_f32(
1210 arm_fir_instance_f32 * S,
1211 uint16_t numTaps,
1212 float32_t * pCoeffs,
1213 float32_t * pState,
1214 uint32_t blockSize);
1215
1216
1217 /**
1218 * @brief Instance structure for the Q15 Biquad cascade filter.
1219 */
1220 typedef struct
1221 {
1222 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
1223 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
1224 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
1225 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
1226 } arm_biquad_casd_df1_inst_q15;
1227
1228 /**
1229 * @brief Instance structure for the Q31 Biquad cascade filter.
1230 */
1231 typedef struct
1232 {
1233 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
1234 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
1235 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
1236 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
1237 } arm_biquad_casd_df1_inst_q31;
1238
1239 /**
1240 * @brief Instance structure for the floating-point Biquad cascade filter.
1241 */
1242 typedef struct
1243 {
1244 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
1245 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
1246 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
1247 } arm_biquad_casd_df1_inst_f32;
1248
1249
1250 /**
1251 * @brief Processing function for the Q15 Biquad cascade filter.
1252 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
1253 * @param[in] pSrc points to the block of input data.
1254 * @param[out] pDst points to the block of output data.
1255 * @param[in] blockSize number of samples to process.
1256 */
1257 void arm_biquad_cascade_df1_q15(
1258 const arm_biquad_casd_df1_inst_q15 * S,
1259 q15_t * pSrc,
1260 q15_t * pDst,
1261 uint32_t blockSize);
1262
1263
1264 /**
1265 * @brief Initialization function for the Q15 Biquad cascade filter.
1266 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
1267 * @param[in] numStages number of 2nd order stages in the filter.
1268 * @param[in] pCoeffs points to the filter coefficients.
1269 * @param[in] pState points to the state buffer.
1270 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
1271 */
1272 void arm_biquad_cascade_df1_init_q15(
1273 arm_biquad_casd_df1_inst_q15 * S,
1274 uint8_t numStages,
1275 q15_t * pCoeffs,
1276 q15_t * pState,
1277 int8_t postShift);
1278
1279
1280 /**
1281 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
1282 * @param[in] S points to an instance of the Q15 Biquad cascade structure.
1283 * @param[in] pSrc points to the block of input data.
1284 * @param[out] pDst points to the block of output data.
1285 * @param[in] blockSize number of samples to process.
1286 */
1287 void arm_biquad_cascade_df1_fast_q15(
1288 const arm_biquad_casd_df1_inst_q15 * S,
1289 q15_t * pSrc,
1290 q15_t * pDst,
1291 uint32_t blockSize);
1292
1293
1294 /**
1295 * @brief Processing function for the Q31 Biquad cascade filter
1296 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
1297 * @param[in] pSrc points to the block of input data.
1298 * @param[out] pDst points to the block of output data.
1299 * @param[in] blockSize number of samples to process.
1300 */
1301 void arm_biquad_cascade_df1_q31(
1302 const arm_biquad_casd_df1_inst_q31 * S,
1303 q31_t * pSrc,
1304 q31_t * pDst,
1305 uint32_t blockSize);
1306
1307
1308 /**
1309 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
1310 * @param[in] S points to an instance of the Q31 Biquad cascade structure.
1311 * @param[in] pSrc points to the block of input data.
1312 * @param[out] pDst points to the block of output data.
1313 * @param[in] blockSize number of samples to process.
1314 */
1315 void arm_biquad_cascade_df1_fast_q31(
1316 const arm_biquad_casd_df1_inst_q31 * S,
1317 q31_t * pSrc,
1318 q31_t * pDst,
1319 uint32_t blockSize);
1320
1321
1322 /**
1323 * @brief Initialization function for the Q31 Biquad cascade filter.
1324 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
1325 * @param[in] numStages number of 2nd order stages in the filter.
1326 * @param[in] pCoeffs points to the filter coefficients.
1327 * @param[in] pState points to the state buffer.
1328 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
1329 */
1330 void arm_biquad_cascade_df1_init_q31(
1331 arm_biquad_casd_df1_inst_q31 * S,
1332 uint8_t numStages,
1333 q31_t * pCoeffs,
1334 q31_t * pState,
1335 int8_t postShift);
1336
1337
1338 /**
1339 * @brief Processing function for the floating-point Biquad cascade filter.
1340 * @param[in] S points to an instance of the floating-point Biquad cascade structure.
1341 * @param[in] pSrc points to the block of input data.
1342 * @param[out] pDst points to the block of output data.
1343 * @param[in] blockSize number of samples to process.
1344 */
1345 void arm_biquad_cascade_df1_f32(
1346 const arm_biquad_casd_df1_inst_f32 * S,
1347 float32_t * pSrc,
1348 float32_t * pDst,
1349 uint32_t blockSize);
1350
1351
1352 /**
1353 * @brief Initialization function for the floating-point Biquad cascade filter.
1354 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
1355 * @param[in] numStages number of 2nd order stages in the filter.
1356 * @param[in] pCoeffs points to the filter coefficients.
1357 * @param[in] pState points to the state buffer.
1358 */
1359 void arm_biquad_cascade_df1_init_f32(
1360 arm_biquad_casd_df1_inst_f32 * S,
1361 uint8_t numStages,
1362 float32_t * pCoeffs,
1363 float32_t * pState);
1364
1365
1366 /**
1367 * @brief Instance structure for the floating-point matrix structure.
1368 */
1369 typedef struct
1370 {
1371 uint16_t numRows; /**< number of rows of the matrix. */
1372 uint16_t numCols; /**< number of columns of the matrix. */
1373 float32_t *pData; /**< points to the data of the matrix. */
1374 } arm_matrix_instance_f32;
1375
1376
1377 /**
1378 * @brief Instance structure for the floating-point matrix structure.
1379 */
1380 typedef struct
1381 {
1382 uint16_t numRows; /**< number of rows of the matrix. */
1383 uint16_t numCols; /**< number of columns of the matrix. */
1384 float64_t *pData; /**< points to the data of the matrix. */
1385 } arm_matrix_instance_f64;
1386
1387 /**
1388 * @brief Instance structure for the Q15 matrix structure.
1389 */
1390 typedef struct
1391 {
1392 uint16_t numRows; /**< number of rows of the matrix. */
1393 uint16_t numCols; /**< number of columns of the matrix. */
1394 q15_t *pData; /**< points to the data of the matrix. */
1395 } arm_matrix_instance_q15;
1396
1397 /**
1398 * @brief Instance structure for the Q31 matrix structure.
1399 */
1400 typedef struct
1401 {
1402 uint16_t numRows; /**< number of rows of the matrix. */
1403 uint16_t numCols; /**< number of columns of the matrix. */
1404 q31_t *pData; /**< points to the data of the matrix. */
1405 } arm_matrix_instance_q31;
1406
1407
1408 /**
1409 * @brief Floating-point matrix addition.
1410 * @param[in] pSrcA points to the first input matrix structure
1411 * @param[in] pSrcB points to the second input matrix structure
1412 * @param[out] pDst points to output matrix structure
1413 * @return The function returns either
1414 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1415 */
1416 arm_status arm_mat_add_f32(
1417 const arm_matrix_instance_f32 * pSrcA,
1418 const arm_matrix_instance_f32 * pSrcB,
1419 arm_matrix_instance_f32 * pDst);
1420
1421
1422 /**
1423 * @brief Q15 matrix addition.
1424 * @param[in] pSrcA points to the first input matrix structure
1425 * @param[in] pSrcB points to the second input matrix structure
1426 * @param[out] pDst points to output matrix structure
1427 * @return The function returns either
1428 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1429 */
1430 arm_status arm_mat_add_q15(
1431 const arm_matrix_instance_q15 * pSrcA,
1432 const arm_matrix_instance_q15 * pSrcB,
1433 arm_matrix_instance_q15 * pDst);
1434
1435
1436 /**
1437 * @brief Q31 matrix addition.
1438 * @param[in] pSrcA points to the first input matrix structure
1439 * @param[in] pSrcB points to the second input matrix structure
1440 * @param[out] pDst points to output matrix structure
1441 * @return The function returns either
1442 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1443 */
1444 arm_status arm_mat_add_q31(
1445 const arm_matrix_instance_q31 * pSrcA,
1446 const arm_matrix_instance_q31 * pSrcB,
1447 arm_matrix_instance_q31 * pDst);
1448
1449
1450 /**
1451 * @brief Floating-point, complex, matrix multiplication.
1452 * @param[in] pSrcA points to the first input matrix structure
1453 * @param[in] pSrcB points to the second input matrix structure
1454 * @param[out] pDst points to output matrix structure
1455 * @return The function returns either
1456 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1457 */
1458 arm_status arm_mat_cmplx_mult_f32(
1459 const arm_matrix_instance_f32 * pSrcA,
1460 const arm_matrix_instance_f32 * pSrcB,
1461 arm_matrix_instance_f32 * pDst);
1462
1463
1464 /**
1465 * @brief Q15, complex, matrix multiplication.
1466 * @param[in] pSrcA points to the first input matrix structure
1467 * @param[in] pSrcB points to the second input matrix structure
1468 * @param[out] pDst points to output matrix structure
1469 * @return The function returns either
1470 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1471 */
1472 arm_status arm_mat_cmplx_mult_q15(
1473 const arm_matrix_instance_q15 * pSrcA,
1474 const arm_matrix_instance_q15 * pSrcB,
1475 arm_matrix_instance_q15 * pDst,
1476 q15_t * pScratch);
1477
1478
1479 /**
1480 * @brief Q31, complex, matrix multiplication.
1481 * @param[in] pSrcA points to the first input matrix structure
1482 * @param[in] pSrcB points to the second input matrix structure
1483 * @param[out] pDst points to output matrix structure
1484 * @return The function returns either
1485 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1486 */
1487 arm_status arm_mat_cmplx_mult_q31(
1488 const arm_matrix_instance_q31 * pSrcA,
1489 const arm_matrix_instance_q31 * pSrcB,
1490 arm_matrix_instance_q31 * pDst);
1491
1492
1493 /**
1494 * @brief Floating-point matrix transpose.
1495 * @param[in] pSrc points to the input matrix
1496 * @param[out] pDst points to the output matrix
1497 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
1498 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1499 */
1500 arm_status arm_mat_trans_f32(
1501 const arm_matrix_instance_f32 * pSrc,
1502 arm_matrix_instance_f32 * pDst);
1503
1504
1505 /**
1506 * @brief Q15 matrix transpose.
1507 * @param[in] pSrc points to the input matrix
1508 * @param[out] pDst points to the output matrix
1509 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
1510 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1511 */
1512 arm_status arm_mat_trans_q15(
1513 const arm_matrix_instance_q15 * pSrc,
1514 arm_matrix_instance_q15 * pDst);
1515
1516
1517 /**
1518 * @brief Q31 matrix transpose.
1519 * @param[in] pSrc points to the input matrix
1520 * @param[out] pDst points to the output matrix
1521 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
1522 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1523 */
1524 arm_status arm_mat_trans_q31(
1525 const arm_matrix_instance_q31 * pSrc,
1526 arm_matrix_instance_q31 * pDst);
1527
1528
1529 /**
1530 * @brief Floating-point matrix multiplication
1531 * @param[in] pSrcA points to the first input matrix structure
1532 * @param[in] pSrcB points to the second input matrix structure
1533 * @param[out] pDst points to output matrix structure
1534 * @return The function returns either
1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1536 */
1537 arm_status arm_mat_mult_f32(
1538 const arm_matrix_instance_f32 * pSrcA,
1539 const arm_matrix_instance_f32 * pSrcB,
1540 arm_matrix_instance_f32 * pDst);
1541
1542
1543 /**
1544 * @brief Q15 matrix multiplication
1545 * @param[in] pSrcA points to the first input matrix structure
1546 * @param[in] pSrcB points to the second input matrix structure
1547 * @param[out] pDst points to output matrix structure
1548 * @param[in] pState points to the array for storing intermediate results
1549 * @return The function returns either
1550 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1551 */
1552 arm_status arm_mat_mult_q15(
1553 const arm_matrix_instance_q15 * pSrcA,
1554 const arm_matrix_instance_q15 * pSrcB,
1555 arm_matrix_instance_q15 * pDst,
1556 q15_t * pState);
1557
1558
1559 /**
1560 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
1561 * @param[in] pSrcA points to the first input matrix structure
1562 * @param[in] pSrcB points to the second input matrix structure
1563 * @param[out] pDst points to output matrix structure
1564 * @param[in] pState points to the array for storing intermediate results
1565 * @return The function returns either
1566 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1567 */
1568 arm_status arm_mat_mult_fast_q15(
1569 const arm_matrix_instance_q15 * pSrcA,
1570 const arm_matrix_instance_q15 * pSrcB,
1571 arm_matrix_instance_q15 * pDst,
1572 q15_t * pState);
1573
1574
1575 /**
1576 * @brief Q31 matrix multiplication
1577 * @param[in] pSrcA points to the first input matrix structure
1578 * @param[in] pSrcB points to the second input matrix structure
1579 * @param[out] pDst points to output matrix structure
1580 * @return The function returns either
1581 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1582 */
1583 arm_status arm_mat_mult_q31(
1584 const arm_matrix_instance_q31 * pSrcA,
1585 const arm_matrix_instance_q31 * pSrcB,
1586 arm_matrix_instance_q31 * pDst);
1587
1588
1589 /**
1590 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
1591 * @param[in] pSrcA points to the first input matrix structure
1592 * @param[in] pSrcB points to the second input matrix structure
1593 * @param[out] pDst points to output matrix structure
1594 * @return The function returns either
1595 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1596 */
1597 arm_status arm_mat_mult_fast_q31(
1598 const arm_matrix_instance_q31 * pSrcA,
1599 const arm_matrix_instance_q31 * pSrcB,
1600 arm_matrix_instance_q31 * pDst);
1601
1602
1603 /**
1604 * @brief Floating-point matrix subtraction
1605 * @param[in] pSrcA points to the first input matrix structure
1606 * @param[in] pSrcB points to the second input matrix structure
1607 * @param[out] pDst points to output matrix structure
1608 * @return The function returns either
1609 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1610 */
1611 arm_status arm_mat_sub_f32(
1612 const arm_matrix_instance_f32 * pSrcA,
1613 const arm_matrix_instance_f32 * pSrcB,
1614 arm_matrix_instance_f32 * pDst);
1615
1616
1617 /**
1618 * @brief Q15 matrix subtraction
1619 * @param[in] pSrcA points to the first input matrix structure
1620 * @param[in] pSrcB points to the second input matrix structure
1621 * @param[out] pDst points to output matrix structure
1622 * @return The function returns either
1623 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1624 */
1625 arm_status arm_mat_sub_q15(
1626 const arm_matrix_instance_q15 * pSrcA,
1627 const arm_matrix_instance_q15 * pSrcB,
1628 arm_matrix_instance_q15 * pDst);
1629
1630
1631 /**
1632 * @brief Q31 matrix subtraction
1633 * @param[in] pSrcA points to the first input matrix structure
1634 * @param[in] pSrcB points to the second input matrix structure
1635 * @param[out] pDst points to output matrix structure
1636 * @return The function returns either
1637 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1638 */
1639 arm_status arm_mat_sub_q31(
1640 const arm_matrix_instance_q31 * pSrcA,
1641 const arm_matrix_instance_q31 * pSrcB,
1642 arm_matrix_instance_q31 * pDst);
1643
1644
1645 /**
1646 * @brief Floating-point matrix scaling.
1647 * @param[in] pSrc points to the input matrix
1648 * @param[in] scale scale factor
1649 * @param[out] pDst points to the output matrix
1650 * @return The function returns either
1651 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1652 */
1653 arm_status arm_mat_scale_f32(
1654 const arm_matrix_instance_f32 * pSrc,
1655 float32_t scale,
1656 arm_matrix_instance_f32 * pDst);
1657
1658
1659 /**
1660 * @brief Q15 matrix scaling.
1661 * @param[in] pSrc points to input matrix
1662 * @param[in] scaleFract fractional portion of the scale factor
1663 * @param[in] shift number of bits to shift the result by
1664 * @param[out] pDst points to output matrix
1665 * @return The function returns either
1666 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1667 */
1668 arm_status arm_mat_scale_q15(
1669 const arm_matrix_instance_q15 * pSrc,
1670 q15_t scaleFract,
1671 int32_t shift,
1672 arm_matrix_instance_q15 * pDst);
1673
1674
1675 /**
1676 * @brief Q31 matrix scaling.
1677 * @param[in] pSrc points to input matrix
1678 * @param[in] scaleFract fractional portion of the scale factor
1679 * @param[in] shift number of bits to shift the result by
1680 * @param[out] pDst points to output matrix structure
1681 * @return The function returns either
1682 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
1683 */
1684 arm_status arm_mat_scale_q31(
1685 const arm_matrix_instance_q31 * pSrc,
1686 q31_t scaleFract,
1687 int32_t shift,
1688 arm_matrix_instance_q31 * pDst);
1689
1690
1691 /**
1692 * @brief Q31 matrix initialization.
1693 * @param[in,out] S points to an instance of the floating-point matrix structure.
1694 * @param[in] nRows number of rows in the matrix.
1695 * @param[in] nColumns number of columns in the matrix.
1696 * @param[in] pData points to the matrix data array.
1697 */
1698 void arm_mat_init_q31(
1699 arm_matrix_instance_q31 * S,
1700 uint16_t nRows,
1701 uint16_t nColumns,
1702 q31_t * pData);
1703
1704
1705 /**
1706 * @brief Q15 matrix initialization.
1707 * @param[in,out] S points to an instance of the floating-point matrix structure.
1708 * @param[in] nRows number of rows in the matrix.
1709 * @param[in] nColumns number of columns in the matrix.
1710 * @param[in] pData points to the matrix data array.
1711 */
1712 void arm_mat_init_q15(
1713 arm_matrix_instance_q15 * S,
1714 uint16_t nRows,
1715 uint16_t nColumns,
1716 q15_t * pData);
1717
1718
1719 /**
1720 * @brief Floating-point matrix initialization.
1721 * @param[in,out] S points to an instance of the floating-point matrix structure.
1722 * @param[in] nRows number of rows in the matrix.
1723 * @param[in] nColumns number of columns in the matrix.
1724 * @param[in] pData points to the matrix data array.
1725 */
1726 void arm_mat_init_f32(
1727 arm_matrix_instance_f32 * S,
1728 uint16_t nRows,
1729 uint16_t nColumns,
1730 float32_t * pData);
1731
1732
1733
1734 /**
1735 * @brief Instance structure for the Q15 PID Control.
1736 */
1737 typedef struct
1738 {
1739 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
1740 #ifdef ARM_MATH_CM0_FAMILY
1741 q15_t A1;
1742 q15_t A2;
1743 #else
1744 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
1745 #endif
1746 q15_t state[3]; /**< The state array of length 3. */
1747 q15_t Kp; /**< The proportional gain. */
1748 q15_t Ki; /**< The integral gain. */
1749 q15_t Kd; /**< The derivative gain. */
1750 } arm_pid_instance_q15;
1751
1752 /**
1753 * @brief Instance structure for the Q31 PID Control.
1754 */
1755 typedef struct
1756 {
1757 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
1758 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
1759 q31_t A2; /**< The derived gain, A2 = Kd . */
1760 q31_t state[3]; /**< The state array of length 3. */
1761 q31_t Kp; /**< The proportional gain. */
1762 q31_t Ki; /**< The integral gain. */
1763 q31_t Kd; /**< The derivative gain. */
1764 } arm_pid_instance_q31;
1765
1766 /**
1767 * @brief Instance structure for the floating-point PID Control.
1768 */
1769 typedef struct
1770 {
1771 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
1772 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
1773 float32_t A2; /**< The derived gain, A2 = Kd . */
1774 float32_t state[3]; /**< The state array of length 3. */
1775 float32_t Kp; /**< The proportional gain. */
1776 float32_t Ki; /**< The integral gain. */
1777 float32_t Kd; /**< The derivative gain. */
1778 } arm_pid_instance_f32;
1779
1780
1781
1782 /**
1783 * @brief Initialization function for the floating-point PID Control.
1784 * @param[in,out] S points to an instance of the PID structure.
1785 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
1786 */
1787 void arm_pid_init_f32(
1788 arm_pid_instance_f32 * S,
1789 int32_t resetStateFlag);
1790
1791
1792 /**
1793 * @brief Reset function for the floating-point PID Control.
1794 * @param[in,out] S is an instance of the floating-point PID Control structure
1795 */
1796 void arm_pid_reset_f32(
1797 arm_pid_instance_f32 * S);
1798
1799
1800 /**
1801 * @brief Initialization function for the Q31 PID Control.
1802 * @param[in,out] S points to an instance of the Q15 PID structure.
1803 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
1804 */
1805 void arm_pid_init_q31(
1806 arm_pid_instance_q31 * S,
1807 int32_t resetStateFlag);
1808
1809
1810 /**
1811 * @brief Reset function for the Q31 PID Control.
1812 * @param[in,out] S points to an instance of the Q31 PID Control structure
1813 */
1814
1815 void arm_pid_reset_q31(
1816 arm_pid_instance_q31 * S);
1817
1818
1819 /**
1820 * @brief Initialization function for the Q15 PID Control.
1821 * @param[in,out] S points to an instance of the Q15 PID structure.
1822 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
1823 */
1824 void arm_pid_init_q15(
1825 arm_pid_instance_q15 * S,
1826 int32_t resetStateFlag);
1827
1828
1829 /**
1830 * @brief Reset function for the Q15 PID Control.
1831 * @param[in,out] S points to an instance of the q15 PID Control structure
1832 */
1833 void arm_pid_reset_q15(
1834 arm_pid_instance_q15 * S);
1835
1836
1837 /**
1838 * @brief Instance structure for the floating-point Linear Interpolate function.
1839 */
1840 typedef struct
1841 {
1842 uint32_t nValues; /**< nValues */
1843 float32_t x1; /**< x1 */
1844 float32_t xSpacing; /**< xSpacing */
1845 float32_t *pYData; /**< pointer to the table of Y values */
1846 } arm_linear_interp_instance_f32;
1847
1848 /**
1849 * @brief Instance structure for the floating-point bilinear interpolation function.
1850 */
1851 typedef struct
1852 {
1853 uint16_t numRows; /**< number of rows in the data table. */
1854 uint16_t numCols; /**< number of columns in the data table. */
1855 float32_t *pData; /**< points to the data table. */
1856 } arm_bilinear_interp_instance_f32;
1857
1858 /**
1859 * @brief Instance structure for the Q31 bilinear interpolation function.
1860 */
1861 typedef struct
1862 {
1863 uint16_t numRows; /**< number of rows in the data table. */
1864 uint16_t numCols; /**< number of columns in the data table. */
1865 q31_t *pData; /**< points to the data table. */
1866 } arm_bilinear_interp_instance_q31;
1867
1868 /**
1869 * @brief Instance structure for the Q15 bilinear interpolation function.
1870 */
1871 typedef struct
1872 {
1873 uint16_t numRows; /**< number of rows in the data table. */
1874 uint16_t numCols; /**< number of columns in the data table. */
1875 q15_t *pData; /**< points to the data table. */
1876 } arm_bilinear_interp_instance_q15;
1877
1878 /**
1879 * @brief Instance structure for the Q15 bilinear interpolation function.
1880 */
1881 typedef struct
1882 {
1883 uint16_t numRows; /**< number of rows in the data table. */
1884 uint16_t numCols; /**< number of columns in the data table. */
1885 q7_t *pData; /**< points to the data table. */
1886 } arm_bilinear_interp_instance_q7;
1887
1888
1889 /**
1890 * @brief Q7 vector multiplication.
1891 * @param[in] pSrcA points to the first input vector
1892 * @param[in] pSrcB points to the second input vector
1893 * @param[out] pDst points to the output vector
1894 * @param[in] blockSize number of samples in each vector
1895 */
1896 void arm_mult_q7(
1897 q7_t * pSrcA,
1898 q7_t * pSrcB,
1899 q7_t * pDst,
1900 uint32_t blockSize);
1901
1902
1903 /**
1904 * @brief Q15 vector multiplication.
1905 * @param[in] pSrcA points to the first input vector
1906 * @param[in] pSrcB points to the second input vector
1907 * @param[out] pDst points to the output vector
1908 * @param[in] blockSize number of samples in each vector
1909 */
1910 void arm_mult_q15(
1911 q15_t * pSrcA,
1912 q15_t * pSrcB,
1913 q15_t * pDst,
1914 uint32_t blockSize);
1915
1916
1917 /**
1918 * @brief Q31 vector multiplication.
1919 * @param[in] pSrcA points to the first input vector
1920 * @param[in] pSrcB points to the second input vector
1921 * @param[out] pDst points to the output vector
1922 * @param[in] blockSize number of samples in each vector
1923 */
1924 void arm_mult_q31(
1925 q31_t * pSrcA,
1926 q31_t * pSrcB,
1927 q31_t * pDst,
1928 uint32_t blockSize);
1929
1930
1931 /**
1932 * @brief Floating-point vector multiplication.
1933 * @param[in] pSrcA points to the first input vector
1934 * @param[in] pSrcB points to the second input vector
1935 * @param[out] pDst points to the output vector
1936 * @param[in] blockSize number of samples in each vector
1937 */
1938 void arm_mult_f32(
1939 float32_t * pSrcA,
1940 float32_t * pSrcB,
1941 float32_t * pDst,
1942 uint32_t blockSize);
1943
1944
1945 /**
1946 * @brief Instance structure for the Q15 CFFT/CIFFT function.
1947 */
1948 typedef struct
1949 {
1950 uint16_t fftLen; /**< length of the FFT. */
1951 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
1952 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
1953 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
1954 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
1955 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
1956 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
1957 } arm_cfft_radix2_instance_q15;
1958
1959 /* Deprecated */
1960 arm_status arm_cfft_radix2_init_q15(
1961 arm_cfft_radix2_instance_q15 * S,
1962 uint16_t fftLen,
1963 uint8_t ifftFlag,
1964 uint8_t bitReverseFlag);
1965
1966 /* Deprecated */
1967 void arm_cfft_radix2_q15(
1968 const arm_cfft_radix2_instance_q15 * S,
1969 q15_t * pSrc);
1970
1971
1972 /**
1973 * @brief Instance structure for the Q15 CFFT/CIFFT function.
1974 */
1975 typedef struct
1976 {
1977 uint16_t fftLen; /**< length of the FFT. */
1978 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
1979 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
1980 q15_t *pTwiddle; /**< points to the twiddle factor table. */
1981 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
1982 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
1983 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
1984 } arm_cfft_radix4_instance_q15;
1985
1986 /* Deprecated */
1987 arm_status arm_cfft_radix4_init_q15(
1988 arm_cfft_radix4_instance_q15 * S,
1989 uint16_t fftLen,
1990 uint8_t ifftFlag,
1991 uint8_t bitReverseFlag);
1992
1993 /* Deprecated */
1994 void arm_cfft_radix4_q15(
1995 const arm_cfft_radix4_instance_q15 * S,
1996 q15_t * pSrc);
1997
1998 /**
1999 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
2000 */
2001 typedef struct
2002 {
2003 uint16_t fftLen; /**< length of the FFT. */
2004 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2005 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2006 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
2007 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2008 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2009 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2010 } arm_cfft_radix2_instance_q31;
2011
2012 /* Deprecated */
2013 arm_status arm_cfft_radix2_init_q31(
2014 arm_cfft_radix2_instance_q31 * S,
2015 uint16_t fftLen,
2016 uint8_t ifftFlag,
2017 uint8_t bitReverseFlag);
2018
2019 /* Deprecated */
2020 void arm_cfft_radix2_q31(
2021 const arm_cfft_radix2_instance_q31 * S,
2022 q31_t * pSrc);
2023
2024 /**
2025 * @brief Instance structure for the Q31 CFFT/CIFFT function.
2026 */
2027 typedef struct
2028 {
2029 uint16_t fftLen; /**< length of the FFT. */
2030 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2031 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2032 q31_t *pTwiddle; /**< points to the twiddle factor table. */
2033 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2034 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2035 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2036 } arm_cfft_radix4_instance_q31;
2037
2038 /* Deprecated */
2039 void arm_cfft_radix4_q31(
2040 const arm_cfft_radix4_instance_q31 * S,
2041 q31_t * pSrc);
2042
2043 /* Deprecated */
2044 arm_status arm_cfft_radix4_init_q31(
2045 arm_cfft_radix4_instance_q31 * S,
2046 uint16_t fftLen,
2047 uint8_t ifftFlag,
2048 uint8_t bitReverseFlag);
2049
2050 /**
2051 * @brief Instance structure for the floating-point CFFT/CIFFT function.
2052 */
2053 typedef struct
2054 {
2055 uint16_t fftLen; /**< length of the FFT. */
2056 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2057 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2058 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
2059 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2060 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2061 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2062 float32_t onebyfftLen; /**< value of 1/fftLen. */
2063 } arm_cfft_radix2_instance_f32;
2064
2065 /* Deprecated */
2066 arm_status arm_cfft_radix2_init_f32(
2067 arm_cfft_radix2_instance_f32 * S,
2068 uint16_t fftLen,
2069 uint8_t ifftFlag,
2070 uint8_t bitReverseFlag);
2071
2072 /* Deprecated */
2073 void arm_cfft_radix2_f32(
2074 const arm_cfft_radix2_instance_f32 * S,
2075 float32_t * pSrc);
2076
2077 /**
2078 * @brief Instance structure for the floating-point CFFT/CIFFT function.
2079 */
2080 typedef struct
2081 {
2082 uint16_t fftLen; /**< length of the FFT. */
2083 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
2084 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
2085 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
2086 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2087 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2088 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
2089 float32_t onebyfftLen; /**< value of 1/fftLen. */
2090 } arm_cfft_radix4_instance_f32;
2091
2092 /* Deprecated */
2093 arm_status arm_cfft_radix4_init_f32(
2094 arm_cfft_radix4_instance_f32 * S,
2095 uint16_t fftLen,
2096 uint8_t ifftFlag,
2097 uint8_t bitReverseFlag);
2098
2099 /* Deprecated */
2100 void arm_cfft_radix4_f32(
2101 const arm_cfft_radix4_instance_f32 * S,
2102 float32_t * pSrc);
2103
2104 /**
2105 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
2106 */
2107 typedef struct
2108 {
2109 uint16_t fftLen; /**< length of the FFT. */
2110 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
2111 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2112 uint16_t bitRevLength; /**< bit reversal table length. */
2113 } arm_cfft_instance_q15;
2114
2115 void arm_cfft_q15(
2116 const arm_cfft_instance_q15 * S,
2117 q15_t * p1,
2118 uint8_t ifftFlag,
2119 uint8_t bitReverseFlag);
2120
2121 /**
2122 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
2123 */
2124 typedef struct
2125 {
2126 uint16_t fftLen; /**< length of the FFT. */
2127 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
2128 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2129 uint16_t bitRevLength; /**< bit reversal table length. */
2130 } arm_cfft_instance_q31;
2131
2132 void arm_cfft_q31(
2133 const arm_cfft_instance_q31 * S,
2134 q31_t * p1,
2135 uint8_t ifftFlag,
2136 uint8_t bitReverseFlag);
2137
2138 /**
2139 * @brief Instance structure for the floating-point CFFT/CIFFT function.
2140 */
2141 typedef struct
2142 {
2143 uint16_t fftLen; /**< length of the FFT. */
2144 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
2145 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
2146 uint16_t bitRevLength; /**< bit reversal table length. */
2147 } arm_cfft_instance_f32;
2148
2149 void arm_cfft_f32(
2150 const arm_cfft_instance_f32 * S,
2151 float32_t * p1,
2152 uint8_t ifftFlag,
2153 uint8_t bitReverseFlag);
2154
2155 /**
2156 * @brief Instance structure for the Q15 RFFT/RIFFT function.
2157 */
2158 typedef struct
2159 {
2160 uint32_t fftLenReal; /**< length of the real FFT. */
2161 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2162 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2163 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2164 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
2165 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
2166 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
2167 } arm_rfft_instance_q15;
2168
2169 arm_status arm_rfft_init_q15(
2170 arm_rfft_instance_q15 * S,
2171 uint32_t fftLenReal,
2172 uint32_t ifftFlagR,
2173 uint32_t bitReverseFlag);
2174
2175 void arm_rfft_q15(
2176 const arm_rfft_instance_q15 * S,
2177 q15_t * pSrc,
2178 q15_t * pDst);
2179
2180 /**
2181 * @brief Instance structure for the Q31 RFFT/RIFFT function.
2182 */
2183 typedef struct
2184 {
2185 uint32_t fftLenReal; /**< length of the real FFT. */
2186 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2187 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2188 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2189 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
2190 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
2191 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
2192 } arm_rfft_instance_q31;
2193
2194 arm_status arm_rfft_init_q31(
2195 arm_rfft_instance_q31 * S,
2196 uint32_t fftLenReal,
2197 uint32_t ifftFlagR,
2198 uint32_t bitReverseFlag);
2199
2200 void arm_rfft_q31(
2201 const arm_rfft_instance_q31 * S,
2202 q31_t * pSrc,
2203 q31_t * pDst);
2204
2205 /**
2206 * @brief Instance structure for the floating-point RFFT/RIFFT function.
2207 */
2208 typedef struct
2209 {
2210 uint32_t fftLenReal; /**< length of the real FFT. */
2211 uint16_t fftLenBy2; /**< length of the complex FFT. */
2212 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
2213 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
2214 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
2215 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
2216 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
2217 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
2218 } arm_rfft_instance_f32;
2219
2220 arm_status arm_rfft_init_f32(
2221 arm_rfft_instance_f32 * S,
2222 arm_cfft_radix4_instance_f32 * S_CFFT,
2223 uint32_t fftLenReal,
2224 uint32_t ifftFlagR,
2225 uint32_t bitReverseFlag);
2226
2227 void arm_rfft_f32(
2228 const arm_rfft_instance_f32 * S,
2229 float32_t * pSrc,
2230 float32_t * pDst);
2231
2232 /**
2233 * @brief Instance structure for the floating-point RFFT/RIFFT function.
2234 */
2235 typedef struct
2236 {
2237 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
2238 uint16_t fftLenRFFT; /**< length of the real sequence */
2239 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
2240 } arm_rfft_fast_instance_f32 ;
2241
2242 arm_status arm_rfft_fast_init_f32 (
2243 arm_rfft_fast_instance_f32 * S,
2244 uint16_t fftLen);
2245
2246 void arm_rfft_fast_f32(
2247 arm_rfft_fast_instance_f32 * S,
2248 float32_t * p, float32_t * pOut,
2249 uint8_t ifftFlag);
2250
2251 /**
2252 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
2253 */
2254 typedef struct
2255 {
2256 uint16_t N; /**< length of the DCT4. */
2257 uint16_t Nby2; /**< half of the length of the DCT4. */
2258 float32_t normalize; /**< normalizing factor. */
2259 float32_t *pTwiddle; /**< points to the twiddle factor table. */
2260 float32_t *pCosFactor; /**< points to the cosFactor table. */
2261 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
2262 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
2263 } arm_dct4_instance_f32;
2264
2265
2266 /**
2267 * @brief Initialization function for the floating-point DCT4/IDCT4.
2268 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
2269 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
2270 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
2271 * @param[in] N length of the DCT4.
2272 * @param[in] Nby2 half of the length of the DCT4.
2273 * @param[in] normalize normalizing factor.
2274 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
2275 */
2276 arm_status arm_dct4_init_f32(
2277 arm_dct4_instance_f32 * S,
2278 arm_rfft_instance_f32 * S_RFFT,
2279 arm_cfft_radix4_instance_f32 * S_CFFT,
2280 uint16_t N,
2281 uint16_t Nby2,
2282 float32_t normalize);
2283
2284
2285 /**
2286 * @brief Processing function for the floating-point DCT4/IDCT4.
2287 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
2288 * @param[in] pState points to state buffer.
2289 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
2290 */
2291 void arm_dct4_f32(
2292 const arm_dct4_instance_f32 * S,
2293 float32_t * pState,
2294 float32_t * pInlineBuffer);
2295
2296
2297 /**
2298 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
2299 */
2300 typedef struct
2301 {
2302 uint16_t N; /**< length of the DCT4. */
2303 uint16_t Nby2; /**< half of the length of the DCT4. */
2304 q31_t normalize; /**< normalizing factor. */
2305 q31_t *pTwiddle; /**< points to the twiddle factor table. */
2306 q31_t *pCosFactor; /**< points to the cosFactor table. */
2307 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
2308 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
2309 } arm_dct4_instance_q31;
2310
2311
2312 /**
2313 * @brief Initialization function for the Q31 DCT4/IDCT4.
2314 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
2315 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
2316 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
2317 * @param[in] N length of the DCT4.
2318 * @param[in] Nby2 half of the length of the DCT4.
2319 * @param[in] normalize normalizing factor.
2320 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
2321 */
2322 arm_status arm_dct4_init_q31(
2323 arm_dct4_instance_q31 * S,
2324 arm_rfft_instance_q31 * S_RFFT,
2325 arm_cfft_radix4_instance_q31 * S_CFFT,
2326 uint16_t N,
2327 uint16_t Nby2,
2328 q31_t normalize);
2329
2330
2331 /**
2332 * @brief Processing function for the Q31 DCT4/IDCT4.
2333 * @param[in] S points to an instance of the Q31 DCT4 structure.
2334 * @param[in] pState points to state buffer.
2335 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
2336 */
2337 void arm_dct4_q31(
2338 const arm_dct4_instance_q31 * S,
2339 q31_t * pState,
2340 q31_t * pInlineBuffer);
2341
2342
2343 /**
2344 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
2345 */
2346 typedef struct
2347 {
2348 uint16_t N; /**< length of the DCT4. */
2349 uint16_t Nby2; /**< half of the length of the DCT4. */
2350 q15_t normalize; /**< normalizing factor. */
2351 q15_t *pTwiddle; /**< points to the twiddle factor table. */
2352 q15_t *pCosFactor; /**< points to the cosFactor table. */
2353 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
2354 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
2355 } arm_dct4_instance_q15;
2356
2357
2358 /**
2359 * @brief Initialization function for the Q15 DCT4/IDCT4.
2360 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
2361 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
2362 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
2363 * @param[in] N length of the DCT4.
2364 * @param[in] Nby2 half of the length of the DCT4.
2365 * @param[in] normalize normalizing factor.
2366 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
2367 */
2368 arm_status arm_dct4_init_q15(
2369 arm_dct4_instance_q15 * S,
2370 arm_rfft_instance_q15 * S_RFFT,
2371 arm_cfft_radix4_instance_q15 * S_CFFT,
2372 uint16_t N,
2373 uint16_t Nby2,
2374 q15_t normalize);
2375
2376
2377 /**
2378 * @brief Processing function for the Q15 DCT4/IDCT4.
2379 * @param[in] S points to an instance of the Q15 DCT4 structure.
2380 * @param[in] pState points to state buffer.
2381 * @param[in,out] pInlineBuffer points to the in-place input and output buffer.
2382 */
2383 void arm_dct4_q15(
2384 const arm_dct4_instance_q15 * S,
2385 q15_t * pState,
2386 q15_t * pInlineBuffer);
2387
2388
2389 /**
2390 * @brief Floating-point vector addition.
2391 * @param[in] pSrcA points to the first input vector
2392 * @param[in] pSrcB points to the second input vector
2393 * @param[out] pDst points to the output vector
2394 * @param[in] blockSize number of samples in each vector
2395 */
2396 void arm_add_f32(
2397 float32_t * pSrcA,
2398 float32_t * pSrcB,
2399 float32_t * pDst,
2400 uint32_t blockSize);
2401
2402
2403 /**
2404 * @brief Q7 vector addition.
2405 * @param[in] pSrcA points to the first input vector
2406 * @param[in] pSrcB points to the second input vector
2407 * @param[out] pDst points to the output vector
2408 * @param[in] blockSize number of samples in each vector
2409 */
2410 void arm_add_q7(
2411 q7_t * pSrcA,
2412 q7_t * pSrcB,
2413 q7_t * pDst,
2414 uint32_t blockSize);
2415
2416
2417 /**
2418 * @brief Q15 vector addition.
2419 * @param[in] pSrcA points to the first input vector
2420 * @param[in] pSrcB points to the second input vector
2421 * @param[out] pDst points to the output vector
2422 * @param[in] blockSize number of samples in each vector
2423 */
2424 void arm_add_q15(
2425 q15_t * pSrcA,
2426 q15_t * pSrcB,
2427 q15_t * pDst,
2428 uint32_t blockSize);
2429
2430
2431 /**
2432 * @brief Q31 vector addition.
2433 * @param[in] pSrcA points to the first input vector
2434 * @param[in] pSrcB points to the second input vector
2435 * @param[out] pDst points to the output vector
2436 * @param[in] blockSize number of samples in each vector
2437 */
2438 void arm_add_q31(
2439 q31_t * pSrcA,
2440 q31_t * pSrcB,
2441 q31_t * pDst,
2442 uint32_t blockSize);
2443
2444
2445 /**
2446 * @brief Floating-point vector subtraction.
2447 * @param[in] pSrcA points to the first input vector
2448 * @param[in] pSrcB points to the second input vector
2449 * @param[out] pDst points to the output vector
2450 * @param[in] blockSize number of samples in each vector
2451 */
2452 void arm_sub_f32(
2453 float32_t * pSrcA,
2454 float32_t * pSrcB,
2455 float32_t * pDst,
2456 uint32_t blockSize);
2457
2458
2459 /**
2460 * @brief Q7 vector subtraction.
2461 * @param[in] pSrcA points to the first input vector
2462 * @param[in] pSrcB points to the second input vector
2463 * @param[out] pDst points to the output vector
2464 * @param[in] blockSize number of samples in each vector
2465 */
2466 void arm_sub_q7(
2467 q7_t * pSrcA,
2468 q7_t * pSrcB,
2469 q7_t * pDst,
2470 uint32_t blockSize);
2471
2472
2473 /**
2474 * @brief Q15 vector subtraction.
2475 * @param[in] pSrcA points to the first input vector
2476 * @param[in] pSrcB points to the second input vector
2477 * @param[out] pDst points to the output vector
2478 * @param[in] blockSize number of samples in each vector
2479 */
2480 void arm_sub_q15(
2481 q15_t * pSrcA,
2482 q15_t * pSrcB,
2483 q15_t * pDst,
2484 uint32_t blockSize);
2485
2486
2487 /**
2488 * @brief Q31 vector subtraction.
2489 * @param[in] pSrcA points to the first input vector
2490 * @param[in] pSrcB points to the second input vector
2491 * @param[out] pDst points to the output vector
2492 * @param[in] blockSize number of samples in each vector
2493 */
2494 void arm_sub_q31(
2495 q31_t * pSrcA,
2496 q31_t * pSrcB,
2497 q31_t * pDst,
2498 uint32_t blockSize);
2499
2500
2501 /**
2502 * @brief Multiplies a floating-point vector by a scalar.
2503 * @param[in] pSrc points to the input vector
2504 * @param[in] scale scale factor to be applied
2505 * @param[out] pDst points to the output vector
2506 * @param[in] blockSize number of samples in the vector
2507 */
2508 void arm_scale_f32(
2509 float32_t * pSrc,
2510 float32_t scale,
2511 float32_t * pDst,
2512 uint32_t blockSize);
2513
2514
2515 /**
2516 * @brief Multiplies a Q7 vector by a scalar.
2517 * @param[in] pSrc points to the input vector
2518 * @param[in] scaleFract fractional portion of the scale value
2519 * @param[in] shift number of bits to shift the result by
2520 * @param[out] pDst points to the output vector
2521 * @param[in] blockSize number of samples in the vector
2522 */
2523 void arm_scale_q7(
2524 q7_t * pSrc,
2525 q7_t scaleFract,
2526 int8_t shift,
2527 q7_t * pDst,
2528 uint32_t blockSize);
2529
2530
2531 /**
2532 * @brief Multiplies a Q15 vector by a scalar.
2533 * @param[in] pSrc points to the input vector
2534 * @param[in] scaleFract fractional portion of the scale value
2535 * @param[in] shift number of bits to shift the result by
2536 * @param[out] pDst points to the output vector
2537 * @param[in] blockSize number of samples in the vector
2538 */
2539 void arm_scale_q15(
2540 q15_t * pSrc,
2541 q15_t scaleFract,
2542 int8_t shift,
2543 q15_t * pDst,
2544 uint32_t blockSize);
2545
2546
2547 /**
2548 * @brief Multiplies a Q31 vector by a scalar.
2549 * @param[in] pSrc points to the input vector
2550 * @param[in] scaleFract fractional portion of the scale value
2551 * @param[in] shift number of bits to shift the result by
2552 * @param[out] pDst points to the output vector
2553 * @param[in] blockSize number of samples in the vector
2554 */
2555 void arm_scale_q31(
2556 q31_t * pSrc,
2557 q31_t scaleFract,
2558 int8_t shift,
2559 q31_t * pDst,
2560 uint32_t blockSize);
2561
2562
2563 /**
2564 * @brief Q7 vector absolute value.
2565 * @param[in] pSrc points to the input buffer
2566 * @param[out] pDst points to the output buffer
2567 * @param[in] blockSize number of samples in each vector
2568 */
2569 void arm_abs_q7(
2570 q7_t * pSrc,
2571 q7_t * pDst,
2572 uint32_t blockSize);
2573
2574
2575 /**
2576 * @brief Floating-point vector absolute value.
2577 * @param[in] pSrc points to the input buffer
2578 * @param[out] pDst points to the output buffer
2579 * @param[in] blockSize number of samples in each vector
2580 */
2581 void arm_abs_f32(
2582 float32_t * pSrc,
2583 float32_t * pDst,
2584 uint32_t blockSize);
2585
2586
2587 /**
2588 * @brief Q15 vector absolute value.
2589 * @param[in] pSrc points to the input buffer
2590 * @param[out] pDst points to the output buffer
2591 * @param[in] blockSize number of samples in each vector
2592 */
2593 void arm_abs_q15(
2594 q15_t * pSrc,
2595 q15_t * pDst,
2596 uint32_t blockSize);
2597
2598
2599 /**
2600 * @brief Q31 vector absolute value.
2601 * @param[in] pSrc points to the input buffer
2602 * @param[out] pDst points to the output buffer
2603 * @param[in] blockSize number of samples in each vector
2604 */
2605 void arm_abs_q31(
2606 q31_t * pSrc,
2607 q31_t * pDst,
2608 uint32_t blockSize);
2609
2610
2611 /**
2612 * @brief Dot product of floating-point vectors.
2613 * @param[in] pSrcA points to the first input vector
2614 * @param[in] pSrcB points to the second input vector
2615 * @param[in] blockSize number of samples in each vector
2616 * @param[out] result output result returned here
2617 */
2618 void arm_dot_prod_f32(
2619 float32_t * pSrcA,
2620 float32_t * pSrcB,
2621 uint32_t blockSize,
2622 float32_t * result);
2623
2624
2625 /**
2626 * @brief Dot product of Q7 vectors.
2627 * @param[in] pSrcA points to the first input vector
2628 * @param[in] pSrcB points to the second input vector
2629 * @param[in] blockSize number of samples in each vector
2630 * @param[out] result output result returned here
2631 */
2632 void arm_dot_prod_q7(
2633 q7_t * pSrcA,
2634 q7_t * pSrcB,
2635 uint32_t blockSize,
2636 q31_t * result);
2637
2638
2639 /**
2640 * @brief Dot product of Q15 vectors.
2641 * @param[in] pSrcA points to the first input vector
2642 * @param[in] pSrcB points to the second input vector
2643 * @param[in] blockSize number of samples in each vector
2644 * @param[out] result output result returned here
2645 */
2646 void arm_dot_prod_q15(
2647 q15_t * pSrcA,
2648 q15_t * pSrcB,
2649 uint32_t blockSize,
2650 q63_t * result);
2651
2652
2653 /**
2654 * @brief Dot product of Q31 vectors.
2655 * @param[in] pSrcA points to the first input vector
2656 * @param[in] pSrcB points to the second input vector
2657 * @param[in] blockSize number of samples in each vector
2658 * @param[out] result output result returned here
2659 */
2660 void arm_dot_prod_q31(
2661 q31_t * pSrcA,
2662 q31_t * pSrcB,
2663 uint32_t blockSize,
2664 q63_t * result);
2665
2666
2667 /**
2668 * @brief Shifts the elements of a Q7 vector a specified number of bits.
2669 * @param[in] pSrc points to the input vector
2670 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
2671 * @param[out] pDst points to the output vector
2672 * @param[in] blockSize number of samples in the vector
2673 */
2674 void arm_shift_q7(
2675 q7_t * pSrc,
2676 int8_t shiftBits,
2677 q7_t * pDst,
2678 uint32_t blockSize);
2679
2680
2681 /**
2682 * @brief Shifts the elements of a Q15 vector a specified number of bits.
2683 * @param[in] pSrc points to the input vector
2684 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
2685 * @param[out] pDst points to the output vector
2686 * @param[in] blockSize number of samples in the vector
2687 */
2688 void arm_shift_q15(
2689 q15_t * pSrc,
2690 int8_t shiftBits,
2691 q15_t * pDst,
2692 uint32_t blockSize);
2693
2694
2695 /**
2696 * @brief Shifts the elements of a Q31 vector a specified number of bits.
2697 * @param[in] pSrc points to the input vector
2698 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
2699 * @param[out] pDst points to the output vector
2700 * @param[in] blockSize number of samples in the vector
2701 */
2702 void arm_shift_q31(
2703 q31_t * pSrc,
2704 int8_t shiftBits,
2705 q31_t * pDst,
2706 uint32_t blockSize);
2707
2708
2709 /**
2710 * @brief Adds a constant offset to a floating-point vector.
2711 * @param[in] pSrc points to the input vector
2712 * @param[in] offset is the offset to be added
2713 * @param[out] pDst points to the output vector
2714 * @param[in] blockSize number of samples in the vector
2715 */
2716 void arm_offset_f32(
2717 float32_t * pSrc,
2718 float32_t offset,
2719 float32_t * pDst,
2720 uint32_t blockSize);
2721
2722
2723 /**
2724 * @brief Adds a constant offset to a Q7 vector.
2725 * @param[in] pSrc points to the input vector
2726 * @param[in] offset is the offset to be added
2727 * @param[out] pDst points to the output vector
2728 * @param[in] blockSize number of samples in the vector
2729 */
2730 void arm_offset_q7(
2731 q7_t * pSrc,
2732 q7_t offset,
2733 q7_t * pDst,
2734 uint32_t blockSize);
2735
2736
2737 /**
2738 * @brief Adds a constant offset to a Q15 vector.
2739 * @param[in] pSrc points to the input vector
2740 * @param[in] offset is the offset to be added
2741 * @param[out] pDst points to the output vector
2742 * @param[in] blockSize number of samples in the vector
2743 */
2744 void arm_offset_q15(
2745 q15_t * pSrc,
2746 q15_t offset,
2747 q15_t * pDst,
2748 uint32_t blockSize);
2749
2750
2751 /**
2752 * @brief Adds a constant offset to a Q31 vector.
2753 * @param[in] pSrc points to the input vector
2754 * @param[in] offset is the offset to be added
2755 * @param[out] pDst points to the output vector
2756 * @param[in] blockSize number of samples in the vector
2757 */
2758 void arm_offset_q31(
2759 q31_t * pSrc,
2760 q31_t offset,
2761 q31_t * pDst,
2762 uint32_t blockSize);
2763
2764
2765 /**
2766 * @brief Negates the elements of a floating-point vector.
2767 * @param[in] pSrc points to the input vector
2768 * @param[out] pDst points to the output vector
2769 * @param[in] blockSize number of samples in the vector
2770 */
2771 void arm_negate_f32(
2772 float32_t * pSrc,
2773 float32_t * pDst,
2774 uint32_t blockSize);
2775
2776
2777 /**
2778 * @brief Negates the elements of a Q7 vector.
2779 * @param[in] pSrc points to the input vector
2780 * @param[out] pDst points to the output vector
2781 * @param[in] blockSize number of samples in the vector
2782 */
2783 void arm_negate_q7(
2784 q7_t * pSrc,
2785 q7_t * pDst,
2786 uint32_t blockSize);
2787
2788
2789 /**
2790 * @brief Negates the elements of a Q15 vector.
2791 * @param[in] pSrc points to the input vector
2792 * @param[out] pDst points to the output vector
2793 * @param[in] blockSize number of samples in the vector
2794 */
2795 void arm_negate_q15(
2796 q15_t * pSrc,
2797 q15_t * pDst,
2798 uint32_t blockSize);
2799
2800
2801 /**
2802 * @brief Negates the elements of a Q31 vector.
2803 * @param[in] pSrc points to the input vector
2804 * @param[out] pDst points to the output vector
2805 * @param[in] blockSize number of samples in the vector
2806 */
2807 void arm_negate_q31(
2808 q31_t * pSrc,
2809 q31_t * pDst,
2810 uint32_t blockSize);
2811
2812
2813 /**
2814 * @brief Copies the elements of a floating-point vector.
2815 * @param[in] pSrc input pointer
2816 * @param[out] pDst output pointer
2817 * @param[in] blockSize number of samples to process
2818 */
2819 void arm_copy_f32(
2820 float32_t * pSrc,
2821 float32_t * pDst,
2822 uint32_t blockSize);
2823
2824
2825 /**
2826 * @brief Copies the elements of a Q7 vector.
2827 * @param[in] pSrc input pointer
2828 * @param[out] pDst output pointer
2829 * @param[in] blockSize number of samples to process
2830 */
2831 void arm_copy_q7(
2832 q7_t * pSrc,
2833 q7_t * pDst,
2834 uint32_t blockSize);
2835
2836
2837 /**
2838 * @brief Copies the elements of a Q15 vector.
2839 * @param[in] pSrc input pointer
2840 * @param[out] pDst output pointer
2841 * @param[in] blockSize number of samples to process
2842 */
2843 void arm_copy_q15(
2844 q15_t * pSrc,
2845 q15_t * pDst,
2846 uint32_t blockSize);
2847
2848
2849 /**
2850 * @brief Copies the elements of a Q31 vector.
2851 * @param[in] pSrc input pointer
2852 * @param[out] pDst output pointer
2853 * @param[in] blockSize number of samples to process
2854 */
2855 void arm_copy_q31(
2856 q31_t * pSrc,
2857 q31_t * pDst,
2858 uint32_t blockSize);
2859
2860
2861 /**
2862 * @brief Fills a constant value into a floating-point vector.
2863 * @param[in] value input value to be filled
2864 * @param[out] pDst output pointer
2865 * @param[in] blockSize number of samples to process
2866 */
2867 void arm_fill_f32(
2868 float32_t value,
2869 float32_t * pDst,
2870 uint32_t blockSize);
2871
2872
2873 /**
2874 * @brief Fills a constant value into a Q7 vector.
2875 * @param[in] value input value to be filled
2876 * @param[out] pDst output pointer
2877 * @param[in] blockSize number of samples to process
2878 */
2879 void arm_fill_q7(
2880 q7_t value,
2881 q7_t * pDst,
2882 uint32_t blockSize);
2883
2884
2885 /**
2886 * @brief Fills a constant value into a Q15 vector.
2887 * @param[in] value input value to be filled
2888 * @param[out] pDst output pointer
2889 * @param[in] blockSize number of samples to process
2890 */
2891 void arm_fill_q15(
2892 q15_t value,
2893 q15_t * pDst,
2894 uint32_t blockSize);
2895
2896
2897 /**
2898 * @brief Fills a constant value into a Q31 vector.
2899 * @param[in] value input value to be filled
2900 * @param[out] pDst output pointer
2901 * @param[in] blockSize number of samples to process
2902 */
2903 void arm_fill_q31(
2904 q31_t value,
2905 q31_t * pDst,
2906 uint32_t blockSize);
2907
2908
2909 /**
2910 * @brief Convolution of floating-point sequences.
2911 * @param[in] pSrcA points to the first input sequence.
2912 * @param[in] srcALen length of the first input sequence.
2913 * @param[in] pSrcB points to the second input sequence.
2914 * @param[in] srcBLen length of the second input sequence.
2915 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
2916 */
2917 void arm_conv_f32(
2918 float32_t * pSrcA,
2919 uint32_t srcALen,
2920 float32_t * pSrcB,
2921 uint32_t srcBLen,
2922 float32_t * pDst);
2923
2924
2925 /**
2926 * @brief Convolution of Q15 sequences.
2927 * @param[in] pSrcA points to the first input sequence.
2928 * @param[in] srcALen length of the first input sequence.
2929 * @param[in] pSrcB points to the second input sequence.
2930 * @param[in] srcBLen length of the second input sequence.
2931 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
2932 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
2933 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
2934 */
2935 void arm_conv_opt_q15(
2936 q15_t * pSrcA,
2937 uint32_t srcALen,
2938 q15_t * pSrcB,
2939 uint32_t srcBLen,
2940 q15_t * pDst,
2941 q15_t * pScratch1,
2942 q15_t * pScratch2);
2943
2944
2945 /**
2946 * @brief Convolution of Q15 sequences.
2947 * @param[in] pSrcA points to the first input sequence.
2948 * @param[in] srcALen length of the first input sequence.
2949 * @param[in] pSrcB points to the second input sequence.
2950 * @param[in] srcBLen length of the second input sequence.
2951 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
2952 */
2953 void arm_conv_q15(
2954 q15_t * pSrcA,
2955 uint32_t srcALen,
2956 q15_t * pSrcB,
2957 uint32_t srcBLen,
2958 q15_t * pDst);
2959
2960
2961 /**
2962 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
2963 * @param[in] pSrcA points to the first input sequence.
2964 * @param[in] srcALen length of the first input sequence.
2965 * @param[in] pSrcB points to the second input sequence.
2966 * @param[in] srcBLen length of the second input sequence.
2967 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
2968 */
2969 void arm_conv_fast_q15(
2970 q15_t * pSrcA,
2971 uint32_t srcALen,
2972 q15_t * pSrcB,
2973 uint32_t srcBLen,
2974 q15_t * pDst);
2975
2976
2977 /**
2978 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
2979 * @param[in] pSrcA points to the first input sequence.
2980 * @param[in] srcALen length of the first input sequence.
2981 * @param[in] pSrcB points to the second input sequence.
2982 * @param[in] srcBLen length of the second input sequence.
2983 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
2984 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
2985 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
2986 */
2987 void arm_conv_fast_opt_q15(
2988 q15_t * pSrcA,
2989 uint32_t srcALen,
2990 q15_t * pSrcB,
2991 uint32_t srcBLen,
2992 q15_t * pDst,
2993 q15_t * pScratch1,
2994 q15_t * pScratch2);
2995
2996
2997 /**
2998 * @brief Convolution of Q31 sequences.
2999 * @param[in] pSrcA points to the first input sequence.
3000 * @param[in] srcALen length of the first input sequence.
3001 * @param[in] pSrcB points to the second input sequence.
3002 * @param[in] srcBLen length of the second input sequence.
3003 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
3004 */
3005 void arm_conv_q31(
3006 q31_t * pSrcA,
3007 uint32_t srcALen,
3008 q31_t * pSrcB,
3009 uint32_t srcBLen,
3010 q31_t * pDst);
3011
3012
3013 /**
3014 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
3015 * @param[in] pSrcA points to the first input sequence.
3016 * @param[in] srcALen length of the first input sequence.
3017 * @param[in] pSrcB points to the second input sequence.
3018 * @param[in] srcBLen length of the second input sequence.
3019 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
3020 */
3021 void arm_conv_fast_q31(
3022 q31_t * pSrcA,
3023 uint32_t srcALen,
3024 q31_t * pSrcB,
3025 uint32_t srcBLen,
3026 q31_t * pDst);
3027
3028
3029 /**
3030 * @brief Convolution of Q7 sequences.
3031 * @param[in] pSrcA points to the first input sequence.
3032 * @param[in] srcALen length of the first input sequence.
3033 * @param[in] pSrcB points to the second input sequence.
3034 * @param[in] srcBLen length of the second input sequence.
3035 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
3036 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3037 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
3038 */
3039 void arm_conv_opt_q7(
3040 q7_t * pSrcA,
3041 uint32_t srcALen,
3042 q7_t * pSrcB,
3043 uint32_t srcBLen,
3044 q7_t * pDst,
3045 q15_t * pScratch1,
3046 q15_t * pScratch2);
3047
3048
3049 /**
3050 * @brief Convolution of Q7 sequences.
3051 * @param[in] pSrcA points to the first input sequence.
3052 * @param[in] srcALen length of the first input sequence.
3053 * @param[in] pSrcB points to the second input sequence.
3054 * @param[in] srcBLen length of the second input sequence.
3055 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
3056 */
3057 void arm_conv_q7(
3058 q7_t * pSrcA,
3059 uint32_t srcALen,
3060 q7_t * pSrcB,
3061 uint32_t srcBLen,
3062 q7_t * pDst);
3063
3064
3065 /**
3066 * @brief Partial convolution of floating-point sequences.
3067 * @param[in] pSrcA points to the first input sequence.
3068 * @param[in] srcALen length of the first input sequence.
3069 * @param[in] pSrcB points to the second input sequence.
3070 * @param[in] srcBLen length of the second input sequence.
3071 * @param[out] pDst points to the block of output data
3072 * @param[in] firstIndex is the first output sample to start with.
3073 * @param[in] numPoints is the number of output points to be computed.
3074 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3075 */
3076 arm_status arm_conv_partial_f32(
3077 float32_t * pSrcA,
3078 uint32_t srcALen,
3079 float32_t * pSrcB,
3080 uint32_t srcBLen,
3081 float32_t * pDst,
3082 uint32_t firstIndex,
3083 uint32_t numPoints);
3084
3085
3086 /**
3087 * @brief Partial convolution of Q15 sequences.
3088 * @param[in] pSrcA points to the first input sequence.
3089 * @param[in] srcALen length of the first input sequence.
3090 * @param[in] pSrcB points to the second input sequence.
3091 * @param[in] srcBLen length of the second input sequence.
3092 * @param[out] pDst points to the block of output data
3093 * @param[in] firstIndex is the first output sample to start with.
3094 * @param[in] numPoints is the number of output points to be computed.
3095 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3096 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3097 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3098 */
3099 arm_status arm_conv_partial_opt_q15(
3100 q15_t * pSrcA,
3101 uint32_t srcALen,
3102 q15_t * pSrcB,
3103 uint32_t srcBLen,
3104 q15_t * pDst,
3105 uint32_t firstIndex,
3106 uint32_t numPoints,
3107 q15_t * pScratch1,
3108 q15_t * pScratch2);
3109
3110
3111 /**
3112 * @brief Partial convolution of Q15 sequences.
3113 * @param[in] pSrcA points to the first input sequence.
3114 * @param[in] srcALen length of the first input sequence.
3115 * @param[in] pSrcB points to the second input sequence.
3116 * @param[in] srcBLen length of the second input sequence.
3117 * @param[out] pDst points to the block of output data
3118 * @param[in] firstIndex is the first output sample to start with.
3119 * @param[in] numPoints is the number of output points to be computed.
3120 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3121 */
3122 arm_status arm_conv_partial_q15(
3123 q15_t * pSrcA,
3124 uint32_t srcALen,
3125 q15_t * pSrcB,
3126 uint32_t srcBLen,
3127 q15_t * pDst,
3128 uint32_t firstIndex,
3129 uint32_t numPoints);
3130
3131
3132 /**
3133 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3134 * @param[in] pSrcA points to the first input sequence.
3135 * @param[in] srcALen length of the first input sequence.
3136 * @param[in] pSrcB points to the second input sequence.
3137 * @param[in] srcBLen length of the second input sequence.
3138 * @param[out] pDst points to the block of output data
3139 * @param[in] firstIndex is the first output sample to start with.
3140 * @param[in] numPoints is the number of output points to be computed.
3141 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3142 */
3143 arm_status arm_conv_partial_fast_q15(
3144 q15_t * pSrcA,
3145 uint32_t srcALen,
3146 q15_t * pSrcB,
3147 uint32_t srcBLen,
3148 q15_t * pDst,
3149 uint32_t firstIndex,
3150 uint32_t numPoints);
3151
3152
3153 /**
3154 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
3155 * @param[in] pSrcA points to the first input sequence.
3156 * @param[in] srcALen length of the first input sequence.
3157 * @param[in] pSrcB points to the second input sequence.
3158 * @param[in] srcBLen length of the second input sequence.
3159 * @param[out] pDst points to the block of output data
3160 * @param[in] firstIndex is the first output sample to start with.
3161 * @param[in] numPoints is the number of output points to be computed.
3162 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3163 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
3164 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3165 */
3166 arm_status arm_conv_partial_fast_opt_q15(
3167 q15_t * pSrcA,
3168 uint32_t srcALen,
3169 q15_t * pSrcB,
3170 uint32_t srcBLen,
3171 q15_t * pDst,
3172 uint32_t firstIndex,
3173 uint32_t numPoints,
3174 q15_t * pScratch1,
3175 q15_t * pScratch2);
3176
3177
3178 /**
3179 * @brief Partial convolution of Q31 sequences.
3180 * @param[in] pSrcA points to the first input sequence.
3181 * @param[in] srcALen length of the first input sequence.
3182 * @param[in] pSrcB points to the second input sequence.
3183 * @param[in] srcBLen length of the second input sequence.
3184 * @param[out] pDst points to the block of output data
3185 * @param[in] firstIndex is the first output sample to start with.
3186 * @param[in] numPoints is the number of output points to be computed.
3187 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3188 */
3189 arm_status arm_conv_partial_q31(
3190 q31_t * pSrcA,
3191 uint32_t srcALen,
3192 q31_t * pSrcB,
3193 uint32_t srcBLen,
3194 q31_t * pDst,
3195 uint32_t firstIndex,
3196 uint32_t numPoints);
3197
3198
3199 /**
3200 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
3201 * @param[in] pSrcA points to the first input sequence.
3202 * @param[in] srcALen length of the first input sequence.
3203 * @param[in] pSrcB points to the second input sequence.
3204 * @param[in] srcBLen length of the second input sequence.
3205 * @param[out] pDst points to the block of output data
3206 * @param[in] firstIndex is the first output sample to start with.
3207 * @param[in] numPoints is the number of output points to be computed.
3208 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3209 */
3210 arm_status arm_conv_partial_fast_q31(
3211 q31_t * pSrcA,
3212 uint32_t srcALen,
3213 q31_t * pSrcB,
3214 uint32_t srcBLen,
3215 q31_t * pDst,
3216 uint32_t firstIndex,
3217 uint32_t numPoints);
3218
3219
3220 /**
3221 * @brief Partial convolution of Q7 sequences
3222 * @param[in] pSrcA points to the first input sequence.
3223 * @param[in] srcALen length of the first input sequence.
3224 * @param[in] pSrcB points to the second input sequence.
3225 * @param[in] srcBLen length of the second input sequence.
3226 * @param[out] pDst points to the block of output data
3227 * @param[in] firstIndex is the first output sample to start with.
3228 * @param[in] numPoints is the number of output points to be computed.
3229 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
3230 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
3231 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3232 */
3233 arm_status arm_conv_partial_opt_q7(
3234 q7_t * pSrcA,
3235 uint32_t srcALen,
3236 q7_t * pSrcB,
3237 uint32_t srcBLen,
3238 q7_t * pDst,
3239 uint32_t firstIndex,
3240 uint32_t numPoints,
3241 q15_t * pScratch1,
3242 q15_t * pScratch2);
3243
3244
3245 /**
3246 * @brief Partial convolution of Q7 sequences.
3247 * @param[in] pSrcA points to the first input sequence.
3248 * @param[in] srcALen length of the first input sequence.
3249 * @param[in] pSrcB points to the second input sequence.
3250 * @param[in] srcBLen length of the second input sequence.
3251 * @param[out] pDst points to the block of output data
3252 * @param[in] firstIndex is the first output sample to start with.
3253 * @param[in] numPoints is the number of output points to be computed.
3254 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
3255 */
3256 arm_status arm_conv_partial_q7(
3257 q7_t * pSrcA,
3258 uint32_t srcALen,
3259 q7_t * pSrcB,
3260 uint32_t srcBLen,
3261 q7_t * pDst,
3262 uint32_t firstIndex,
3263 uint32_t numPoints);
3264
3265
3266 /**
3267 * @brief Instance structure for the Q15 FIR decimator.
3268 */
3269 typedef struct
3270 {
3271 uint8_t M; /**< decimation factor. */
3272 uint16_t numTaps; /**< number of coefficients in the filter. */
3273 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
3274 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3275 } arm_fir_decimate_instance_q15;
3276
3277 /**
3278 * @brief Instance structure for the Q31 FIR decimator.
3279 */
3280 typedef struct
3281 {
3282 uint8_t M; /**< decimation factor. */
3283 uint16_t numTaps; /**< number of coefficients in the filter. */
3284 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
3285 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3286 } arm_fir_decimate_instance_q31;
3287
3288 /**
3289 * @brief Instance structure for the floating-point FIR decimator.
3290 */
3291 typedef struct
3292 {
3293 uint8_t M; /**< decimation factor. */
3294 uint16_t numTaps; /**< number of coefficients in the filter. */
3295 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
3296 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3297 } arm_fir_decimate_instance_f32;
3298
3299
3300 /**
3301 * @brief Processing function for the floating-point FIR decimator.
3302 * @param[in] S points to an instance of the floating-point FIR decimator structure.
3303 * @param[in] pSrc points to the block of input data.
3304 * @param[out] pDst points to the block of output data
3305 * @param[in] blockSize number of input samples to process per call.
3306 */
3307 void arm_fir_decimate_f32(
3308 const arm_fir_decimate_instance_f32 * S,
3309 float32_t * pSrc,
3310 float32_t * pDst,
3311 uint32_t blockSize);
3312
3313
3314 /**
3315 * @brief Initialization function for the floating-point FIR decimator.
3316 * @param[in,out] S points to an instance of the floating-point FIR decimator structure.
3317 * @param[in] numTaps number of coefficients in the filter.
3318 * @param[in] M decimation factor.
3319 * @param[in] pCoeffs points to the filter coefficients.
3320 * @param[in] pState points to the state buffer.
3321 * @param[in] blockSize number of input samples to process per call.
3322 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3323 * <code>blockSize</code> is not a multiple of <code>M</code>.
3324 */
3325 arm_status arm_fir_decimate_init_f32(
3326 arm_fir_decimate_instance_f32 * S,
3327 uint16_t numTaps,
3328 uint8_t M,
3329 float32_t * pCoeffs,
3330 float32_t * pState,
3331 uint32_t blockSize);
3332
3333
3334 /**
3335 * @brief Processing function for the Q15 FIR decimator.
3336 * @param[in] S points to an instance of the Q15 FIR decimator structure.
3337 * @param[in] pSrc points to the block of input data.
3338 * @param[out] pDst points to the block of output data
3339 * @param[in] blockSize number of input samples to process per call.
3340 */
3341 void arm_fir_decimate_q15(
3342 const arm_fir_decimate_instance_q15 * S,
3343 q15_t * pSrc,
3344 q15_t * pDst,
3345 uint32_t blockSize);
3346
3347
3348 /**
3349 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
3350 * @param[in] S points to an instance of the Q15 FIR decimator structure.
3351 * @param[in] pSrc points to the block of input data.
3352 * @param[out] pDst points to the block of output data
3353 * @param[in] blockSize number of input samples to process per call.
3354 */
3355 void arm_fir_decimate_fast_q15(
3356 const arm_fir_decimate_instance_q15 * S,
3357 q15_t * pSrc,
3358 q15_t * pDst,
3359 uint32_t blockSize);
3360
3361
3362 /**
3363 * @brief Initialization function for the Q15 FIR decimator.
3364 * @param[in,out] S points to an instance of the Q15 FIR decimator structure.
3365 * @param[in] numTaps number of coefficients in the filter.
3366 * @param[in] M decimation factor.
3367 * @param[in] pCoeffs points to the filter coefficients.
3368 * @param[in] pState points to the state buffer.
3369 * @param[in] blockSize number of input samples to process per call.
3370 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3371 * <code>blockSize</code> is not a multiple of <code>M</code>.
3372 */
3373 arm_status arm_fir_decimate_init_q15(
3374 arm_fir_decimate_instance_q15 * S,
3375 uint16_t numTaps,
3376 uint8_t M,
3377 q15_t * pCoeffs,
3378 q15_t * pState,
3379 uint32_t blockSize);
3380
3381
3382 /**
3383 * @brief Processing function for the Q31 FIR decimator.
3384 * @param[in] S points to an instance of the Q31 FIR decimator structure.
3385 * @param[in] pSrc points to the block of input data.
3386 * @param[out] pDst points to the block of output data
3387 * @param[in] blockSize number of input samples to process per call.
3388 */
3389 void arm_fir_decimate_q31(
3390 const arm_fir_decimate_instance_q31 * S,
3391 q31_t * pSrc,
3392 q31_t * pDst,
3393 uint32_t blockSize);
3394
3395 /**
3396 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
3397 * @param[in] S points to an instance of the Q31 FIR decimator structure.
3398 * @param[in] pSrc points to the block of input data.
3399 * @param[out] pDst points to the block of output data
3400 * @param[in] blockSize number of input samples to process per call.
3401 */
3402 void arm_fir_decimate_fast_q31(
3403 arm_fir_decimate_instance_q31 * S,
3404 q31_t * pSrc,
3405 q31_t * pDst,
3406 uint32_t blockSize);
3407
3408
3409 /**
3410 * @brief Initialization function for the Q31 FIR decimator.
3411 * @param[in,out] S points to an instance of the Q31 FIR decimator structure.
3412 * @param[in] numTaps number of coefficients in the filter.
3413 * @param[in] M decimation factor.
3414 * @param[in] pCoeffs points to the filter coefficients.
3415 * @param[in] pState points to the state buffer.
3416 * @param[in] blockSize number of input samples to process per call.
3417 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3418 * <code>blockSize</code> is not a multiple of <code>M</code>.
3419 */
3420 arm_status arm_fir_decimate_init_q31(
3421 arm_fir_decimate_instance_q31 * S,
3422 uint16_t numTaps,
3423 uint8_t M,
3424 q31_t * pCoeffs,
3425 q31_t * pState,
3426 uint32_t blockSize);
3427
3428
3429 /**
3430 * @brief Instance structure for the Q15 FIR interpolator.
3431 */
3432 typedef struct
3433 {
3434 uint8_t L; /**< upsample factor. */
3435 uint16_t phaseLength; /**< length of each polyphase filter component. */
3436 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
3437 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
3438 } arm_fir_interpolate_instance_q15;
3439
3440 /**
3441 * @brief Instance structure for the Q31 FIR interpolator.
3442 */
3443 typedef struct
3444 {
3445 uint8_t L; /**< upsample factor. */
3446 uint16_t phaseLength; /**< length of each polyphase filter component. */
3447 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
3448 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
3449 } arm_fir_interpolate_instance_q31;
3450
3451 /**
3452 * @brief Instance structure for the floating-point FIR interpolator.
3453 */
3454 typedef struct
3455 {
3456 uint8_t L; /**< upsample factor. */
3457 uint16_t phaseLength; /**< length of each polyphase filter component. */
3458 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
3459 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
3460 } arm_fir_interpolate_instance_f32;
3461
3462
3463 /**
3464 * @brief Processing function for the Q15 FIR interpolator.
3465 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
3466 * @param[in] pSrc points to the block of input data.
3467 * @param[out] pDst points to the block of output data.
3468 * @param[in] blockSize number of input samples to process per call.
3469 */
3470 void arm_fir_interpolate_q15(
3471 const arm_fir_interpolate_instance_q15 * S,
3472 q15_t * pSrc,
3473 q15_t * pDst,
3474 uint32_t blockSize);
3475
3476
3477 /**
3478 * @brief Initialization function for the Q15 FIR interpolator.
3479 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
3480 * @param[in] L upsample factor.
3481 * @param[in] numTaps number of filter coefficients in the filter.
3482 * @param[in] pCoeffs points to the filter coefficient buffer.
3483 * @param[in] pState points to the state buffer.
3484 * @param[in] blockSize number of input samples to process per call.
3485 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3486 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3487 */
3488 arm_status arm_fir_interpolate_init_q15(
3489 arm_fir_interpolate_instance_q15 * S,
3490 uint8_t L,
3491 uint16_t numTaps,
3492 q15_t * pCoeffs,
3493 q15_t * pState,
3494 uint32_t blockSize);
3495
3496
3497 /**
3498 * @brief Processing function for the Q31 FIR interpolator.
3499 * @param[in] S points to an instance of the Q15 FIR interpolator structure.
3500 * @param[in] pSrc points to the block of input data.
3501 * @param[out] pDst points to the block of output data.
3502 * @param[in] blockSize number of input samples to process per call.
3503 */
3504 void arm_fir_interpolate_q31(
3505 const arm_fir_interpolate_instance_q31 * S,
3506 q31_t * pSrc,
3507 q31_t * pDst,
3508 uint32_t blockSize);
3509
3510
3511 /**
3512 * @brief Initialization function for the Q31 FIR interpolator.
3513 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
3514 * @param[in] L upsample factor.
3515 * @param[in] numTaps number of filter coefficients in the filter.
3516 * @param[in] pCoeffs points to the filter coefficient buffer.
3517 * @param[in] pState points to the state buffer.
3518 * @param[in] blockSize number of input samples to process per call.
3519 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3520 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3521 */
3522 arm_status arm_fir_interpolate_init_q31(
3523 arm_fir_interpolate_instance_q31 * S,
3524 uint8_t L,
3525 uint16_t numTaps,
3526 q31_t * pCoeffs,
3527 q31_t * pState,
3528 uint32_t blockSize);
3529
3530
3531 /**
3532 * @brief Processing function for the floating-point FIR interpolator.
3533 * @param[in] S points to an instance of the floating-point FIR interpolator structure.
3534 * @param[in] pSrc points to the block of input data.
3535 * @param[out] pDst points to the block of output data.
3536 * @param[in] blockSize number of input samples to process per call.
3537 */
3538 void arm_fir_interpolate_f32(
3539 const arm_fir_interpolate_instance_f32 * S,
3540 float32_t * pSrc,
3541 float32_t * pDst,
3542 uint32_t blockSize);
3543
3544
3545 /**
3546 * @brief Initialization function for the floating-point FIR interpolator.
3547 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
3548 * @param[in] L upsample factor.
3549 * @param[in] numTaps number of filter coefficients in the filter.
3550 * @param[in] pCoeffs points to the filter coefficient buffer.
3551 * @param[in] pState points to the state buffer.
3552 * @param[in] blockSize number of input samples to process per call.
3553 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
3554 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
3555 */
3556 arm_status arm_fir_interpolate_init_f32(
3557 arm_fir_interpolate_instance_f32 * S,
3558 uint8_t L,
3559 uint16_t numTaps,
3560 float32_t * pCoeffs,
3561 float32_t * pState,
3562 uint32_t blockSize);
3563
3564
3565 /**
3566 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
3567 */
3568 typedef struct
3569 {
3570 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
3571 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
3572 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
3573 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
3574 } arm_biquad_cas_df1_32x64_ins_q31;
3575
3576
3577 /**
3578 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
3579 * @param[in] pSrc points to the block of input data.
3580 * @param[out] pDst points to the block of output data
3581 * @param[in] blockSize number of samples to process.
3582 */
3583 void arm_biquad_cas_df1_32x64_q31(
3584 const arm_biquad_cas_df1_32x64_ins_q31 * S,
3585 q31_t * pSrc,
3586 q31_t * pDst,
3587 uint32_t blockSize);
3588
3589
3590 /**
3591 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
3592 * @param[in] numStages number of 2nd order stages in the filter.
3593 * @param[in] pCoeffs points to the filter coefficients.
3594 * @param[in] pState points to the state buffer.
3595 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
3596 */
3597 void arm_biquad_cas_df1_32x64_init_q31(
3598 arm_biquad_cas_df1_32x64_ins_q31 * S,
3599 uint8_t numStages,
3600 q31_t * pCoeffs,
3601 q63_t * pState,
3602 uint8_t postShift);
3603
3604
3605 /**
3606 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3607 */
3608 typedef struct
3609 {
3610 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
3611 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
3612 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
3613 } arm_biquad_cascade_df2T_instance_f32;
3614
3615 /**
3616 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3617 */
3618 typedef struct
3619 {
3620 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
3621 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
3622 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
3623 } arm_biquad_cascade_stereo_df2T_instance_f32;
3624
3625 /**
3626 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
3627 */
3628 typedef struct
3629 {
3630 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
3631 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
3632 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
3633 } arm_biquad_cascade_df2T_instance_f64;
3634
3635
3636 /**
3637 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
3638 * @param[in] S points to an instance of the filter data structure.
3639 * @param[in] pSrc points to the block of input data.
3640 * @param[out] pDst points to the block of output data
3641 * @param[in] blockSize number of samples to process.
3642 */
3643 void arm_biquad_cascade_df2T_f32(
3644 const arm_biquad_cascade_df2T_instance_f32 * S,
3645 float32_t * pSrc,
3646 float32_t * pDst,
3647 uint32_t blockSize);
3648
3649
3650 /**
3651 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
3652 * @param[in] S points to an instance of the filter data structure.
3653 * @param[in] pSrc points to the block of input data.
3654 * @param[out] pDst points to the block of output data
3655 * @param[in] blockSize number of samples to process.
3656 */
3657 void arm_biquad_cascade_stereo_df2T_f32(
3658 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
3659 float32_t * pSrc,
3660 float32_t * pDst,
3661 uint32_t blockSize);
3662
3663
3664 /**
3665 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
3666 * @param[in] S points to an instance of the filter data structure.
3667 * @param[in] pSrc points to the block of input data.
3668 * @param[out] pDst points to the block of output data
3669 * @param[in] blockSize number of samples to process.
3670 */
3671 void arm_biquad_cascade_df2T_f64(
3672 const arm_biquad_cascade_df2T_instance_f64 * S,
3673 float64_t * pSrc,
3674 float64_t * pDst,
3675 uint32_t blockSize);
3676
3677
3678 /**
3679 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3680 * @param[in,out] S points to an instance of the filter data structure.
3681 * @param[in] numStages number of 2nd order stages in the filter.
3682 * @param[in] pCoeffs points to the filter coefficients.
3683 * @param[in] pState points to the state buffer.
3684 */
3685 void arm_biquad_cascade_df2T_init_f32(
3686 arm_biquad_cascade_df2T_instance_f32 * S,
3687 uint8_t numStages,
3688 float32_t * pCoeffs,
3689 float32_t * pState);
3690
3691
3692 /**
3693 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3694 * @param[in,out] S points to an instance of the filter data structure.
3695 * @param[in] numStages number of 2nd order stages in the filter.
3696 * @param[in] pCoeffs points to the filter coefficients.
3697 * @param[in] pState points to the state buffer.
3698 */
3699 void arm_biquad_cascade_stereo_df2T_init_f32(
3700 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
3701 uint8_t numStages,
3702 float32_t * pCoeffs,
3703 float32_t * pState);
3704
3705
3706 /**
3707 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
3708 * @param[in,out] S points to an instance of the filter data structure.
3709 * @param[in] numStages number of 2nd order stages in the filter.
3710 * @param[in] pCoeffs points to the filter coefficients.
3711 * @param[in] pState points to the state buffer.
3712 */
3713 void arm_biquad_cascade_df2T_init_f64(
3714 arm_biquad_cascade_df2T_instance_f64 * S,
3715 uint8_t numStages,
3716 float64_t * pCoeffs,
3717 float64_t * pState);
3718
3719
3720 /**
3721 * @brief Instance structure for the Q15 FIR lattice filter.
3722 */
3723 typedef struct
3724 {
3725 uint16_t numStages; /**< number of filter stages. */
3726 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
3727 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
3728 } arm_fir_lattice_instance_q15;
3729
3730 /**
3731 * @brief Instance structure for the Q31 FIR lattice filter.
3732 */
3733 typedef struct
3734 {
3735 uint16_t numStages; /**< number of filter stages. */
3736 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
3737 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
3738 } arm_fir_lattice_instance_q31;
3739
3740 /**
3741 * @brief Instance structure for the floating-point FIR lattice filter.
3742 */
3743 typedef struct
3744 {
3745 uint16_t numStages; /**< number of filter stages. */
3746 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
3747 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
3748 } arm_fir_lattice_instance_f32;
3749
3750
3751 /**
3752 * @brief Initialization function for the Q15 FIR lattice filter.
3753 * @param[in] S points to an instance of the Q15 FIR lattice structure.
3754 * @param[in] numStages number of filter stages.
3755 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
3756 * @param[in] pState points to the state buffer. The array is of length numStages.
3757 */
3758 void arm_fir_lattice_init_q15(
3759 arm_fir_lattice_instance_q15 * S,
3760 uint16_t numStages,
3761 q15_t * pCoeffs,
3762 q15_t * pState);
3763
3764
3765 /**
3766 * @brief Processing function for the Q15 FIR lattice filter.
3767 * @param[in] S points to an instance of the Q15 FIR lattice structure.
3768 * @param[in] pSrc points to the block of input data.
3769 * @param[out] pDst points to the block of output data.
3770 * @param[in] blockSize number of samples to process.
3771 */
3772 void arm_fir_lattice_q15(
3773 const arm_fir_lattice_instance_q15 * S,
3774 q15_t * pSrc,
3775 q15_t * pDst,
3776 uint32_t blockSize);
3777
3778
3779 /**
3780 * @brief Initialization function for the Q31 FIR lattice filter.
3781 * @param[in] S points to an instance of the Q31 FIR lattice structure.
3782 * @param[in] numStages number of filter stages.
3783 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
3784 * @param[in] pState points to the state buffer. The array is of length numStages.
3785 */
3786 void arm_fir_lattice_init_q31(
3787 arm_fir_lattice_instance_q31 * S,
3788 uint16_t numStages,
3789 q31_t * pCoeffs,
3790 q31_t * pState);
3791
3792
3793 /**
3794 * @brief Processing function for the Q31 FIR lattice filter.
3795 * @param[in] S points to an instance of the Q31 FIR lattice structure.
3796 * @param[in] pSrc points to the block of input data.
3797 * @param[out] pDst points to the block of output data
3798 * @param[in] blockSize number of samples to process.
3799 */
3800 void arm_fir_lattice_q31(
3801 const arm_fir_lattice_instance_q31 * S,
3802 q31_t * pSrc,
3803 q31_t * pDst,
3804 uint32_t blockSize);
3805
3806
3807 /**
3808 * @brief Initialization function for the floating-point FIR lattice filter.
3809 * @param[in] S points to an instance of the floating-point FIR lattice structure.
3810 * @param[in] numStages number of filter stages.
3811 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
3812 * @param[in] pState points to the state buffer. The array is of length numStages.
3813 */
3814 void arm_fir_lattice_init_f32(
3815 arm_fir_lattice_instance_f32 * S,
3816 uint16_t numStages,
3817 float32_t * pCoeffs,
3818 float32_t * pState);
3819
3820
3821 /**
3822 * @brief Processing function for the floating-point FIR lattice filter.
3823 * @param[in] S points to an instance of the floating-point FIR lattice structure.
3824 * @param[in] pSrc points to the block of input data.
3825 * @param[out] pDst points to the block of output data
3826 * @param[in] blockSize number of samples to process.
3827 */
3828 void arm_fir_lattice_f32(
3829 const arm_fir_lattice_instance_f32 * S,
3830 float32_t * pSrc,
3831 float32_t * pDst,
3832 uint32_t blockSize);
3833
3834
3835 /**
3836 * @brief Instance structure for the Q15 IIR lattice filter.
3837 */
3838 typedef struct
3839 {
3840 uint16_t numStages; /**< number of stages in the filter. */
3841 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
3842 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
3843 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
3844 } arm_iir_lattice_instance_q15;
3845
3846 /**
3847 * @brief Instance structure for the Q31 IIR lattice filter.
3848 */
3849 typedef struct
3850 {
3851 uint16_t numStages; /**< number of stages in the filter. */
3852 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
3853 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
3854 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
3855 } arm_iir_lattice_instance_q31;
3856
3857 /**
3858 * @brief Instance structure for the floating-point IIR lattice filter.
3859 */
3860 typedef struct
3861 {
3862 uint16_t numStages; /**< number of stages in the filter. */
3863 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
3864 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
3865 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
3866 } arm_iir_lattice_instance_f32;
3867
3868
3869 /**
3870 * @brief Processing function for the floating-point IIR lattice filter.
3871 * @param[in] S points to an instance of the floating-point IIR lattice structure.
3872 * @param[in] pSrc points to the block of input data.
3873 * @param[out] pDst points to the block of output data.
3874 * @param[in] blockSize number of samples to process.
3875 */
3876 void arm_iir_lattice_f32(
3877 const arm_iir_lattice_instance_f32 * S,
3878 float32_t * pSrc,
3879 float32_t * pDst,
3880 uint32_t blockSize);
3881
3882
3883 /**
3884 * @brief Initialization function for the floating-point IIR lattice filter.
3885 * @param[in] S points to an instance of the floating-point IIR lattice structure.
3886 * @param[in] numStages number of stages in the filter.
3887 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
3888 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
3889 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
3890 * @param[in] blockSize number of samples to process.
3891 */
3892 void arm_iir_lattice_init_f32(
3893 arm_iir_lattice_instance_f32 * S,
3894 uint16_t numStages,
3895 float32_t * pkCoeffs,
3896 float32_t * pvCoeffs,
3897 float32_t * pState,
3898 uint32_t blockSize);
3899
3900
3901 /**
3902 * @brief Processing function for the Q31 IIR lattice filter.
3903 * @param[in] S points to an instance of the Q31 IIR lattice structure.
3904 * @param[in] pSrc points to the block of input data.
3905 * @param[out] pDst points to the block of output data.
3906 * @param[in] blockSize number of samples to process.
3907 */
3908 void arm_iir_lattice_q31(
3909 const arm_iir_lattice_instance_q31 * S,
3910 q31_t * pSrc,
3911 q31_t * pDst,
3912 uint32_t blockSize);
3913
3914
3915 /**
3916 * @brief Initialization function for the Q31 IIR lattice filter.
3917 * @param[in] S points to an instance of the Q31 IIR lattice structure.
3918 * @param[in] numStages number of stages in the filter.
3919 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
3920 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
3921 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
3922 * @param[in] blockSize number of samples to process.
3923 */
3924 void arm_iir_lattice_init_q31(
3925 arm_iir_lattice_instance_q31 * S,
3926 uint16_t numStages,
3927 q31_t * pkCoeffs,
3928 q31_t * pvCoeffs,
3929 q31_t * pState,
3930 uint32_t blockSize);
3931
3932
3933 /**
3934 * @brief Processing function for the Q15 IIR lattice filter.
3935 * @param[in] S points to an instance of the Q15 IIR lattice structure.
3936 * @param[in] pSrc points to the block of input data.
3937 * @param[out] pDst points to the block of output data.
3938 * @param[in] blockSize number of samples to process.
3939 */
3940 void arm_iir_lattice_q15(
3941 const arm_iir_lattice_instance_q15 * S,
3942 q15_t * pSrc,
3943 q15_t * pDst,
3944 uint32_t blockSize);
3945
3946
3947 /**
3948 * @brief Initialization function for the Q15 IIR lattice filter.
3949 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
3950 * @param[in] numStages number of stages in the filter.
3951 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
3952 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
3953 * @param[in] pState points to state buffer. The array is of length numStages+blockSize.
3954 * @param[in] blockSize number of samples to process per call.
3955 */
3956 void arm_iir_lattice_init_q15(
3957 arm_iir_lattice_instance_q15 * S,
3958 uint16_t numStages,
3959 q15_t * pkCoeffs,
3960 q15_t * pvCoeffs,
3961 q15_t * pState,
3962 uint32_t blockSize);
3963
3964
3965 /**
3966 * @brief Instance structure for the floating-point LMS filter.
3967 */
3968 typedef struct
3969 {
3970 uint16_t numTaps; /**< number of coefficients in the filter. */
3971 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
3972 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
3973 float32_t mu; /**< step size that controls filter coefficient updates. */
3974 } arm_lms_instance_f32;
3975
3976
3977 /**
3978 * @brief Processing function for floating-point LMS filter.
3979 * @param[in] S points to an instance of the floating-point LMS filter structure.
3980 * @param[in] pSrc points to the block of input data.
3981 * @param[in] pRef points to the block of reference data.
3982 * @param[out] pOut points to the block of output data.
3983 * @param[out] pErr points to the block of error data.
3984 * @param[in] blockSize number of samples to process.
3985 */
3986 void arm_lms_f32(
3987 const arm_lms_instance_f32 * S,
3988 float32_t * pSrc,
3989 float32_t * pRef,
3990 float32_t * pOut,
3991 float32_t * pErr,
3992 uint32_t blockSize);
3993
3994
3995 /**
3996 * @brief Initialization function for floating-point LMS filter.
3997 * @param[in] S points to an instance of the floating-point LMS filter structure.
3998 * @param[in] numTaps number of filter coefficients.
3999 * @param[in] pCoeffs points to the coefficient buffer.
4000 * @param[in] pState points to state buffer.
4001 * @param[in] mu step size that controls filter coefficient updates.
4002 * @param[in] blockSize number of samples to process.
4003 */
4004 void arm_lms_init_f32(
4005 arm_lms_instance_f32 * S,
4006 uint16_t numTaps,
4007 float32_t * pCoeffs,
4008 float32_t * pState,
4009 float32_t mu,
4010 uint32_t blockSize);
4011
4012
4013 /**
4014 * @brief Instance structure for the Q15 LMS filter.
4015 */
4016 typedef struct
4017 {
4018 uint16_t numTaps; /**< number of coefficients in the filter. */
4019 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4020 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
4021 q15_t mu; /**< step size that controls filter coefficient updates. */
4022 uint32_t postShift; /**< bit shift applied to coefficients. */
4023 } arm_lms_instance_q15;
4024
4025
4026 /**
4027 * @brief Initialization function for the Q15 LMS filter.
4028 * @param[in] S points to an instance of the Q15 LMS filter structure.
4029 * @param[in] numTaps number of filter coefficients.
4030 * @param[in] pCoeffs points to the coefficient buffer.
4031 * @param[in] pState points to the state buffer.
4032 * @param[in] mu step size that controls filter coefficient updates.
4033 * @param[in] blockSize number of samples to process.
4034 * @param[in] postShift bit shift applied to coefficients.
4035 */
4036 void arm_lms_init_q15(
4037 arm_lms_instance_q15 * S,
4038 uint16_t numTaps,
4039 q15_t * pCoeffs,
4040 q15_t * pState,
4041 q15_t mu,
4042 uint32_t blockSize,
4043 uint32_t postShift);
4044
4045
4046 /**
4047 * @brief Processing function for Q15 LMS filter.
4048 * @param[in] S points to an instance of the Q15 LMS filter structure.
4049 * @param[in] pSrc points to the block of input data.
4050 * @param[in] pRef points to the block of reference data.
4051 * @param[out] pOut points to the block of output data.
4052 * @param[out] pErr points to the block of error data.
4053 * @param[in] blockSize number of samples to process.
4054 */
4055 void arm_lms_q15(
4056 const arm_lms_instance_q15 * S,
4057 q15_t * pSrc,
4058 q15_t * pRef,
4059 q15_t * pOut,
4060 q15_t * pErr,
4061 uint32_t blockSize);
4062
4063
4064 /**
4065 * @brief Instance structure for the Q31 LMS filter.
4066 */
4067 typedef struct
4068 {
4069 uint16_t numTaps; /**< number of coefficients in the filter. */
4070 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4071 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
4072 q31_t mu; /**< step size that controls filter coefficient updates. */
4073 uint32_t postShift; /**< bit shift applied to coefficients. */
4074 } arm_lms_instance_q31;
4075
4076
4077 /**
4078 * @brief Processing function for Q31 LMS filter.
4079 * @param[in] S points to an instance of the Q15 LMS filter structure.
4080 * @param[in] pSrc points to the block of input data.
4081 * @param[in] pRef points to the block of reference data.
4082 * @param[out] pOut points to the block of output data.
4083 * @param[out] pErr points to the block of error data.
4084 * @param[in] blockSize number of samples to process.
4085 */
4086 void arm_lms_q31(
4087 const arm_lms_instance_q31 * S,
4088 q31_t * pSrc,
4089 q31_t * pRef,
4090 q31_t * pOut,
4091 q31_t * pErr,
4092 uint32_t blockSize);
4093
4094
4095 /**
4096 * @brief Initialization function for Q31 LMS filter.
4097 * @param[in] S points to an instance of the Q31 LMS filter structure.
4098 * @param[in] numTaps number of filter coefficients.
4099 * @param[in] pCoeffs points to coefficient buffer.
4100 * @param[in] pState points to state buffer.
4101 * @param[in] mu step size that controls filter coefficient updates.
4102 * @param[in] blockSize number of samples to process.
4103 * @param[in] postShift bit shift applied to coefficients.
4104 */
4105 void arm_lms_init_q31(
4106 arm_lms_instance_q31 * S,
4107 uint16_t numTaps,
4108 q31_t * pCoeffs,
4109 q31_t * pState,
4110 q31_t mu,
4111 uint32_t blockSize,
4112 uint32_t postShift);
4113
4114
4115 /**
4116 * @brief Instance structure for the floating-point normalized LMS filter.
4117 */
4118 typedef struct
4119 {
4120 uint16_t numTaps; /**< number of coefficients in the filter. */
4121 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4122 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
4123 float32_t mu; /**< step size that control filter coefficient updates. */
4124 float32_t energy; /**< saves previous frame energy. */
4125 float32_t x0; /**< saves previous input sample. */
4126 } arm_lms_norm_instance_f32;
4127
4128
4129 /**
4130 * @brief Processing function for floating-point normalized LMS filter.
4131 * @param[in] S points to an instance of the floating-point normalized LMS filter structure.
4132 * @param[in] pSrc points to the block of input data.
4133 * @param[in] pRef points to the block of reference data.
4134 * @param[out] pOut points to the block of output data.
4135 * @param[out] pErr points to the block of error data.
4136 * @param[in] blockSize number of samples to process.
4137 */
4138 void arm_lms_norm_f32(
4139 arm_lms_norm_instance_f32 * S,
4140 float32_t * pSrc,
4141 float32_t * pRef,
4142 float32_t * pOut,
4143 float32_t * pErr,
4144 uint32_t blockSize);
4145
4146
4147 /**
4148 * @brief Initialization function for floating-point normalized LMS filter.
4149 * @param[in] S points to an instance of the floating-point LMS filter structure.
4150 * @param[in] numTaps number of filter coefficients.
4151 * @param[in] pCoeffs points to coefficient buffer.
4152 * @param[in] pState points to state buffer.
4153 * @param[in] mu step size that controls filter coefficient updates.
4154 * @param[in] blockSize number of samples to process.
4155 */
4156 void arm_lms_norm_init_f32(
4157 arm_lms_norm_instance_f32 * S,
4158 uint16_t numTaps,
4159 float32_t * pCoeffs,
4160 float32_t * pState,
4161 float32_t mu,
4162 uint32_t blockSize);
4163
4164
4165 /**
4166 * @brief Instance structure for the Q31 normalized LMS filter.
4167 */
4168 typedef struct
4169 {
4170 uint16_t numTaps; /**< number of coefficients in the filter. */
4171 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4172 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
4173 q31_t mu; /**< step size that controls filter coefficient updates. */
4174 uint8_t postShift; /**< bit shift applied to coefficients. */
4175 q31_t *recipTable; /**< points to the reciprocal initial value table. */
4176 q31_t energy; /**< saves previous frame energy. */
4177 q31_t x0; /**< saves previous input sample. */
4178 } arm_lms_norm_instance_q31;
4179
4180
4181 /**
4182 * @brief Processing function for Q31 normalized LMS filter.
4183 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
4184 * @param[in] pSrc points to the block of input data.
4185 * @param[in] pRef points to the block of reference data.
4186 * @param[out] pOut points to the block of output data.
4187 * @param[out] pErr points to the block of error data.
4188 * @param[in] blockSize number of samples to process.
4189 */
4190 void arm_lms_norm_q31(
4191 arm_lms_norm_instance_q31 * S,
4192 q31_t * pSrc,
4193 q31_t * pRef,
4194 q31_t * pOut,
4195 q31_t * pErr,
4196 uint32_t blockSize);
4197
4198
4199 /**
4200 * @brief Initialization function for Q31 normalized LMS filter.
4201 * @param[in] S points to an instance of the Q31 normalized LMS filter structure.
4202 * @param[in] numTaps number of filter coefficients.
4203 * @param[in] pCoeffs points to coefficient buffer.
4204 * @param[in] pState points to state buffer.
4205 * @param[in] mu step size that controls filter coefficient updates.
4206 * @param[in] blockSize number of samples to process.
4207 * @param[in] postShift bit shift applied to coefficients.
4208 */
4209 void arm_lms_norm_init_q31(
4210 arm_lms_norm_instance_q31 * S,
4211 uint16_t numTaps,
4212 q31_t * pCoeffs,
4213 q31_t * pState,
4214 q31_t mu,
4215 uint32_t blockSize,
4216 uint8_t postShift);
4217
4218
4219 /**
4220 * @brief Instance structure for the Q15 normalized LMS filter.
4221 */
4222 typedef struct
4223 {
4224 uint16_t numTaps; /**< Number of coefficients in the filter. */
4225 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
4226 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
4227 q15_t mu; /**< step size that controls filter coefficient updates. */
4228 uint8_t postShift; /**< bit shift applied to coefficients. */
4229 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
4230 q15_t energy; /**< saves previous frame energy. */
4231 q15_t x0; /**< saves previous input sample. */
4232 } arm_lms_norm_instance_q15;
4233
4234
4235 /**
4236 * @brief Processing function for Q15 normalized LMS filter.
4237 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
4238 * @param[in] pSrc points to the block of input data.
4239 * @param[in] pRef points to the block of reference data.
4240 * @param[out] pOut points to the block of output data.
4241 * @param[out] pErr points to the block of error data.
4242 * @param[in] blockSize number of samples to process.
4243 */
4244 void arm_lms_norm_q15(
4245 arm_lms_norm_instance_q15 * S,
4246 q15_t * pSrc,
4247 q15_t * pRef,
4248 q15_t * pOut,
4249 q15_t * pErr,
4250 uint32_t blockSize);
4251
4252
4253 /**
4254 * @brief Initialization function for Q15 normalized LMS filter.
4255 * @param[in] S points to an instance of the Q15 normalized LMS filter structure.
4256 * @param[in] numTaps number of filter coefficients.
4257 * @param[in] pCoeffs points to coefficient buffer.
4258 * @param[in] pState points to state buffer.
4259 * @param[in] mu step size that controls filter coefficient updates.
4260 * @param[in] blockSize number of samples to process.
4261 * @param[in] postShift bit shift applied to coefficients.
4262 */
4263 void arm_lms_norm_init_q15(
4264 arm_lms_norm_instance_q15 * S,
4265 uint16_t numTaps,
4266 q15_t * pCoeffs,
4267 q15_t * pState,
4268 q15_t mu,
4269 uint32_t blockSize,
4270 uint8_t postShift);
4271
4272
4273 /**
4274 * @brief Correlation of floating-point sequences.
4275 * @param[in] pSrcA points to the first input sequence.
4276 * @param[in] srcALen length of the first input sequence.
4277 * @param[in] pSrcB points to the second input sequence.
4278 * @param[in] srcBLen length of the second input sequence.
4279 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4280 */
4281 void arm_correlate_f32(
4282 float32_t * pSrcA,
4283 uint32_t srcALen,
4284 float32_t * pSrcB,
4285 uint32_t srcBLen,
4286 float32_t * pDst);
4287
4288
4289 /**
4290 * @brief Correlation of Q15 sequences
4291 * @param[in] pSrcA points to the first input sequence.
4292 * @param[in] srcALen length of the first input sequence.
4293 * @param[in] pSrcB points to the second input sequence.
4294 * @param[in] srcBLen length of the second input sequence.
4295 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4296 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4297 */
4298 void arm_correlate_opt_q15(
4299 q15_t * pSrcA,
4300 uint32_t srcALen,
4301 q15_t * pSrcB,
4302 uint32_t srcBLen,
4303 q15_t * pDst,
4304 q15_t * pScratch);
4305
4306
4307 /**
4308 * @brief Correlation of Q15 sequences.
4309 * @param[in] pSrcA points to the first input sequence.
4310 * @param[in] srcALen length of the first input sequence.
4311 * @param[in] pSrcB points to the second input sequence.
4312 * @param[in] srcBLen length of the second input sequence.
4313 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4314 */
4315
4316 void arm_correlate_q15(
4317 q15_t * pSrcA,
4318 uint32_t srcALen,
4319 q15_t * pSrcB,
4320 uint32_t srcBLen,
4321 q15_t * pDst);
4322
4323
4324 /**
4325 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
4326 * @param[in] pSrcA points to the first input sequence.
4327 * @param[in] srcALen length of the first input sequence.
4328 * @param[in] pSrcB points to the second input sequence.
4329 * @param[in] srcBLen length of the second input sequence.
4330 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4331 */
4332
4333 void arm_correlate_fast_q15(
4334 q15_t * pSrcA,
4335 uint32_t srcALen,
4336 q15_t * pSrcB,
4337 uint32_t srcBLen,
4338 q15_t * pDst);
4339
4340
4341 /**
4342 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
4343 * @param[in] pSrcA points to the first input sequence.
4344 * @param[in] srcALen length of the first input sequence.
4345 * @param[in] pSrcB points to the second input sequence.
4346 * @param[in] srcBLen length of the second input sequence.
4347 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4348 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4349 */
4350 void arm_correlate_fast_opt_q15(
4351 q15_t * pSrcA,
4352 uint32_t srcALen,
4353 q15_t * pSrcB,
4354 uint32_t srcBLen,
4355 q15_t * pDst,
4356 q15_t * pScratch);
4357
4358
4359 /**
4360 * @brief Correlation of Q31 sequences.
4361 * @param[in] pSrcA points to the first input sequence.
4362 * @param[in] srcALen length of the first input sequence.
4363 * @param[in] pSrcB points to the second input sequence.
4364 * @param[in] srcBLen length of the second input sequence.
4365 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4366 */
4367 void arm_correlate_q31(
4368 q31_t * pSrcA,
4369 uint32_t srcALen,
4370 q31_t * pSrcB,
4371 uint32_t srcBLen,
4372 q31_t * pDst);
4373
4374
4375 /**
4376 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
4377 * @param[in] pSrcA points to the first input sequence.
4378 * @param[in] srcALen length of the first input sequence.
4379 * @param[in] pSrcB points to the second input sequence.
4380 * @param[in] srcBLen length of the second input sequence.
4381 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4382 */
4383 void arm_correlate_fast_q31(
4384 q31_t * pSrcA,
4385 uint32_t srcALen,
4386 q31_t * pSrcB,
4387 uint32_t srcBLen,
4388 q31_t * pDst);
4389
4390
4391 /**
4392 * @brief Correlation of Q7 sequences.
4393 * @param[in] pSrcA points to the first input sequence.
4394 * @param[in] srcALen length of the first input sequence.
4395 * @param[in] pSrcB points to the second input sequence.
4396 * @param[in] srcBLen length of the second input sequence.
4397 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4398 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
4399 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
4400 */
4401 void arm_correlate_opt_q7(
4402 q7_t * pSrcA,
4403 uint32_t srcALen,
4404 q7_t * pSrcB,
4405 uint32_t srcBLen,
4406 q7_t * pDst,
4407 q15_t * pScratch1,
4408 q15_t * pScratch2);
4409
4410
4411 /**
4412 * @brief Correlation of Q7 sequences.
4413 * @param[in] pSrcA points to the first input sequence.
4414 * @param[in] srcALen length of the first input sequence.
4415 * @param[in] pSrcB points to the second input sequence.
4416 * @param[in] srcBLen length of the second input sequence.
4417 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
4418 */
4419 void arm_correlate_q7(
4420 q7_t * pSrcA,
4421 uint32_t srcALen,
4422 q7_t * pSrcB,
4423 uint32_t srcBLen,
4424 q7_t * pDst);
4425
4426
4427 /**
4428 * @brief Instance structure for the floating-point sparse FIR filter.
4429 */
4430 typedef struct
4431 {
4432 uint16_t numTaps; /**< number of coefficients in the filter. */
4433 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
4434 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4435 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
4436 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
4437 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
4438 } arm_fir_sparse_instance_f32;
4439
4440 /**
4441 * @brief Instance structure for the Q31 sparse FIR filter.
4442 */
4443 typedef struct
4444 {
4445 uint16_t numTaps; /**< number of coefficients in the filter. */
4446 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
4447 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4448 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
4449 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
4450 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
4451 } arm_fir_sparse_instance_q31;
4452
4453 /**
4454 * @brief Instance structure for the Q15 sparse FIR filter.
4455 */
4456 typedef struct
4457 {
4458 uint16_t numTaps; /**< number of coefficients in the filter. */
4459 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
4460 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4461 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
4462 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
4463 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
4464 } arm_fir_sparse_instance_q15;
4465
4466 /**
4467 * @brief Instance structure for the Q7 sparse FIR filter.
4468 */
4469 typedef struct
4470 {
4471 uint16_t numTaps; /**< number of coefficients in the filter. */
4472 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
4473 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
4474 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
4475 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
4476 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
4477 } arm_fir_sparse_instance_q7;
4478
4479
4480 /**
4481 * @brief Processing function for the floating-point sparse FIR filter.
4482 * @param[in] S points to an instance of the floating-point sparse FIR structure.
4483 * @param[in] pSrc points to the block of input data.
4484 * @param[out] pDst points to the block of output data
4485 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
4486 * @param[in] blockSize number of input samples to process per call.
4487 */
4488 void arm_fir_sparse_f32(
4489 arm_fir_sparse_instance_f32 * S,
4490 float32_t * pSrc,
4491 float32_t * pDst,
4492 float32_t * pScratchIn,
4493 uint32_t blockSize);
4494
4495
4496 /**
4497 * @brief Initialization function for the floating-point sparse FIR filter.
4498 * @param[in,out] S points to an instance of the floating-point sparse FIR structure.
4499 * @param[in] numTaps number of nonzero coefficients in the filter.
4500 * @param[in] pCoeffs points to the array of filter coefficients.
4501 * @param[in] pState points to the state buffer.
4502 * @param[in] pTapDelay points to the array of offset times.
4503 * @param[in] maxDelay maximum offset time supported.
4504 * @param[in] blockSize number of samples that will be processed per block.
4505 */
4506 void arm_fir_sparse_init_f32(
4507 arm_fir_sparse_instance_f32 * S,
4508 uint16_t numTaps,
4509 float32_t * pCoeffs,
4510 float32_t * pState,
4511 int32_t * pTapDelay,
4512 uint16_t maxDelay,
4513 uint32_t blockSize);
4514
4515
4516 /**
4517 * @brief Processing function for the Q31 sparse FIR filter.
4518 * @param[in] S points to an instance of the Q31 sparse FIR structure.
4519 * @param[in] pSrc points to the block of input data.
4520 * @param[out] pDst points to the block of output data
4521 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
4522 * @param[in] blockSize number of input samples to process per call.
4523 */
4524 void arm_fir_sparse_q31(
4525 arm_fir_sparse_instance_q31 * S,
4526 q31_t * pSrc,
4527 q31_t * pDst,
4528 q31_t * pScratchIn,
4529 uint32_t blockSize);
4530
4531
4532 /**
4533 * @brief Initialization function for the Q31 sparse FIR filter.
4534 * @param[in,out] S points to an instance of the Q31 sparse FIR structure.
4535 * @param[in] numTaps number of nonzero coefficients in the filter.
4536 * @param[in] pCoeffs points to the array of filter coefficients.
4537 * @param[in] pState points to the state buffer.
4538 * @param[in] pTapDelay points to the array of offset times.
4539 * @param[in] maxDelay maximum offset time supported.
4540 * @param[in] blockSize number of samples that will be processed per block.
4541 */
4542 void arm_fir_sparse_init_q31(
4543 arm_fir_sparse_instance_q31 * S,
4544 uint16_t numTaps,
4545 q31_t * pCoeffs,
4546 q31_t * pState,
4547 int32_t * pTapDelay,
4548 uint16_t maxDelay,
4549 uint32_t blockSize);
4550
4551
4552 /**
4553 * @brief Processing function for the Q15 sparse FIR filter.
4554 * @param[in] S points to an instance of the Q15 sparse FIR structure.
4555 * @param[in] pSrc points to the block of input data.
4556 * @param[out] pDst points to the block of output data
4557 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
4558 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
4559 * @param[in] blockSize number of input samples to process per call.
4560 */
4561 void arm_fir_sparse_q15(
4562 arm_fir_sparse_instance_q15 * S,
4563 q15_t * pSrc,
4564 q15_t * pDst,
4565 q15_t * pScratchIn,
4566 q31_t * pScratchOut,
4567 uint32_t blockSize);
4568
4569
4570 /**
4571 * @brief Initialization function for the Q15 sparse FIR filter.
4572 * @param[in,out] S points to an instance of the Q15 sparse FIR structure.
4573 * @param[in] numTaps number of nonzero coefficients in the filter.
4574 * @param[in] pCoeffs points to the array of filter coefficients.
4575 * @param[in] pState points to the state buffer.
4576 * @param[in] pTapDelay points to the array of offset times.
4577 * @param[in] maxDelay maximum offset time supported.
4578 * @param[in] blockSize number of samples that will be processed per block.
4579 */
4580 void arm_fir_sparse_init_q15(
4581 arm_fir_sparse_instance_q15 * S,
4582 uint16_t numTaps,
4583 q15_t * pCoeffs,
4584 q15_t * pState,
4585 int32_t * pTapDelay,
4586 uint16_t maxDelay,
4587 uint32_t blockSize);
4588
4589
4590 /**
4591 * @brief Processing function for the Q7 sparse FIR filter.
4592 * @param[in] S points to an instance of the Q7 sparse FIR structure.
4593 * @param[in] pSrc points to the block of input data.
4594 * @param[out] pDst points to the block of output data
4595 * @param[in] pScratchIn points to a temporary buffer of size blockSize.
4596 * @param[in] pScratchOut points to a temporary buffer of size blockSize.
4597 * @param[in] blockSize number of input samples to process per call.
4598 */
4599 void arm_fir_sparse_q7(
4600 arm_fir_sparse_instance_q7 * S,
4601 q7_t * pSrc,
4602 q7_t * pDst,
4603 q7_t * pScratchIn,
4604 q31_t * pScratchOut,
4605 uint32_t blockSize);
4606
4607
4608 /**
4609 * @brief Initialization function for the Q7 sparse FIR filter.
4610 * @param[in,out] S points to an instance of the Q7 sparse FIR structure.
4611 * @param[in] numTaps number of nonzero coefficients in the filter.
4612 * @param[in] pCoeffs points to the array of filter coefficients.
4613 * @param[in] pState points to the state buffer.
4614 * @param[in] pTapDelay points to the array of offset times.
4615 * @param[in] maxDelay maximum offset time supported.
4616 * @param[in] blockSize number of samples that will be processed per block.
4617 */
4618 void arm_fir_sparse_init_q7(
4619 arm_fir_sparse_instance_q7 * S,
4620 uint16_t numTaps,
4621 q7_t * pCoeffs,
4622 q7_t * pState,
4623 int32_t * pTapDelay,
4624 uint16_t maxDelay,
4625 uint32_t blockSize);
4626
4627
4628 /**
4629 * @brief Floating-point sin_cos function.
4630 * @param[in] theta input value in degrees
4631 * @param[out] pSinVal points to the processed sine output.
4632 * @param[out] pCosVal points to the processed cos output.
4633 */
4634 void arm_sin_cos_f32(
4635 float32_t theta,
4636 float32_t * pSinVal,
4637 float32_t * pCosVal);
4638
4639
4640 /**
4641 * @brief Q31 sin_cos function.
4642 * @param[in] theta scaled input value in degrees
4643 * @param[out] pSinVal points to the processed sine output.
4644 * @param[out] pCosVal points to the processed cosine output.
4645 */
4646 void arm_sin_cos_q31(
4647 q31_t theta,
4648 q31_t * pSinVal,
4649 q31_t * pCosVal);
4650
4651
4652 /**
4653 * @brief Floating-point complex conjugate.
4654 * @param[in] pSrc points to the input vector
4655 * @param[out] pDst points to the output vector
4656 * @param[in] numSamples number of complex samples in each vector
4657 */
4658 void arm_cmplx_conj_f32(
4659 float32_t * pSrc,
4660 float32_t * pDst,
4661 uint32_t numSamples);
4662
4663 /**
4664 * @brief Q31 complex conjugate.
4665 * @param[in] pSrc points to the input vector
4666 * @param[out] pDst points to the output vector
4667 * @param[in] numSamples number of complex samples in each vector
4668 */
4669 void arm_cmplx_conj_q31(
4670 q31_t * pSrc,
4671 q31_t * pDst,
4672 uint32_t numSamples);
4673
4674
4675 /**
4676 * @brief Q15 complex conjugate.
4677 * @param[in] pSrc points to the input vector
4678 * @param[out] pDst points to the output vector
4679 * @param[in] numSamples number of complex samples in each vector
4680 */
4681 void arm_cmplx_conj_q15(
4682 q15_t * pSrc,
4683 q15_t * pDst,
4684 uint32_t numSamples);
4685
4686
4687 /**
4688 * @brief Floating-point complex magnitude squared
4689 * @param[in] pSrc points to the complex input vector
4690 * @param[out] pDst points to the real output vector
4691 * @param[in] numSamples number of complex samples in the input vector
4692 */
4693 void arm_cmplx_mag_squared_f32(
4694 float32_t * pSrc,
4695 float32_t * pDst,
4696 uint32_t numSamples);
4697
4698
4699 /**
4700 * @brief Q31 complex magnitude squared
4701 * @param[in] pSrc points to the complex input vector
4702 * @param[out] pDst points to the real output vector
4703 * @param[in] numSamples number of complex samples in the input vector
4704 */
4705 void arm_cmplx_mag_squared_q31(
4706 q31_t * pSrc,
4707 q31_t * pDst,
4708 uint32_t numSamples);
4709
4710
4711 /**
4712 * @brief Q15 complex magnitude squared
4713 * @param[in] pSrc points to the complex input vector
4714 * @param[out] pDst points to the real output vector
4715 * @param[in] numSamples number of complex samples in the input vector
4716 */
4717 void arm_cmplx_mag_squared_q15(
4718 q15_t * pSrc,
4719 q15_t * pDst,
4720 uint32_t numSamples);
4721
4722
4723 /**
4724 * @ingroup groupController
4725 */
4726
4727 /**
4728 * @defgroup PID PID Motor Control
4729 *
4730 * A Proportional Integral Derivative (PID) controller is a generic feedback control
4731 * loop mechanism widely used in industrial control systems.
4732 * A PID controller is the most commonly used type of feedback controller.
4733 *
4734 * This set of functions implements (PID) controllers
4735 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
4736 * of data and each call to the function returns a single processed value.
4737 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
4738 * is the input sample value. The functions return the output value.
4739 *
4740 * \par Algorithm:
4741 * <pre>
4742 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
4743 * A0 = Kp + Ki + Kd
4744 * A1 = (-Kp ) - (2 * Kd )
4745 * A2 = Kd </pre>
4746 *
4747 * \par
4748 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
4749 *
4750 * \par
4751 * \image html PID.gif "Proportional Integral Derivative Controller"
4752 *
4753 * \par
4754 * The PID controller calculates an "error" value as the difference between
4755 * the measured output and the reference input.
4756 * The controller attempts to minimize the error by adjusting the process control inputs.
4757 * The proportional value determines the reaction to the current error,
4758 * the integral value determines the reaction based on the sum of recent errors,
4759 * and the derivative value determines the reaction based on the rate at which the error has been changing.
4760 *
4761 * \par Instance Structure
4762 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
4763 * A separate instance structure must be defined for each PID Controller.
4764 * There are separate instance structure declarations for each of the 3 supported data types.
4765 *
4766 * \par Reset Functions
4767 * There is also an associated reset function for each data type which clears the state array.
4768 *
4769 * \par Initialization Functions
4770 * There is also an associated initialization function for each data type.
4771 * The initialization function performs the following operations:
4772 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
4773 * - Zeros out the values in the state buffer.
4774 *
4775 * \par
4776 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
4777 *
4778 * \par Fixed-Point Behavior
4779 * Care must be taken when using the fixed-point versions of the PID Controller functions.
4780 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
4781 * Refer to the function specific documentation below for usage guidelines.
4782 */
4783
4784 /**
4785 * @addtogroup PID
4786 * @{
4787 */
4788
4789 /**
4790 * @brief Process function for the floating-point PID Control.
4791 * @param[in,out] S is an instance of the floating-point PID Control structure
4792 * @param[in] in input sample to process
4793 * @return out processed output sample.
4794 */
4795 static __INLINE float32_t arm_pid_f32(
4796 arm_pid_instance_f32 * S,
4797 float32_t in)
4798 {
4799 float32_t out;
4800
4801 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
4802 out = (S->A0 * in) +
4803 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
4804
4805 /* Update state */
4806 S->state[1] = S->state[0];
4807 S->state[0] = in;
4808 S->state[2] = out;
4809
4810 /* return to application */
4811 return (out);
4812
4813 }
4814
4815 /**
4816 * @brief Process function for the Q31 PID Control.
4817 * @param[in,out] S points to an instance of the Q31 PID Control structure
4818 * @param[in] in input sample to process
4819 * @return out processed output sample.
4820 *
4821 * <b>Scaling and Overflow Behavior:</b>
4822 * \par
4823 * The function is implemented using an internal 64-bit accumulator.
4824 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
4825 * Thus, if the accumulator result overflows it wraps around rather than clip.
4826 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
4827 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
4828 */
4829 static __INLINE q31_t arm_pid_q31(
4830 arm_pid_instance_q31 * S,
4831 q31_t in)
4832 {
4833 q63_t acc;
4834 q31_t out;
4835
4836 /* acc = A0 * x[n] */
4837 acc = (q63_t) S->A0 * in;
4838
4839 /* acc += A1 * x[n-1] */
4840 acc += (q63_t) S->A1 * S->state[0];
4841
4842 /* acc += A2 * x[n-2] */
4843 acc += (q63_t) S->A2 * S->state[1];
4844
4845 /* convert output to 1.31 format to add y[n-1] */
4846 out = (q31_t) (acc >> 31u);
4847
4848 /* out += y[n-1] */
4849 out += S->state[2];
4850
4851 /* Update state */
4852 S->state[1] = S->state[0];
4853 S->state[0] = in;
4854 S->state[2] = out;
4855
4856 /* return to application */
4857 return (out);
4858 }
4859
4860
4861 /**
4862 * @brief Process function for the Q15 PID Control.
4863 * @param[in,out] S points to an instance of the Q15 PID Control structure
4864 * @param[in] in input sample to process
4865 * @return out processed output sample.
4866 *
4867 * <b>Scaling and Overflow Behavior:</b>
4868 * \par
4869 * The function is implemented using a 64-bit internal accumulator.
4870 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
4871 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
4872 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
4873 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
4874 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
4875 */
4876 static __INLINE q15_t arm_pid_q15(
4877 arm_pid_instance_q15 * S,
4878 q15_t in)
4879 {
4880 q63_t acc;
4881 q15_t out;
4882
4883 #ifndef ARM_MATH_CM0_FAMILY
4884 __SIMD32_TYPE *vstate;
4885
4886 /* Implementation of PID controller */
4887
4888 /* acc = A0 * x[n] */
4889 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
4890
4891 /* acc += A1 * x[n-1] + A2 * x[n-2] */
4892 vstate = __SIMD32_CONST(S->state);
4893 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
4894 #else
4895 /* acc = A0 * x[n] */
4896 acc = ((q31_t) S->A0) * in;
4897
4898 /* acc += A1 * x[n-1] + A2 * x[n-2] */
4899 acc += (q31_t) S->A1 * S->state[0];
4900 acc += (q31_t) S->A2 * S->state[1];
4901 #endif
4902
4903 /* acc += y[n-1] */
4904 acc += (q31_t) S->state[2] << 15;
4905
4906 /* saturate the output */
4907 out = (q15_t) (__SSAT((acc >> 15), 16));
4908
4909 /* Update state */
4910 S->state[1] = S->state[0];
4911 S->state[0] = in;
4912 S->state[2] = out;
4913
4914 /* return to application */
4915 return (out);
4916 }
4917
4918 /**
4919 * @} end of PID group
4920 */
4921
4922
4923 /**
4924 * @brief Floating-point matrix inverse.
4925 * @param[in] src points to the instance of the input floating-point matrix structure.
4926 * @param[out] dst points to the instance of the output floating-point matrix structure.
4927 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
4928 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
4929 */
4930 arm_status arm_mat_inverse_f32(
4931 const arm_matrix_instance_f32 * src,
4932 arm_matrix_instance_f32 * dst);
4933
4934
4935 /**
4936 * @brief Floating-point matrix inverse.
4937 * @param[in] src points to the instance of the input floating-point matrix structure.
4938 * @param[out] dst points to the instance of the output floating-point matrix structure.
4939 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
4940 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
4941 */
4942 arm_status arm_mat_inverse_f64(
4943 const arm_matrix_instance_f64 * src,
4944 arm_matrix_instance_f64 * dst);
4945
4946
4947
4948 /**
4949 * @ingroup groupController
4950 */
4951
4952 /**
4953 * @defgroup clarke Vector Clarke Transform
4954 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
4955 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
4956 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
4957 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
4958 * \image html clarke.gif Stator current space vector and its components in (a,b).
4959 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
4960 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
4961 *
4962 * The function operates on a single sample of data and each call to the function returns the processed output.
4963 * The library provides separate functions for Q31 and floating-point data types.
4964 * \par Algorithm
4965 * \image html clarkeFormula.gif
4966 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
4967 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
4968 * \par Fixed-Point Behavior
4969 * Care must be taken when using the Q31 version of the Clarke transform.
4970 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
4971 * Refer to the function specific documentation below for usage guidelines.
4972 */
4973
4974 /**
4975 * @addtogroup clarke
4976 * @{
4977 */
4978
4979 /**
4980 *
4981 * @brief Floating-point Clarke transform
4982 * @param[in] Ia input three-phase coordinate <code>a</code>
4983 * @param[in] Ib input three-phase coordinate <code>b</code>
4984 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
4985 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
4986 */
4987 static __INLINE void arm_clarke_f32(
4988 float32_t Ia,
4989 float32_t Ib,
4990 float32_t * pIalpha,
4991 float32_t * pIbeta)
4992 {
4993 /* Calculate pIalpha using the equation, pIalpha = Ia */
4994 *pIalpha = Ia;
4995
4996 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
4997 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
4998 }
4999
5000
5001 /**
5002 * @brief Clarke transform for Q31 version
5003 * @param[in] Ia input three-phase coordinate <code>a</code>
5004 * @param[in] Ib input three-phase coordinate <code>b</code>
5005 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
5006 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
5007 *
5008 * <b>Scaling and Overflow Behavior:</b>
5009 * \par
5010 * The function is implemented using an internal 32-bit accumulator.
5011 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5012 * There is saturation on the addition, hence there is no risk of overflow.
5013 */
5014 static __INLINE void arm_clarke_q31(
5015 q31_t Ia,
5016 q31_t Ib,
5017 q31_t * pIalpha,
5018 q31_t * pIbeta)
5019 {
5020 q31_t product1, product2; /* Temporary variables used to store intermediate results */
5021
5022 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
5023 *pIalpha = Ia;
5024
5025 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
5026 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
5027
5028 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
5029 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
5030
5031 /* pIbeta is calculated by adding the intermediate products */
5032 *pIbeta = __QADD(product1, product2);
5033 }
5034
5035 /**
5036 * @} end of clarke group
5037 */
5038
5039 /**
5040 * @brief Converts the elements of the Q7 vector to Q31 vector.
5041 * @param[in] pSrc input pointer
5042 * @param[out] pDst output pointer
5043 * @param[in] blockSize number of samples to process
5044 */
5045 void arm_q7_to_q31(
5046 q7_t * pSrc,
5047 q31_t * pDst,
5048 uint32_t blockSize);
5049
5050
5051
5052 /**
5053 * @ingroup groupController
5054 */
5055
5056 /**
5057 * @defgroup inv_clarke Vector Inverse Clarke Transform
5058 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
5059 *
5060 * The function operates on a single sample of data and each call to the function returns the processed output.
5061 * The library provides separate functions for Q31 and floating-point data types.
5062 * \par Algorithm
5063 * \image html clarkeInvFormula.gif
5064 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
5065 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
5066 * \par Fixed-Point Behavior
5067 * Care must be taken when using the Q31 version of the Clarke transform.
5068 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5069 * Refer to the function specific documentation below for usage guidelines.
5070 */
5071
5072 /**
5073 * @addtogroup inv_clarke
5074 * @{
5075 */
5076
5077 /**
5078 * @brief Floating-point Inverse Clarke transform
5079 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
5080 * @param[in] Ibeta input two-phase orthogonal vector axis beta
5081 * @param[out] pIa points to output three-phase coordinate <code>a</code>
5082 * @param[out] pIb points to output three-phase coordinate <code>b</code>
5083 */
5084 static __INLINE void arm_inv_clarke_f32(
5085 float32_t Ialpha,
5086 float32_t Ibeta,
5087 float32_t * pIa,
5088 float32_t * pIb)
5089 {
5090 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
5091 *pIa = Ialpha;
5092
5093 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
5094 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
5095 }
5096
5097
5098 /**
5099 * @brief Inverse Clarke transform for Q31 version
5100 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
5101 * @param[in] Ibeta input two-phase orthogonal vector axis beta
5102 * @param[out] pIa points to output three-phase coordinate <code>a</code>
5103 * @param[out] pIb points to output three-phase coordinate <code>b</code>
5104 *
5105 * <b>Scaling and Overflow Behavior:</b>
5106 * \par
5107 * The function is implemented using an internal 32-bit accumulator.
5108 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5109 * There is saturation on the subtraction, hence there is no risk of overflow.
5110 */
5111 static __INLINE void arm_inv_clarke_q31(
5112 q31_t Ialpha,
5113 q31_t Ibeta,
5114 q31_t * pIa,
5115 q31_t * pIb)
5116 {
5117 q31_t product1, product2; /* Temporary variables used to store intermediate results */
5118
5119 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
5120 *pIa = Ialpha;
5121
5122 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
5123 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
5124
5125 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
5126 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
5127
5128 /* pIb is calculated by subtracting the products */
5129 *pIb = __QSUB(product2, product1);
5130 }
5131
5132 /**
5133 * @} end of inv_clarke group
5134 */
5135
5136 /**
5137 * @brief Converts the elements of the Q7 vector to Q15 vector.
5138 * @param[in] pSrc input pointer
5139 * @param[out] pDst output pointer
5140 * @param[in] blockSize number of samples to process
5141 */
5142 void arm_q7_to_q15(
5143 q7_t * pSrc,
5144 q15_t * pDst,
5145 uint32_t blockSize);
5146
5147
5148
5149 /**
5150 * @ingroup groupController
5151 */
5152
5153 /**
5154 * @defgroup park Vector Park Transform
5155 *
5156 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
5157 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
5158 * from the stationary to the moving reference frame and control the spatial relationship between
5159 * the stator vector current and rotor flux vector.
5160 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
5161 * current vector and the relationship from the two reference frames:
5162 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
5163 *
5164 * The function operates on a single sample of data and each call to the function returns the processed output.
5165 * The library provides separate functions for Q31 and floating-point data types.
5166 * \par Algorithm
5167 * \image html parkFormula.gif
5168 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
5169 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
5170 * cosine and sine values of theta (rotor flux position).
5171 * \par Fixed-Point Behavior
5172 * Care must be taken when using the Q31 version of the Park transform.
5173 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5174 * Refer to the function specific documentation below for usage guidelines.
5175 */
5176
5177 /**
5178 * @addtogroup park
5179 * @{
5180 */
5181
5182 /**
5183 * @brief Floating-point Park transform
5184 * @param[in] Ialpha input two-phase vector coordinate alpha
5185 * @param[in] Ibeta input two-phase vector coordinate beta
5186 * @param[out] pId points to output rotor reference frame d
5187 * @param[out] pIq points to output rotor reference frame q
5188 * @param[in] sinVal sine value of rotation angle theta
5189 * @param[in] cosVal cosine value of rotation angle theta
5190 *
5191 * The function implements the forward Park transform.
5192 *
5193 */
5194 static __INLINE void arm_park_f32(
5195 float32_t Ialpha,
5196 float32_t Ibeta,
5197 float32_t * pId,
5198 float32_t * pIq,
5199 float32_t sinVal,
5200 float32_t cosVal)
5201 {
5202 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
5203 *pId = Ialpha * cosVal + Ibeta * sinVal;
5204
5205 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
5206 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
5207 }
5208
5209
5210 /**
5211 * @brief Park transform for Q31 version
5212 * @param[in] Ialpha input two-phase vector coordinate alpha
5213 * @param[in] Ibeta input two-phase vector coordinate beta
5214 * @param[out] pId points to output rotor reference frame d
5215 * @param[out] pIq points to output rotor reference frame q
5216 * @param[in] sinVal sine value of rotation angle theta
5217 * @param[in] cosVal cosine value of rotation angle theta
5218 *
5219 * <b>Scaling and Overflow Behavior:</b>
5220 * \par
5221 * The function is implemented using an internal 32-bit accumulator.
5222 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5223 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
5224 */
5225 static __INLINE void arm_park_q31(
5226 q31_t Ialpha,
5227 q31_t Ibeta,
5228 q31_t * pId,
5229 q31_t * pIq,
5230 q31_t sinVal,
5231 q31_t cosVal)
5232 {
5233 q31_t product1, product2; /* Temporary variables used to store intermediate results */
5234 q31_t product3, product4; /* Temporary variables used to store intermediate results */
5235
5236 /* Intermediate product is calculated by (Ialpha * cosVal) */
5237 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
5238
5239 /* Intermediate product is calculated by (Ibeta * sinVal) */
5240 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
5241
5242
5243 /* Intermediate product is calculated by (Ialpha * sinVal) */
5244 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
5245
5246 /* Intermediate product is calculated by (Ibeta * cosVal) */
5247 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
5248
5249 /* Calculate pId by adding the two intermediate products 1 and 2 */
5250 *pId = __QADD(product1, product2);
5251
5252 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
5253 *pIq = __QSUB(product4, product3);
5254 }
5255
5256 /**
5257 * @} end of park group
5258 */
5259
5260 /**
5261 * @brief Converts the elements of the Q7 vector to floating-point vector.
5262 * @param[in] pSrc is input pointer
5263 * @param[out] pDst is output pointer
5264 * @param[in] blockSize is the number of samples to process
5265 */
5266 void arm_q7_to_float(
5267 q7_t * pSrc,
5268 float32_t * pDst,
5269 uint32_t blockSize);
5270
5271
5272 /**
5273 * @ingroup groupController
5274 */
5275
5276 /**
5277 * @defgroup inv_park Vector Inverse Park transform
5278 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
5279 *
5280 * The function operates on a single sample of data and each call to the function returns the processed output.
5281 * The library provides separate functions for Q31 and floating-point data types.
5282 * \par Algorithm
5283 * \image html parkInvFormula.gif
5284 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
5285 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
5286 * cosine and sine values of theta (rotor flux position).
5287 * \par Fixed-Point Behavior
5288 * Care must be taken when using the Q31 version of the Park transform.
5289 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
5290 * Refer to the function specific documentation below for usage guidelines.
5291 */
5292
5293 /**
5294 * @addtogroup inv_park
5295 * @{
5296 */
5297
5298 /**
5299 * @brief Floating-point Inverse Park transform
5300 * @param[in] Id input coordinate of rotor reference frame d
5301 * @param[in] Iq input coordinate of rotor reference frame q
5302 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
5303 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
5304 * @param[in] sinVal sine value of rotation angle theta
5305 * @param[in] cosVal cosine value of rotation angle theta
5306 */
5307 static __INLINE void arm_inv_park_f32(
5308 float32_t Id,
5309 float32_t Iq,
5310 float32_t * pIalpha,
5311 float32_t * pIbeta,
5312 float32_t sinVal,
5313 float32_t cosVal)
5314 {
5315 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
5316 *pIalpha = Id * cosVal - Iq * sinVal;
5317
5318 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
5319 *pIbeta = Id * sinVal + Iq * cosVal;
5320 }
5321
5322
5323 /**
5324 * @brief Inverse Park transform for Q31 version
5325 * @param[in] Id input coordinate of rotor reference frame d
5326 * @param[in] Iq input coordinate of rotor reference frame q
5327 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
5328 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
5329 * @param[in] sinVal sine value of rotation angle theta
5330 * @param[in] cosVal cosine value of rotation angle theta
5331 *
5332 * <b>Scaling and Overflow Behavior:</b>
5333 * \par
5334 * The function is implemented using an internal 32-bit accumulator.
5335 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
5336 * There is saturation on the addition, hence there is no risk of overflow.
5337 */
5338 static __INLINE void arm_inv_park_q31(
5339 q31_t Id,
5340 q31_t Iq,
5341 q31_t * pIalpha,
5342 q31_t * pIbeta,
5343 q31_t sinVal,
5344 q31_t cosVal)
5345 {
5346 q31_t product1, product2; /* Temporary variables used to store intermediate results */
5347 q31_t product3, product4; /* Temporary variables used to store intermediate results */
5348
5349 /* Intermediate product is calculated by (Id * cosVal) */
5350 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
5351
5352 /* Intermediate product is calculated by (Iq * sinVal) */
5353 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
5354
5355
5356 /* Intermediate product is calculated by (Id * sinVal) */
5357 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
5358
5359 /* Intermediate product is calculated by (Iq * cosVal) */
5360 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
5361
5362 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
5363 *pIalpha = __QSUB(product1, product2);
5364
5365 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
5366 *pIbeta = __QADD(product4, product3);
5367 }
5368
5369 /**
5370 * @} end of Inverse park group
5371 */
5372
5373
5374 /**
5375 * @brief Converts the elements of the Q31 vector to floating-point vector.
5376 * @param[in] pSrc is input pointer
5377 * @param[out] pDst is output pointer
5378 * @param[in] blockSize is the number of samples to process
5379 */
5380 void arm_q31_to_float(
5381 q31_t * pSrc,
5382 float32_t * pDst,
5383 uint32_t blockSize);
5384
5385 /**
5386 * @ingroup groupInterpolation
5387 */
5388
5389 /**
5390 * @defgroup LinearInterpolate Linear Interpolation
5391 *
5392 * Linear interpolation is a method of curve fitting using linear polynomials.
5393 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
5394 *
5395 * \par
5396 * \image html LinearInterp.gif "Linear interpolation"
5397 *
5398 * \par
5399 * A Linear Interpolate function calculates an output value(y), for the input(x)
5400 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
5401 *
5402 * \par Algorithm:
5403 * <pre>
5404 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
5405 * where x0, x1 are nearest values of input x
5406 * y0, y1 are nearest values to output y
5407 * </pre>
5408 *
5409 * \par
5410 * This set of functions implements Linear interpolation process
5411 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
5412 * sample of data and each call to the function returns a single processed value.
5413 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
5414 * <code>x</code> is the input sample value. The functions returns the output value.
5415 *
5416 * \par
5417 * if x is outside of the table boundary, Linear interpolation returns first value of the table
5418 * if x is below input range and returns last value of table if x is above range.
5419 */
5420
5421 /**
5422 * @addtogroup LinearInterpolate
5423 * @{
5424 */
5425
5426 /**
5427 * @brief Process function for the floating-point Linear Interpolation Function.
5428 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
5429 * @param[in] x input sample to process
5430 * @return y processed output sample.
5431 *
5432 */
5433 static __INLINE float32_t arm_linear_interp_f32(
5434 arm_linear_interp_instance_f32 * S,
5435 float32_t x)
5436 {
5437 float32_t y;
5438 float32_t x0, x1; /* Nearest input values */
5439 float32_t y0, y1; /* Nearest output values */
5440 float32_t xSpacing = S->xSpacing; /* spacing between input values */
5441 int32_t i; /* Index variable */
5442 float32_t *pYData = S->pYData; /* pointer to output table */
5443
5444 /* Calculation of index */
5445 i = (int32_t) ((x - S->x1) / xSpacing);
5446
5447 if(i < 0)
5448 {
5449 /* Iniatilize output for below specified range as least output value of table */
5450 y = pYData[0];
5451 }
5452 else if((uint32_t)i >= S->nValues)
5453 {
5454 /* Iniatilize output for above specified range as last output value of table */
5455 y = pYData[S->nValues - 1];
5456 }
5457 else
5458 {
5459 /* Calculation of nearest input values */
5460 x0 = S->x1 + i * xSpacing;
5461 x1 = S->x1 + (i + 1) * xSpacing;
5462
5463 /* Read of nearest output values */
5464 y0 = pYData[i];
5465 y1 = pYData[i + 1];
5466
5467 /* Calculation of output */
5468 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
5469
5470 }
5471
5472 /* returns output value */
5473 return (y);
5474 }
5475
5476
5477 /**
5478 *
5479 * @brief Process function for the Q31 Linear Interpolation Function.
5480 * @param[in] pYData pointer to Q31 Linear Interpolation table
5481 * @param[in] x input sample to process
5482 * @param[in] nValues number of table values
5483 * @return y processed output sample.
5484 *
5485 * \par
5486 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5487 * This function can support maximum of table size 2^12.
5488 *
5489 */
5490 static __INLINE q31_t arm_linear_interp_q31(
5491 q31_t * pYData,
5492 q31_t x,
5493 uint32_t nValues)
5494 {
5495 q31_t y; /* output */
5496 q31_t y0, y1; /* Nearest output values */
5497 q31_t fract; /* fractional part */
5498 int32_t index; /* Index to read nearest output values */
5499
5500 /* Input is in 12.20 format */
5501 /* 12 bits for the table index */
5502 /* Index value calculation */
5503 index = ((x & (q31_t)0xFFF00000) >> 20);
5504
5505 if(index >= (int32_t)(nValues - 1))
5506 {
5507 return (pYData[nValues - 1]);
5508 }
5509 else if(index < 0)
5510 {
5511 return (pYData[0]);
5512 }
5513 else
5514 {
5515 /* 20 bits for the fractional part */
5516 /* shift left by 11 to keep fract in 1.31 format */
5517 fract = (x & 0x000FFFFF) << 11;
5518
5519 /* Read two nearest output values from the index in 1.31(q31) format */
5520 y0 = pYData[index];
5521 y1 = pYData[index + 1];
5522
5523 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
5524 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
5525
5526 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
5527 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
5528
5529 /* Convert y to 1.31 format */
5530 return (y << 1u);
5531 }
5532 }
5533
5534
5535 /**
5536 *
5537 * @brief Process function for the Q15 Linear Interpolation Function.
5538 * @param[in] pYData pointer to Q15 Linear Interpolation table
5539 * @param[in] x input sample to process
5540 * @param[in] nValues number of table values
5541 * @return y processed output sample.
5542 *
5543 * \par
5544 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5545 * This function can support maximum of table size 2^12.
5546 *
5547 */
5548 static __INLINE q15_t arm_linear_interp_q15(
5549 q15_t * pYData,
5550 q31_t x,
5551 uint32_t nValues)
5552 {
5553 q63_t y; /* output */
5554 q15_t y0, y1; /* Nearest output values */
5555 q31_t fract; /* fractional part */
5556 int32_t index; /* Index to read nearest output values */
5557
5558 /* Input is in 12.20 format */
5559 /* 12 bits for the table index */
5560 /* Index value calculation */
5561 index = ((x & (int32_t)0xFFF00000) >> 20);
5562
5563 if(index >= (int32_t)(nValues - 1))
5564 {
5565 return (pYData[nValues - 1]);
5566 }
5567 else if(index < 0)
5568 {
5569 return (pYData[0]);
5570 }
5571 else
5572 {
5573 /* 20 bits for the fractional part */
5574 /* fract is in 12.20 format */
5575 fract = (x & 0x000FFFFF);
5576
5577 /* Read two nearest output values from the index */
5578 y0 = pYData[index];
5579 y1 = pYData[index + 1];
5580
5581 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
5582 y = ((q63_t) y0 * (0xFFFFF - fract));
5583
5584 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
5585 y += ((q63_t) y1 * (fract));
5586
5587 /* convert y to 1.15 format */
5588 return (q15_t) (y >> 20);
5589 }
5590 }
5591
5592
5593 /**
5594 *
5595 * @brief Process function for the Q7 Linear Interpolation Function.
5596 * @param[in] pYData pointer to Q7 Linear Interpolation table
5597 * @param[in] x input sample to process
5598 * @param[in] nValues number of table values
5599 * @return y processed output sample.
5600 *
5601 * \par
5602 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
5603 * This function can support maximum of table size 2^12.
5604 */
5605 static __INLINE q7_t arm_linear_interp_q7(
5606 q7_t * pYData,
5607 q31_t x,
5608 uint32_t nValues)
5609 {
5610 q31_t y; /* output */
5611 q7_t y0, y1; /* Nearest output values */
5612 q31_t fract; /* fractional part */
5613 uint32_t index; /* Index to read nearest output values */
5614
5615 /* Input is in 12.20 format */
5616 /* 12 bits for the table index */
5617 /* Index value calculation */
5618 if (x < 0)
5619 {
5620 return (pYData[0]);
5621 }
5622 index = (x >> 20) & 0xfff;
5623
5624 if(index >= (nValues - 1))
5625 {
5626 return (pYData[nValues - 1]);
5627 }
5628 else
5629 {
5630 /* 20 bits for the fractional part */
5631 /* fract is in 12.20 format */
5632 fract = (x & 0x000FFFFF);
5633
5634 /* Read two nearest output values from the index and are in 1.7(q7) format */
5635 y0 = pYData[index];
5636 y1 = pYData[index + 1];
5637
5638 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
5639 y = ((y0 * (0xFFFFF - fract)));
5640
5641 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
5642 y += (y1 * fract);
5643
5644 /* convert y to 1.7(q7) format */
5645 return (q7_t) (y >> 20);
5646 }
5647 }
5648
5649 /**
5650 * @} end of LinearInterpolate group
5651 */
5652
5653 /**
5654 * @brief Fast approximation to the trigonometric sine function for floating-point data.
5655 * @param[in] x input value in radians.
5656 * @return sin(x).
5657 */
5658 float32_t arm_sin_f32(
5659 float32_t x);
5660
5661
5662 /**
5663 * @brief Fast approximation to the trigonometric sine function for Q31 data.
5664 * @param[in] x Scaled input value in radians.
5665 * @return sin(x).
5666 */
5667 q31_t arm_sin_q31(
5668 q31_t x);
5669
5670
5671 /**
5672 * @brief Fast approximation to the trigonometric sine function for Q15 data.
5673 * @param[in] x Scaled input value in radians.
5674 * @return sin(x).
5675 */
5676 q15_t arm_sin_q15(
5677 q15_t x);
5678
5679
5680 /**
5681 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
5682 * @param[in] x input value in radians.
5683 * @return cos(x).
5684 */
5685 float32_t arm_cos_f32(
5686 float32_t x);
5687
5688
5689 /**
5690 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
5691 * @param[in] x Scaled input value in radians.
5692 * @return cos(x).
5693 */
5694 q31_t arm_cos_q31(
5695 q31_t x);
5696
5697
5698 /**
5699 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
5700 * @param[in] x Scaled input value in radians.
5701 * @return cos(x).
5702 */
5703 q15_t arm_cos_q15(
5704 q15_t x);
5705
5706
5707 /**
5708 * @ingroup groupFastMath
5709 */
5710
5711
5712 /**
5713 * @defgroup SQRT Square Root
5714 *
5715 * Computes the square root of a number.
5716 * There are separate functions for Q15, Q31, and floating-point data types.
5717 * The square root function is computed using the Newton-Raphson algorithm.
5718 * This is an iterative algorithm of the form:
5719 * <pre>
5720 * x1 = x0 - f(x0)/f'(x0)
5721 * </pre>
5722 * where <code>x1</code> is the current estimate,
5723 * <code>x0</code> is the previous estimate, and
5724 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
5725 * For the square root function, the algorithm reduces to:
5726 * <pre>
5727 * x0 = in/2 [initial guess]
5728 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
5729 * </pre>
5730 */
5731
5732
5733 /**
5734 * @addtogroup SQRT
5735 * @{
5736 */
5737
5738 /**
5739 * @brief Floating-point square root function.
5740 * @param[in] in input value.
5741 * @param[out] pOut square root of input value.
5742 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
5743 * <code>in</code> is negative value and returns zero output for negative values.
5744 */
5745 static __INLINE arm_status arm_sqrt_f32(
5746 float32_t in,
5747 float32_t * pOut)
5748 {
5749 if(in >= 0.0f)
5750 {
5751
5752 #if (__FPU_USED == 1) && defined ( __CC_ARM )
5753 *pOut = __sqrtf(in);
5754 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
5755 *pOut = __builtin_sqrtf(in);
5756 #elif (__FPU_USED == 1) && defined(__GNUC__)
5757 *pOut = __builtin_sqrtf(in);
5758 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
5759 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
5760 #else
5761 *pOut = sqrtf(in);
5762 #endif
5763
5764 return (ARM_MATH_SUCCESS);
5765 }
5766 else
5767 {
5768 *pOut = 0.0f;
5769 return (ARM_MATH_ARGUMENT_ERROR);
5770 }
5771 }
5772
5773
5774 /**
5775 * @brief Q31 square root function.
5776 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
5777 * @param[out] pOut square root of input value.
5778 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
5779 * <code>in</code> is negative value and returns zero output for negative values.
5780 */
5781 arm_status arm_sqrt_q31(
5782 q31_t in,
5783 q31_t * pOut);
5784
5785
5786 /**
5787 * @brief Q15 square root function.
5788 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
5789 * @param[out] pOut square root of input value.
5790 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
5791 * <code>in</code> is negative value and returns zero output for negative values.
5792 */
5793 arm_status arm_sqrt_q15(
5794 q15_t in,
5795 q15_t * pOut);
5796
5797 /**
5798 * @} end of SQRT group
5799 */
5800
5801
5802 /**
5803 * @brief floating-point Circular write function.
5804 */
5805 static __INLINE void arm_circularWrite_f32(
5806 int32_t * circBuffer,
5807 int32_t L,
5808 uint16_t * writeOffset,
5809 int32_t bufferInc,
5810 const int32_t * src,
5811 int32_t srcInc,
5812 uint32_t blockSize)
5813 {
5814 uint32_t i = 0u;
5815 int32_t wOffset;
5816
5817 /* Copy the value of Index pointer that points
5818 * to the current location where the input samples to be copied */
5819 wOffset = *writeOffset;
5820
5821 /* Loop over the blockSize */
5822 i = blockSize;
5823
5824 while(i > 0u)
5825 {
5826 /* copy the input sample to the circular buffer */
5827 circBuffer[wOffset] = *src;
5828
5829 /* Update the input pointer */
5830 src += srcInc;
5831
5832 /* Circularly update wOffset. Watch out for positive and negative value */
5833 wOffset += bufferInc;
5834 if(wOffset >= L)
5835 wOffset -= L;
5836
5837 /* Decrement the loop counter */
5838 i--;
5839 }
5840
5841 /* Update the index pointer */
5842 *writeOffset = (uint16_t)wOffset;
5843 }
5844
5845
5846
5847 /**
5848 * @brief floating-point Circular Read function.
5849 */
5850 static __INLINE void arm_circularRead_f32(
5851 int32_t * circBuffer,
5852 int32_t L,
5853 int32_t * readOffset,
5854 int32_t bufferInc,
5855 int32_t * dst,
5856 int32_t * dst_base,
5857 int32_t dst_length,
5858 int32_t dstInc,
5859 uint32_t blockSize)
5860 {
5861 uint32_t i = 0u;
5862 int32_t rOffset, dst_end;
5863
5864 /* Copy the value of Index pointer that points
5865 * to the current location from where the input samples to be read */
5866 rOffset = *readOffset;
5867 dst_end = (int32_t) (dst_base + dst_length);
5868
5869 /* Loop over the blockSize */
5870 i = blockSize;
5871
5872 while(i > 0u)
5873 {
5874 /* copy the sample from the circular buffer to the destination buffer */
5875 *dst = circBuffer[rOffset];
5876
5877 /* Update the input pointer */
5878 dst += dstInc;
5879
5880 if(dst == (int32_t *) dst_end)
5881 {
5882 dst = dst_base;
5883 }
5884
5885 /* Circularly update rOffset. Watch out for positive and negative value */
5886 rOffset += bufferInc;
5887
5888 if(rOffset >= L)
5889 {
5890 rOffset -= L;
5891 }
5892
5893 /* Decrement the loop counter */
5894 i--;
5895 }
5896
5897 /* Update the index pointer */
5898 *readOffset = rOffset;
5899 }
5900
5901
5902 /**
5903 * @brief Q15 Circular write function.
5904 */
5905 static __INLINE void arm_circularWrite_q15(
5906 q15_t * circBuffer,
5907 int32_t L,
5908 uint16_t * writeOffset,
5909 int32_t bufferInc,
5910 const q15_t * src,
5911 int32_t srcInc,
5912 uint32_t blockSize)
5913 {
5914 uint32_t i = 0u;
5915 int32_t wOffset;
5916
5917 /* Copy the value of Index pointer that points
5918 * to the current location where the input samples to be copied */
5919 wOffset = *writeOffset;
5920
5921 /* Loop over the blockSize */
5922 i = blockSize;
5923
5924 while(i > 0u)
5925 {
5926 /* copy the input sample to the circular buffer */
5927 circBuffer[wOffset] = *src;
5928
5929 /* Update the input pointer */
5930 src += srcInc;
5931
5932 /* Circularly update wOffset. Watch out for positive and negative value */
5933 wOffset += bufferInc;
5934 if(wOffset >= L)
5935 wOffset -= L;
5936
5937 /* Decrement the loop counter */
5938 i--;
5939 }
5940
5941 /* Update the index pointer */
5942 *writeOffset = (uint16_t)wOffset;
5943 }
5944
5945
5946 /**
5947 * @brief Q15 Circular Read function.
5948 */
5949 static __INLINE void arm_circularRead_q15(
5950 q15_t * circBuffer,
5951 int32_t L,
5952 int32_t * readOffset,
5953 int32_t bufferInc,
5954 q15_t * dst,
5955 q15_t * dst_base,
5956 int32_t dst_length,
5957 int32_t dstInc,
5958 uint32_t blockSize)
5959 {
5960 uint32_t i = 0;
5961 int32_t rOffset, dst_end;
5962
5963 /* Copy the value of Index pointer that points
5964 * to the current location from where the input samples to be read */
5965 rOffset = *readOffset;
5966
5967 dst_end = (int32_t) (dst_base + dst_length);
5968
5969 /* Loop over the blockSize */
5970 i = blockSize;
5971
5972 while(i > 0u)
5973 {
5974 /* copy the sample from the circular buffer to the destination buffer */
5975 *dst = circBuffer[rOffset];
5976
5977 /* Update the input pointer */
5978 dst += dstInc;
5979
5980 if(dst == (q15_t *) dst_end)
5981 {
5982 dst = dst_base;
5983 }
5984
5985 /* Circularly update wOffset. Watch out for positive and negative value */
5986 rOffset += bufferInc;
5987
5988 if(rOffset >= L)
5989 {
5990 rOffset -= L;
5991 }
5992
5993 /* Decrement the loop counter */
5994 i--;
5995 }
5996
5997 /* Update the index pointer */
5998 *readOffset = rOffset;
5999 }
6000
6001
6002 /**
6003 * @brief Q7 Circular write function.
6004 */
6005 static __INLINE void arm_circularWrite_q7(
6006 q7_t * circBuffer,
6007 int32_t L,
6008 uint16_t * writeOffset,
6009 int32_t bufferInc,
6010 const q7_t * src,
6011 int32_t srcInc,
6012 uint32_t blockSize)
6013 {
6014 uint32_t i = 0u;
6015 int32_t wOffset;
6016
6017 /* Copy the value of Index pointer that points
6018 * to the current location where the input samples to be copied */
6019 wOffset = *writeOffset;
6020
6021 /* Loop over the blockSize */
6022 i = blockSize;
6023
6024 while(i > 0u)
6025 {
6026 /* copy the input sample to the circular buffer */
6027 circBuffer[wOffset] = *src;
6028
6029 /* Update the input pointer */
6030 src += srcInc;
6031
6032 /* Circularly update wOffset. Watch out for positive and negative value */
6033 wOffset += bufferInc;
6034 if(wOffset >= L)
6035 wOffset -= L;
6036
6037 /* Decrement the loop counter */
6038 i--;
6039 }
6040
6041 /* Update the index pointer */
6042 *writeOffset = (uint16_t)wOffset;
6043 }
6044
6045
6046 /**
6047 * @brief Q7 Circular Read function.
6048 */
6049 static __INLINE void arm_circularRead_q7(
6050 q7_t * circBuffer,
6051 int32_t L,
6052 int32_t * readOffset,
6053 int32_t bufferInc,
6054 q7_t * dst,
6055 q7_t * dst_base,
6056 int32_t dst_length,
6057 int32_t dstInc,
6058 uint32_t blockSize)
6059 {
6060 uint32_t i = 0;
6061 int32_t rOffset, dst_end;
6062
6063 /* Copy the value of Index pointer that points
6064 * to the current location from where the input samples to be read */
6065 rOffset = *readOffset;
6066
6067 dst_end = (int32_t) (dst_base + dst_length);
6068
6069 /* Loop over the blockSize */
6070 i = blockSize;
6071
6072 while(i > 0u)
6073 {
6074 /* copy the sample from the circular buffer to the destination buffer */
6075 *dst = circBuffer[rOffset];
6076
6077 /* Update the input pointer */
6078 dst += dstInc;
6079
6080 if(dst == (q7_t *) dst_end)
6081 {
6082 dst = dst_base;
6083 }
6084
6085 /* Circularly update rOffset. Watch out for positive and negative value */
6086 rOffset += bufferInc;
6087
6088 if(rOffset >= L)
6089 {
6090 rOffset -= L;
6091 }
6092
6093 /* Decrement the loop counter */
6094 i--;
6095 }
6096
6097 /* Update the index pointer */
6098 *readOffset = rOffset;
6099 }
6100
6101
6102 /**
6103 * @brief Sum of the squares of the elements of a Q31 vector.
6104 * @param[in] pSrc is input pointer
6105 * @param[in] blockSize is the number of samples to process
6106 * @param[out] pResult is output value.
6107 */
6108 void arm_power_q31(
6109 q31_t * pSrc,
6110 uint32_t blockSize,
6111 q63_t * pResult);
6112
6113
6114 /**
6115 * @brief Sum of the squares of the elements of a floating-point vector.
6116 * @param[in] pSrc is input pointer
6117 * @param[in] blockSize is the number of samples to process
6118 * @param[out] pResult is output value.
6119 */
6120 void arm_power_f32(
6121 float32_t * pSrc,
6122 uint32_t blockSize,
6123 float32_t * pResult);
6124
6125
6126 /**
6127 * @brief Sum of the squares of the elements of a Q15 vector.
6128 * @param[in] pSrc is input pointer
6129 * @param[in] blockSize is the number of samples to process
6130 * @param[out] pResult is output value.
6131 */
6132 void arm_power_q15(
6133 q15_t * pSrc,
6134 uint32_t blockSize,
6135 q63_t * pResult);
6136
6137
6138 /**
6139 * @brief Sum of the squares of the elements of a Q7 vector.
6140 * @param[in] pSrc is input pointer
6141 * @param[in] blockSize is the number of samples to process
6142 * @param[out] pResult is output value.
6143 */
6144 void arm_power_q7(
6145 q7_t * pSrc,
6146 uint32_t blockSize,
6147 q31_t * pResult);
6148
6149
6150 /**
6151 * @brief Mean value of a Q7 vector.
6152 * @param[in] pSrc is input pointer
6153 * @param[in] blockSize is the number of samples to process
6154 * @param[out] pResult is output value.
6155 */
6156 void arm_mean_q7(
6157 q7_t * pSrc,
6158 uint32_t blockSize,
6159 q7_t * pResult);
6160
6161
6162 /**
6163 * @brief Mean value of a Q15 vector.
6164 * @param[in] pSrc is input pointer
6165 * @param[in] blockSize is the number of samples to process
6166 * @param[out] pResult is output value.
6167 */
6168 void arm_mean_q15(
6169 q15_t * pSrc,
6170 uint32_t blockSize,
6171 q15_t * pResult);
6172
6173
6174 /**
6175 * @brief Mean value of a Q31 vector.
6176 * @param[in] pSrc is input pointer
6177 * @param[in] blockSize is the number of samples to process
6178 * @param[out] pResult is output value.
6179 */
6180 void arm_mean_q31(
6181 q31_t * pSrc,
6182 uint32_t blockSize,
6183 q31_t * pResult);
6184
6185
6186 /**
6187 * @brief Mean value of a floating-point vector.
6188 * @param[in] pSrc is input pointer
6189 * @param[in] blockSize is the number of samples to process
6190 * @param[out] pResult is output value.
6191 */
6192 void arm_mean_f32(
6193 float32_t * pSrc,
6194 uint32_t blockSize,
6195 float32_t * pResult);
6196
6197
6198 /**
6199 * @brief Variance of the elements of a floating-point vector.
6200 * @param[in] pSrc is input pointer
6201 * @param[in] blockSize is the number of samples to process
6202 * @param[out] pResult is output value.
6203 */
6204 void arm_var_f32(
6205 float32_t * pSrc,
6206 uint32_t blockSize,
6207 float32_t * pResult);
6208
6209
6210 /**
6211 * @brief Variance of the elements of a Q31 vector.
6212 * @param[in] pSrc is input pointer
6213 * @param[in] blockSize is the number of samples to process
6214 * @param[out] pResult is output value.
6215 */
6216 void arm_var_q31(
6217 q31_t * pSrc,
6218 uint32_t blockSize,
6219 q31_t * pResult);
6220
6221
6222 /**
6223 * @brief Variance of the elements of a Q15 vector.
6224 * @param[in] pSrc is input pointer
6225 * @param[in] blockSize is the number of samples to process
6226 * @param[out] pResult is output value.
6227 */
6228 void arm_var_q15(
6229 q15_t * pSrc,
6230 uint32_t blockSize,
6231 q15_t * pResult);
6232
6233
6234 /**
6235 * @brief Root Mean Square of the elements of a floating-point vector.
6236 * @param[in] pSrc is input pointer
6237 * @param[in] blockSize is the number of samples to process
6238 * @param[out] pResult is output value.
6239 */
6240 void arm_rms_f32(
6241 float32_t * pSrc,
6242 uint32_t blockSize,
6243 float32_t * pResult);
6244
6245
6246 /**
6247 * @brief Root Mean Square of the elements of a Q31 vector.
6248 * @param[in] pSrc is input pointer
6249 * @param[in] blockSize is the number of samples to process
6250 * @param[out] pResult is output value.
6251 */
6252 void arm_rms_q31(
6253 q31_t * pSrc,
6254 uint32_t blockSize,
6255 q31_t * pResult);
6256
6257
6258 /**
6259 * @brief Root Mean Square of the elements of a Q15 vector.
6260 * @param[in] pSrc is input pointer
6261 * @param[in] blockSize is the number of samples to process
6262 * @param[out] pResult is output value.
6263 */
6264 void arm_rms_q15(
6265 q15_t * pSrc,
6266 uint32_t blockSize,
6267 q15_t * pResult);
6268
6269
6270 /**
6271 * @brief Standard deviation of the elements of a floating-point vector.
6272 * @param[in] pSrc is input pointer
6273 * @param[in] blockSize is the number of samples to process
6274 * @param[out] pResult is output value.
6275 */
6276 void arm_std_f32(
6277 float32_t * pSrc,
6278 uint32_t blockSize,
6279 float32_t * pResult);
6280
6281
6282 /**
6283 * @brief Standard deviation of the elements of a Q31 vector.
6284 * @param[in] pSrc is input pointer
6285 * @param[in] blockSize is the number of samples to process
6286 * @param[out] pResult is output value.
6287 */
6288 void arm_std_q31(
6289 q31_t * pSrc,
6290 uint32_t blockSize,
6291 q31_t * pResult);
6292
6293
6294 /**
6295 * @brief Standard deviation of the elements of a Q15 vector.
6296 * @param[in] pSrc is input pointer
6297 * @param[in] blockSize is the number of samples to process
6298 * @param[out] pResult is output value.
6299 */
6300 void arm_std_q15(
6301 q15_t * pSrc,
6302 uint32_t blockSize,
6303 q15_t * pResult);
6304
6305
6306 /**
6307 * @brief Floating-point complex magnitude
6308 * @param[in] pSrc points to the complex input vector
6309 * @param[out] pDst points to the real output vector
6310 * @param[in] numSamples number of complex samples in the input vector
6311 */
6312 void arm_cmplx_mag_f32(
6313 float32_t * pSrc,
6314 float32_t * pDst,
6315 uint32_t numSamples);
6316
6317
6318 /**
6319 * @brief Q31 complex magnitude
6320 * @param[in] pSrc points to the complex input vector
6321 * @param[out] pDst points to the real output vector
6322 * @param[in] numSamples number of complex samples in the input vector
6323 */
6324 void arm_cmplx_mag_q31(
6325 q31_t * pSrc,
6326 q31_t * pDst,
6327 uint32_t numSamples);
6328
6329
6330 /**
6331 * @brief Q15 complex magnitude
6332 * @param[in] pSrc points to the complex input vector
6333 * @param[out] pDst points to the real output vector
6334 * @param[in] numSamples number of complex samples in the input vector
6335 */
6336 void arm_cmplx_mag_q15(
6337 q15_t * pSrc,
6338 q15_t * pDst,
6339 uint32_t numSamples);
6340
6341
6342 /**
6343 * @brief Q15 complex dot product
6344 * @param[in] pSrcA points to the first input vector
6345 * @param[in] pSrcB points to the second input vector
6346 * @param[in] numSamples number of complex samples in each vector
6347 * @param[out] realResult real part of the result returned here
6348 * @param[out] imagResult imaginary part of the result returned here
6349 */
6350 void arm_cmplx_dot_prod_q15(
6351 q15_t * pSrcA,
6352 q15_t * pSrcB,
6353 uint32_t numSamples,
6354 q31_t * realResult,
6355 q31_t * imagResult);
6356
6357
6358 /**
6359 * @brief Q31 complex dot product
6360 * @param[in] pSrcA points to the first input vector
6361 * @param[in] pSrcB points to the second input vector
6362 * @param[in] numSamples number of complex samples in each vector
6363 * @param[out] realResult real part of the result returned here
6364 * @param[out] imagResult imaginary part of the result returned here
6365 */
6366 void arm_cmplx_dot_prod_q31(
6367 q31_t * pSrcA,
6368 q31_t * pSrcB,
6369 uint32_t numSamples,
6370 q63_t * realResult,
6371 q63_t * imagResult);
6372
6373
6374 /**
6375 * @brief Floating-point complex dot product
6376 * @param[in] pSrcA points to the first input vector
6377 * @param[in] pSrcB points to the second input vector
6378 * @param[in] numSamples number of complex samples in each vector
6379 * @param[out] realResult real part of the result returned here
6380 * @param[out] imagResult imaginary part of the result returned here
6381 */
6382 void arm_cmplx_dot_prod_f32(
6383 float32_t * pSrcA,
6384 float32_t * pSrcB,
6385 uint32_t numSamples,
6386 float32_t * realResult,
6387 float32_t * imagResult);
6388
6389
6390 /**
6391 * @brief Q15 complex-by-real multiplication
6392 * @param[in] pSrcCmplx points to the complex input vector
6393 * @param[in] pSrcReal points to the real input vector
6394 * @param[out] pCmplxDst points to the complex output vector
6395 * @param[in] numSamples number of samples in each vector
6396 */
6397 void arm_cmplx_mult_real_q15(
6398 q15_t * pSrcCmplx,
6399 q15_t * pSrcReal,
6400 q15_t * pCmplxDst,
6401 uint32_t numSamples);
6402
6403
6404 /**
6405 * @brief Q31 complex-by-real multiplication
6406 * @param[in] pSrcCmplx points to the complex input vector
6407 * @param[in] pSrcReal points to the real input vector
6408 * @param[out] pCmplxDst points to the complex output vector
6409 * @param[in] numSamples number of samples in each vector
6410 */
6411 void arm_cmplx_mult_real_q31(
6412 q31_t * pSrcCmplx,
6413 q31_t * pSrcReal,
6414 q31_t * pCmplxDst,
6415 uint32_t numSamples);
6416
6417
6418 /**
6419 * @brief Floating-point complex-by-real multiplication
6420 * @param[in] pSrcCmplx points to the complex input vector
6421 * @param[in] pSrcReal points to the real input vector
6422 * @param[out] pCmplxDst points to the complex output vector
6423 * @param[in] numSamples number of samples in each vector
6424 */
6425 void arm_cmplx_mult_real_f32(
6426 float32_t * pSrcCmplx,
6427 float32_t * pSrcReal,
6428 float32_t * pCmplxDst,
6429 uint32_t numSamples);
6430
6431
6432 /**
6433 * @brief Minimum value of a Q7 vector.
6434 * @param[in] pSrc is input pointer
6435 * @param[in] blockSize is the number of samples to process
6436 * @param[out] result is output pointer
6437 * @param[in] index is the array index of the minimum value in the input buffer.
6438 */
6439 void arm_min_q7(
6440 q7_t * pSrc,
6441 uint32_t blockSize,
6442 q7_t * result,
6443 uint32_t * index);
6444
6445
6446 /**
6447 * @brief Minimum value of a Q15 vector.
6448 * @param[in] pSrc is input pointer
6449 * @param[in] blockSize is the number of samples to process
6450 * @param[out] pResult is output pointer
6451 * @param[in] pIndex is the array index of the minimum value in the input buffer.
6452 */
6453 void arm_min_q15(
6454 q15_t * pSrc,
6455 uint32_t blockSize,
6456 q15_t * pResult,
6457 uint32_t * pIndex);
6458
6459
6460 /**
6461 * @brief Minimum value of a Q31 vector.
6462 * @param[in] pSrc is input pointer
6463 * @param[in] blockSize is the number of samples to process
6464 * @param[out] pResult is output pointer
6465 * @param[out] pIndex is the array index of the minimum value in the input buffer.
6466 */
6467 void arm_min_q31(
6468 q31_t * pSrc,
6469 uint32_t blockSize,
6470 q31_t * pResult,
6471 uint32_t * pIndex);
6472
6473
6474 /**
6475 * @brief Minimum value of a floating-point vector.
6476 * @param[in] pSrc is input pointer
6477 * @param[in] blockSize is the number of samples to process
6478 * @param[out] pResult is output pointer
6479 * @param[out] pIndex is the array index of the minimum value in the input buffer.
6480 */
6481 void arm_min_f32(
6482 float32_t * pSrc,
6483 uint32_t blockSize,
6484 float32_t * pResult,
6485 uint32_t * pIndex);
6486
6487
6488 /**
6489 * @brief Maximum value of a Q7 vector.
6490 * @param[in] pSrc points to the input buffer
6491 * @param[in] blockSize length of the input vector
6492 * @param[out] pResult maximum value returned here
6493 * @param[out] pIndex index of maximum value returned here
6494 */
6495 void arm_max_q7(
6496 q7_t * pSrc,
6497 uint32_t blockSize,
6498 q7_t * pResult,
6499 uint32_t * pIndex);
6500
6501
6502 /**
6503 * @brief Maximum value of a Q15 vector.
6504 * @param[in] pSrc points to the input buffer
6505 * @param[in] blockSize length of the input vector
6506 * @param[out] pResult maximum value returned here
6507 * @param[out] pIndex index of maximum value returned here
6508 */
6509 void arm_max_q15(
6510 q15_t * pSrc,
6511 uint32_t blockSize,
6512 q15_t * pResult,
6513 uint32_t * pIndex);
6514
6515
6516 /**
6517 * @brief Maximum value of a Q31 vector.
6518 * @param[in] pSrc points to the input buffer
6519 * @param[in] blockSize length of the input vector
6520 * @param[out] pResult maximum value returned here
6521 * @param[out] pIndex index of maximum value returned here
6522 */
6523 void arm_max_q31(
6524 q31_t * pSrc,
6525 uint32_t blockSize,
6526 q31_t * pResult,
6527 uint32_t * pIndex);
6528
6529
6530 /**
6531 * @brief Maximum value of a floating-point vector.
6532 * @param[in] pSrc points to the input buffer
6533 * @param[in] blockSize length of the input vector
6534 * @param[out] pResult maximum value returned here
6535 * @param[out] pIndex index of maximum value returned here
6536 */
6537 void arm_max_f32(
6538 float32_t * pSrc,
6539 uint32_t blockSize,
6540 float32_t * pResult,
6541 uint32_t * pIndex);
6542
6543
6544 /**
6545 * @brief Q15 complex-by-complex multiplication
6546 * @param[in] pSrcA points to the first input vector
6547 * @param[in] pSrcB points to the second input vector
6548 * @param[out] pDst points to the output vector
6549 * @param[in] numSamples number of complex samples in each vector
6550 */
6551 void arm_cmplx_mult_cmplx_q15(
6552 q15_t * pSrcA,
6553 q15_t * pSrcB,
6554 q15_t * pDst,
6555 uint32_t numSamples);
6556
6557
6558 /**
6559 * @brief Q31 complex-by-complex multiplication
6560 * @param[in] pSrcA points to the first input vector
6561 * @param[in] pSrcB points to the second input vector
6562 * @param[out] pDst points to the output vector
6563 * @param[in] numSamples number of complex samples in each vector
6564 */
6565 void arm_cmplx_mult_cmplx_q31(
6566 q31_t * pSrcA,
6567 q31_t * pSrcB,
6568 q31_t * pDst,
6569 uint32_t numSamples);
6570
6571
6572 /**
6573 * @brief Floating-point complex-by-complex multiplication
6574 * @param[in] pSrcA points to the first input vector
6575 * @param[in] pSrcB points to the second input vector
6576 * @param[out] pDst points to the output vector
6577 * @param[in] numSamples number of complex samples in each vector
6578 */
6579 void arm_cmplx_mult_cmplx_f32(
6580 float32_t * pSrcA,
6581 float32_t * pSrcB,
6582 float32_t * pDst,
6583 uint32_t numSamples);
6584
6585
6586 /**
6587 * @brief Converts the elements of the floating-point vector to Q31 vector.
6588 * @param[in] pSrc points to the floating-point input vector
6589 * @param[out] pDst points to the Q31 output vector
6590 * @param[in] blockSize length of the input vector
6591 */
6592 void arm_float_to_q31(
6593 float32_t * pSrc,
6594 q31_t * pDst,
6595 uint32_t blockSize);
6596
6597
6598 /**
6599 * @brief Converts the elements of the floating-point vector to Q15 vector.
6600 * @param[in] pSrc points to the floating-point input vector
6601 * @param[out] pDst points to the Q15 output vector
6602 * @param[in] blockSize length of the input vector
6603 */
6604 void arm_float_to_q15(
6605 float32_t * pSrc,
6606 q15_t * pDst,
6607 uint32_t blockSize);
6608
6609
6610 /**
6611 * @brief Converts the elements of the floating-point vector to Q7 vector.
6612 * @param[in] pSrc points to the floating-point input vector
6613 * @param[out] pDst points to the Q7 output vector
6614 * @param[in] blockSize length of the input vector
6615 */
6616 void arm_float_to_q7(
6617 float32_t * pSrc,
6618 q7_t * pDst,
6619 uint32_t blockSize);
6620
6621
6622 /**
6623 * @brief Converts the elements of the Q31 vector to Q15 vector.
6624 * @param[in] pSrc is input pointer
6625 * @param[out] pDst is output pointer
6626 * @param[in] blockSize is the number of samples to process
6627 */
6628 void arm_q31_to_q15(
6629 q31_t * pSrc,
6630 q15_t * pDst,
6631 uint32_t blockSize);
6632
6633
6634 /**
6635 * @brief Converts the elements of the Q31 vector to Q7 vector.
6636 * @param[in] pSrc is input pointer
6637 * @param[out] pDst is output pointer
6638 * @param[in] blockSize is the number of samples to process
6639 */
6640 void arm_q31_to_q7(
6641 q31_t * pSrc,
6642 q7_t * pDst,
6643 uint32_t blockSize);
6644
6645
6646 /**
6647 * @brief Converts the elements of the Q15 vector to floating-point vector.
6648 * @param[in] pSrc is input pointer
6649 * @param[out] pDst is output pointer
6650 * @param[in] blockSize is the number of samples to process
6651 */
6652 void arm_q15_to_float(
6653 q15_t * pSrc,
6654 float32_t * pDst,
6655 uint32_t blockSize);
6656
6657
6658 /**
6659 * @brief Converts the elements of the Q15 vector to Q31 vector.
6660 * @param[in] pSrc is input pointer
6661 * @param[out] pDst is output pointer
6662 * @param[in] blockSize is the number of samples to process
6663 */
6664 void arm_q15_to_q31(
6665 q15_t * pSrc,
6666 q31_t * pDst,
6667 uint32_t blockSize);
6668
6669
6670 /**
6671 * @brief Converts the elements of the Q15 vector to Q7 vector.
6672 * @param[in] pSrc is input pointer
6673 * @param[out] pDst is output pointer
6674 * @param[in] blockSize is the number of samples to process
6675 */
6676 void arm_q15_to_q7(
6677 q15_t * pSrc,
6678 q7_t * pDst,
6679 uint32_t blockSize);
6680
6681
6682 /**
6683 * @ingroup groupInterpolation
6684 */
6685
6686 /**
6687 * @defgroup BilinearInterpolate Bilinear Interpolation
6688 *
6689 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
6690 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
6691 * determines values between the grid points.
6692 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
6693 * Bilinear interpolation is often used in image processing to rescale images.
6694 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
6695 *
6696 * <b>Algorithm</b>
6697 * \par
6698 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
6699 * For floating-point, the instance structure is defined as:
6700 * <pre>
6701 * typedef struct
6702 * {
6703 * uint16_t numRows;
6704 * uint16_t numCols;
6705 * float32_t *pData;
6706 * } arm_bilinear_interp_instance_f32;
6707 * </pre>
6708 *
6709 * \par
6710 * where <code>numRows</code> specifies the number of rows in the table;
6711 * <code>numCols</code> specifies the number of columns in the table;
6712 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
6713 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
6714 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
6715 *
6716 * \par
6717 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
6718 * <pre>
6719 * XF = floor(x)
6720 * YF = floor(y)
6721 * </pre>
6722 * \par
6723 * The interpolated output point is computed as:
6724 * <pre>
6725 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
6726 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
6727 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
6728 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
6729 * </pre>
6730 * Note that the coordinates (x, y) contain integer and fractional components.
6731 * The integer components specify which portion of the table to use while the
6732 * fractional components control the interpolation processor.
6733 *
6734 * \par
6735 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
6736 */
6737
6738 /**
6739 * @addtogroup BilinearInterpolate
6740 * @{
6741 */
6742
6743
6744 /**
6745 *
6746 * @brief Floating-point bilinear interpolation.
6747 * @param[in,out] S points to an instance of the interpolation structure.
6748 * @param[in] X interpolation coordinate.
6749 * @param[in] Y interpolation coordinate.
6750 * @return out interpolated value.
6751 */
6752 static __INLINE float32_t arm_bilinear_interp_f32(
6753 const arm_bilinear_interp_instance_f32 * S,
6754 float32_t X,
6755 float32_t Y)
6756 {
6757 float32_t out;
6758 float32_t f00, f01, f10, f11;
6759 float32_t *pData = S->pData;
6760 int32_t xIndex, yIndex, index;
6761 float32_t xdiff, ydiff;
6762 float32_t b1, b2, b3, b4;
6763
6764 xIndex = (int32_t) X;
6765 yIndex = (int32_t) Y;
6766
6767 /* Care taken for table outside boundary */
6768 /* Returns zero output when values are outside table boundary */
6769 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
6770 {
6771 return (0);
6772 }
6773
6774 /* Calculation of index for two nearest points in X-direction */
6775 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
6776
6777
6778 /* Read two nearest points in X-direction */
6779 f00 = pData[index];
6780 f01 = pData[index + 1];
6781
6782 /* Calculation of index for two nearest points in Y-direction */
6783 index = (xIndex - 1) + (yIndex) * S->numCols;
6784
6785
6786 /* Read two nearest points in Y-direction */
6787 f10 = pData[index];
6788 f11 = pData[index + 1];
6789
6790 /* Calculation of intermediate values */
6791 b1 = f00;
6792 b2 = f01 - f00;
6793 b3 = f10 - f00;
6794 b4 = f00 - f01 - f10 + f11;
6795
6796 /* Calculation of fractional part in X */
6797 xdiff = X - xIndex;
6798
6799 /* Calculation of fractional part in Y */
6800 ydiff = Y - yIndex;
6801
6802 /* Calculation of bi-linear interpolated output */
6803 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
6804
6805 /* return to application */
6806 return (out);
6807 }
6808
6809
6810 /**
6811 *
6812 * @brief Q31 bilinear interpolation.
6813 * @param[in,out] S points to an instance of the interpolation structure.
6814 * @param[in] X interpolation coordinate in 12.20 format.
6815 * @param[in] Y interpolation coordinate in 12.20 format.
6816 * @return out interpolated value.
6817 */
6818 static __INLINE q31_t arm_bilinear_interp_q31(
6819 arm_bilinear_interp_instance_q31 * S,
6820 q31_t X,
6821 q31_t Y)
6822 {
6823 q31_t out; /* Temporary output */
6824 q31_t acc = 0; /* output */
6825 q31_t xfract, yfract; /* X, Y fractional parts */
6826 q31_t x1, x2, y1, y2; /* Nearest output values */
6827 int32_t rI, cI; /* Row and column indices */
6828 q31_t *pYData = S->pData; /* pointer to output table values */
6829 uint32_t nCols = S->numCols; /* num of rows */
6830
6831 /* Input is in 12.20 format */
6832 /* 12 bits for the table index */
6833 /* Index value calculation */
6834 rI = ((X & (q31_t)0xFFF00000) >> 20);
6835
6836 /* Input is in 12.20 format */
6837 /* 12 bits for the table index */
6838 /* Index value calculation */
6839 cI = ((Y & (q31_t)0xFFF00000) >> 20);
6840
6841 /* Care taken for table outside boundary */
6842 /* Returns zero output when values are outside table boundary */
6843 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
6844 {
6845 return (0);
6846 }
6847
6848 /* 20 bits for the fractional part */
6849 /* shift left xfract by 11 to keep 1.31 format */
6850 xfract = (X & 0x000FFFFF) << 11u;
6851
6852 /* Read two nearest output values from the index */
6853 x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
6854 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
6855
6856 /* 20 bits for the fractional part */
6857 /* shift left yfract by 11 to keep 1.31 format */
6858 yfract = (Y & 0x000FFFFF) << 11u;
6859
6860 /* Read two nearest output values from the index */
6861 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
6862 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
6863
6864 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
6865 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
6866 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
6867
6868 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
6869 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
6870 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
6871
6872 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
6873 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
6874 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
6875
6876 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
6877 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
6878 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
6879
6880 /* Convert acc to 1.31(q31) format */
6881 return ((q31_t)(acc << 2));
6882 }
6883
6884
6885 /**
6886 * @brief Q15 bilinear interpolation.
6887 * @param[in,out] S points to an instance of the interpolation structure.
6888 * @param[in] X interpolation coordinate in 12.20 format.
6889 * @param[in] Y interpolation coordinate in 12.20 format.
6890 * @return out interpolated value.
6891 */
6892 static __INLINE q15_t arm_bilinear_interp_q15(
6893 arm_bilinear_interp_instance_q15 * S,
6894 q31_t X,
6895 q31_t Y)
6896 {
6897 q63_t acc = 0; /* output */
6898 q31_t out; /* Temporary output */
6899 q15_t x1, x2, y1, y2; /* Nearest output values */
6900 q31_t xfract, yfract; /* X, Y fractional parts */
6901 int32_t rI, cI; /* Row and column indices */
6902 q15_t *pYData = S->pData; /* pointer to output table values */
6903 uint32_t nCols = S->numCols; /* num of rows */
6904
6905 /* Input is in 12.20 format */
6906 /* 12 bits for the table index */
6907 /* Index value calculation */
6908 rI = ((X & (q31_t)0xFFF00000) >> 20);
6909
6910 /* Input is in 12.20 format */
6911 /* 12 bits for the table index */
6912 /* Index value calculation */
6913 cI = ((Y & (q31_t)0xFFF00000) >> 20);
6914
6915 /* Care taken for table outside boundary */
6916 /* Returns zero output when values are outside table boundary */
6917 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
6918 {
6919 return (0);
6920 }
6921
6922 /* 20 bits for the fractional part */
6923 /* xfract should be in 12.20 format */
6924 xfract = (X & 0x000FFFFF);
6925
6926 /* Read two nearest output values from the index */
6927 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
6928 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
6929
6930 /* 20 bits for the fractional part */
6931 /* yfract should be in 12.20 format */
6932 yfract = (Y & 0x000FFFFF);
6933
6934 /* Read two nearest output values from the index */
6935 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
6936 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
6937
6938 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
6939
6940 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
6941 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
6942 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
6943 acc = ((q63_t) out * (0xFFFFF - yfract));
6944
6945 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
6946 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
6947 acc += ((q63_t) out * (xfract));
6948
6949 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
6950 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
6951 acc += ((q63_t) out * (yfract));
6952
6953 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
6954 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
6955 acc += ((q63_t) out * (yfract));
6956
6957 /* acc is in 13.51 format and down shift acc by 36 times */
6958 /* Convert out to 1.15 format */
6959 return ((q15_t)(acc >> 36));
6960 }
6961
6962
6963 /**
6964 * @brief Q7 bilinear interpolation.
6965 * @param[in,out] S points to an instance of the interpolation structure.
6966 * @param[in] X interpolation coordinate in 12.20 format.
6967 * @param[in] Y interpolation coordinate in 12.20 format.
6968 * @return out interpolated value.
6969 */
6970 static __INLINE q7_t arm_bilinear_interp_q7(
6971 arm_bilinear_interp_instance_q7 * S,
6972 q31_t X,
6973 q31_t Y)
6974 {
6975 q63_t acc = 0; /* output */
6976 q31_t out; /* Temporary output */
6977 q31_t xfract, yfract; /* X, Y fractional parts */
6978 q7_t x1, x2, y1, y2; /* Nearest output values */
6979 int32_t rI, cI; /* Row and column indices */
6980 q7_t *pYData = S->pData; /* pointer to output table values */
6981 uint32_t nCols = S->numCols; /* num of rows */
6982
6983 /* Input is in 12.20 format */
6984 /* 12 bits for the table index */
6985 /* Index value calculation */
6986 rI = ((X & (q31_t)0xFFF00000) >> 20);
6987
6988 /* Input is in 12.20 format */
6989 /* 12 bits for the table index */
6990 /* Index value calculation */
6991 cI = ((Y & (q31_t)0xFFF00000) >> 20);
6992
6993 /* Care taken for table outside boundary */
6994 /* Returns zero output when values are outside table boundary */
6995 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
6996 {
6997 return (0);
6998 }
6999
7000 /* 20 bits for the fractional part */
7001 /* xfract should be in 12.20 format */
7002 xfract = (X & (q31_t)0x000FFFFF);
7003
7004 /* Read two nearest output values from the index */
7005 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
7006 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
7007
7008 /* 20 bits for the fractional part */
7009 /* yfract should be in 12.20 format */
7010 yfract = (Y & (q31_t)0x000FFFFF);
7011
7012 /* Read two nearest output values from the index */
7013 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
7014 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
7015
7016 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
7017 out = ((x1 * (0xFFFFF - xfract)));
7018 acc = (((q63_t) out * (0xFFFFF - yfract)));
7019
7020 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
7021 out = ((x2 * (0xFFFFF - yfract)));
7022 acc += (((q63_t) out * (xfract)));
7023
7024 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
7025 out = ((y1 * (0xFFFFF - xfract)));
7026 acc += (((q63_t) out * (yfract)));
7027
7028 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
7029 out = ((y2 * (yfract)));
7030 acc += (((q63_t) out * (xfract)));
7031
7032 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
7033 return ((q7_t)(acc >> 40));
7034 }
7035
7036 /**
7037 * @} end of BilinearInterpolate group
7038 */
7039
7040
7041 /* SMMLAR */
7042 #define multAcc_32x32_keep32_R(a, x, y) \
7043 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
7044
7045 /* SMMLSR */
7046 #define multSub_32x32_keep32_R(a, x, y) \
7047 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
7048
7049 /* SMMULR */
7050 #define mult_32x32_keep32_R(a, x, y) \
7051 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
7052
7053 /* SMMLA */
7054 #define multAcc_32x32_keep32(a, x, y) \
7055 a += (q31_t) (((q63_t) x * y) >> 32)
7056
7057 /* SMMLS */
7058 #define multSub_32x32_keep32(a, x, y) \
7059 a -= (q31_t) (((q63_t) x * y) >> 32)
7060
7061 /* SMMUL */
7062 #define mult_32x32_keep32(a, x, y) \
7063 a = (q31_t) (((q63_t) x * y ) >> 32)
7064
7065
7066 #if defined ( __CC_ARM )
7067 /* Enter low optimization region - place directly above function definition */
7068 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
7069 #define LOW_OPTIMIZATION_ENTER \
7070 _Pragma ("push") \
7071 _Pragma ("O1")
7072 #else
7073 #define LOW_OPTIMIZATION_ENTER
7074 #endif
7075
7076 /* Exit low optimization region - place directly after end of function definition */
7077 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
7078 #define LOW_OPTIMIZATION_EXIT \
7079 _Pragma ("pop")
7080 #else
7081 #define LOW_OPTIMIZATION_EXIT
7082 #endif
7083
7084 /* Enter low optimization region - place directly above function definition */
7085 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7086
7087 /* Exit low optimization region - place directly after end of function definition */
7088 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7089
7090 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
7091 #define LOW_OPTIMIZATION_ENTER
7092 #define LOW_OPTIMIZATION_EXIT
7093 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7094 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7095
7096 #elif defined(__GNUC__)
7097 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
7098 #define LOW_OPTIMIZATION_EXIT
7099 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7100 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7101
7102 #elif defined(__ICCARM__)
7103 /* Enter low optimization region - place directly above function definition */
7104 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
7105 #define LOW_OPTIMIZATION_ENTER \
7106 _Pragma ("optimize=low")
7107 #else
7108 #define LOW_OPTIMIZATION_ENTER
7109 #endif
7110
7111 /* Exit low optimization region - place directly after end of function definition */
7112 #define LOW_OPTIMIZATION_EXIT
7113
7114 /* Enter low optimization region - place directly above function definition */
7115 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
7116 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
7117 _Pragma ("optimize=low")
7118 #else
7119 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7120 #endif
7121
7122 /* Exit low optimization region - place directly after end of function definition */
7123 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7124
7125 #elif defined(__CSMC__)
7126 #define LOW_OPTIMIZATION_ENTER
7127 #define LOW_OPTIMIZATION_EXIT
7128 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7129 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7130
7131 #elif defined(__TASKING__)
7132 #define LOW_OPTIMIZATION_ENTER
7133 #define LOW_OPTIMIZATION_EXIT
7134 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
7135 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
7136
7137 #endif
7138
7139
7140 #ifdef __cplusplus
7141 }
7142 #endif
7143
7144
7145 #if defined ( __GNUC__ )
7146 #pragma GCC diagnostic pop
7147 #endif
7148
7149 #endif /* _ARM_MATH_H */
7150
7151 /**
7152 *
7153 * End of file.
7154 */