Mercurial > pub > halpp
comparison l476rg-hal-test/Drivers/CMSIS/Include/arm_math.h @ 0:32a3b1785697
a rough draft of Hardware Abstraction Layer for C++
STM32L476RG drivers
| author | cin |
|---|---|
| date | Thu, 12 Jan 2017 02:45:43 +0300 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:32a3b1785697 |
|---|---|
| 1 /* ---------------------------------------------------------------------- | |
| 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved. | |
| 3 * | |
| 4 * $Date: 20. October 2015 | |
| 5 * $Revision: V1.4.5 b | |
| 6 * | |
| 7 * Project: CMSIS DSP Library | |
| 8 * Title: arm_math.h | |
| 9 * | |
| 10 * Description: Public header file for CMSIS DSP Library | |
| 11 * | |
| 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 | |
| 13 * | |
| 14 * Redistribution and use in source and binary forms, with or without | |
| 15 * modification, are permitted provided that the following conditions | |
| 16 * are met: | |
| 17 * - Redistributions of source code must retain the above copyright | |
| 18 * notice, this list of conditions and the following disclaimer. | |
| 19 * - Redistributions in binary form must reproduce the above copyright | |
| 20 * notice, this list of conditions and the following disclaimer in | |
| 21 * the documentation and/or other materials provided with the | |
| 22 * distribution. | |
| 23 * - Neither the name of ARM LIMITED nor the names of its contributors | |
| 24 * may be used to endorse or promote products derived from this | |
| 25 * software without specific prior written permission. | |
| 26 * | |
| 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
| 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
| 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
| 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
| 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
| 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
| 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
| 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
| 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
| 38 * POSSIBILITY OF SUCH DAMAGE. | |
| 39 * -------------------------------------------------------------------- */ | |
| 40 | |
| 41 /** | |
| 42 \mainpage CMSIS DSP Software Library | |
| 43 * | |
| 44 * Introduction | |
| 45 * ------------ | |
| 46 * | |
| 47 * This user manual describes the CMSIS DSP software library, | |
| 48 * a suite of common signal processing functions for use on Cortex-M processor based devices. | |
| 49 * | |
| 50 * The library is divided into a number of functions each covering a specific category: | |
| 51 * - Basic math functions | |
| 52 * - Fast math functions | |
| 53 * - Complex math functions | |
| 54 * - Filters | |
| 55 * - Matrix functions | |
| 56 * - Transforms | |
| 57 * - Motor control functions | |
| 58 * - Statistical functions | |
| 59 * - Support functions | |
| 60 * - Interpolation functions | |
| 61 * | |
| 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers, | |
| 63 * 32-bit integer and 32-bit floating-point values. | |
| 64 * | |
| 65 * Using the Library | |
| 66 * ------------ | |
| 67 * | |
| 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. | |
| 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) | |
| 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) | |
| 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) | |
| 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) | |
| 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) | |
| 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) | |
| 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) | |
| 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) | |
| 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) | |
| 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) | |
| 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) | |
| 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) | |
| 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) | |
| 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) | |
| 83 * | |
| 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. | |
| 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single | |
| 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. | |
| 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or | |
| 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. | |
| 89 * | |
| 90 * Examples | |
| 91 * -------- | |
| 92 * | |
| 93 * The library ships with a number of examples which demonstrate how to use the library functions. | |
| 94 * | |
| 95 * Toolchain Support | |
| 96 * ------------ | |
| 97 * | |
| 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0 | |
| 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. | |
| 100 * | |
| 101 * Building the Library | |
| 102 * ------------ | |
| 103 * | |
| 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. | |
| 105 * - arm_cortexM_math.uvprojx | |
| 106 * | |
| 107 * | |
| 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. | |
| 109 * | |
| 110 * Pre-processor Macros | |
| 111 * ------------ | |
| 112 * | |
| 113 * Each library project have differant pre-processor macros. | |
| 114 * | |
| 115 * - UNALIGNED_SUPPORT_DISABLE: | |
| 116 * | |
| 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access | |
| 118 * | |
| 119 * - ARM_MATH_BIG_ENDIAN: | |
| 120 * | |
| 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. | |
| 122 * | |
| 123 * - ARM_MATH_MATRIX_CHECK: | |
| 124 * | |
| 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices | |
| 126 * | |
| 127 * - ARM_MATH_ROUNDING: | |
| 128 * | |
| 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions | |
| 130 * | |
| 131 * - ARM_MATH_CMx: | |
| 132 * | |
| 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target | |
| 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and | |
| 135 * ARM_MATH_CM7 for building the library on cortex-M7. | |
| 136 * | |
| 137 * - __FPU_PRESENT: | |
| 138 * | |
| 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries | |
| 140 * | |
| 141 * <hr> | |
| 142 * CMSIS-DSP in ARM::CMSIS Pack | |
| 143 * ----------------------------- | |
| 144 * | |
| 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: | |
| 146 * |File/Folder |Content | | |
| 147 * |------------------------------|------------------------------------------------------------------------| | |
| 148 * |\b CMSIS\\Documentation\\DSP | This documentation | | |
| 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | | |
| 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | | |
| 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | | |
| 152 * | |
| 153 * <hr> | |
| 154 * Revision History of CMSIS-DSP | |
| 155 * ------------ | |
| 156 * Please refer to \ref ChangeLog_pg. | |
| 157 * | |
| 158 * Copyright Notice | |
| 159 * ------------ | |
| 160 * | |
| 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved. | |
| 162 */ | |
| 163 | |
| 164 | |
| 165 /** | |
| 166 * @defgroup groupMath Basic Math Functions | |
| 167 */ | |
| 168 | |
| 169 /** | |
| 170 * @defgroup groupFastMath Fast Math Functions | |
| 171 * This set of functions provides a fast approximation to sine, cosine, and square root. | |
| 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions | |
| 173 * operate on individual values and not arrays. | |
| 174 * There are separate functions for Q15, Q31, and floating-point data. | |
| 175 * | |
| 176 */ | |
| 177 | |
| 178 /** | |
| 179 * @defgroup groupCmplxMath Complex Math Functions | |
| 180 * This set of functions operates on complex data vectors. | |
| 181 * The data in the complex arrays is stored in an interleaved fashion | |
| 182 * (real, imag, real, imag, ...). | |
| 183 * In the API functions, the number of samples in a complex array refers | |
| 184 * to the number of complex values; the array contains twice this number of | |
| 185 * real values. | |
| 186 */ | |
| 187 | |
| 188 /** | |
| 189 * @defgroup groupFilters Filtering Functions | |
| 190 */ | |
| 191 | |
| 192 /** | |
| 193 * @defgroup groupMatrix Matrix Functions | |
| 194 * | |
| 195 * This set of functions provides basic matrix math operations. | |
| 196 * The functions operate on matrix data structures. For example, | |
| 197 * the type | |
| 198 * definition for the floating-point matrix structure is shown | |
| 199 * below: | |
| 200 * <pre> | |
| 201 * typedef struct | |
| 202 * { | |
| 203 * uint16_t numRows; // number of rows of the matrix. | |
| 204 * uint16_t numCols; // number of columns of the matrix. | |
| 205 * float32_t *pData; // points to the data of the matrix. | |
| 206 * } arm_matrix_instance_f32; | |
| 207 * </pre> | |
| 208 * There are similar definitions for Q15 and Q31 data types. | |
| 209 * | |
| 210 * The structure specifies the size of the matrix and then points to | |
| 211 * an array of data. The array is of size <code>numRows X numCols</code> | |
| 212 * and the values are arranged in row order. That is, the | |
| 213 * matrix element (i, j) is stored at: | |
| 214 * <pre> | |
| 215 * pData[i*numCols + j] | |
| 216 * </pre> | |
| 217 * | |
| 218 * \par Init Functions | |
| 219 * There is an associated initialization function for each type of matrix | |
| 220 * data structure. | |
| 221 * The initialization function sets the values of the internal structure fields. | |
| 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> | |
| 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. | |
| 224 * | |
| 225 * \par | |
| 226 * Use of the initialization function is optional. However, if initialization function is used | |
| 227 * then the instance structure cannot be placed into a const data section. | |
| 228 * To place the instance structure in a const data | |
| 229 * section, manually initialize the data structure. For example: | |
| 230 * <pre> | |
| 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> | |
| 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> | |
| 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> | |
| 234 * </pre> | |
| 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> | |
| 236 * specifies the number of columns, and <code>pData</code> points to the | |
| 237 * data array. | |
| 238 * | |
| 239 * \par Size Checking | |
| 240 * By default all of the matrix functions perform size checking on the input and | |
| 241 * output matrices. For example, the matrix addition function verifies that the | |
| 242 * two input matrices and the output matrix all have the same number of rows and | |
| 243 * columns. If the size check fails the functions return: | |
| 244 * <pre> | |
| 245 * ARM_MATH_SIZE_MISMATCH | |
| 246 * </pre> | |
| 247 * Otherwise the functions return | |
| 248 * <pre> | |
| 249 * ARM_MATH_SUCCESS | |
| 250 * </pre> | |
| 251 * There is some overhead associated with this matrix size checking. | |
| 252 * The matrix size checking is enabled via the \#define | |
| 253 * <pre> | |
| 254 * ARM_MATH_MATRIX_CHECK | |
| 255 * </pre> | |
| 256 * within the library project settings. By default this macro is defined | |
| 257 * and size checking is enabled. By changing the project settings and | |
| 258 * undefining this macro size checking is eliminated and the functions | |
| 259 * run a bit faster. With size checking disabled the functions always | |
| 260 * return <code>ARM_MATH_SUCCESS</code>. | |
| 261 */ | |
| 262 | |
| 263 /** | |
| 264 * @defgroup groupTransforms Transform Functions | |
| 265 */ | |
| 266 | |
| 267 /** | |
| 268 * @defgroup groupController Controller Functions | |
| 269 */ | |
| 270 | |
| 271 /** | |
| 272 * @defgroup groupStats Statistics Functions | |
| 273 */ | |
| 274 /** | |
| 275 * @defgroup groupSupport Support Functions | |
| 276 */ | |
| 277 | |
| 278 /** | |
| 279 * @defgroup groupInterpolation Interpolation Functions | |
| 280 * These functions perform 1- and 2-dimensional interpolation of data. | |
| 281 * Linear interpolation is used for 1-dimensional data and | |
| 282 * bilinear interpolation is used for 2-dimensional data. | |
| 283 */ | |
| 284 | |
| 285 /** | |
| 286 * @defgroup groupExamples Examples | |
| 287 */ | |
| 288 #ifndef _ARM_MATH_H | |
| 289 #define _ARM_MATH_H | |
| 290 | |
| 291 /* ignore some GCC warnings */ | |
| 292 #if defined ( __GNUC__ ) | |
| 293 #pragma GCC diagnostic push | |
| 294 #pragma GCC diagnostic ignored "-Wsign-conversion" | |
| 295 #pragma GCC diagnostic ignored "-Wconversion" | |
| 296 #pragma GCC diagnostic ignored "-Wunused-parameter" | |
| 297 #endif | |
| 298 | |
| 299 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ | |
| 300 | |
| 301 #if defined(ARM_MATH_CM7) | |
| 302 #include "core_cm7.h" | |
| 303 #elif defined (ARM_MATH_CM4) | |
| 304 #include "core_cm4.h" | |
| 305 #elif defined (ARM_MATH_CM3) | |
| 306 #include "core_cm3.h" | |
| 307 #elif defined (ARM_MATH_CM0) | |
| 308 #include "core_cm0.h" | |
| 309 #define ARM_MATH_CM0_FAMILY | |
| 310 #elif defined (ARM_MATH_CM0PLUS) | |
| 311 #include "core_cm0plus.h" | |
| 312 #define ARM_MATH_CM0_FAMILY | |
| 313 #else | |
| 314 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" | |
| 315 #endif | |
| 316 | |
| 317 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ | |
| 318 #include "string.h" | |
| 319 #include "math.h" | |
| 320 #ifdef __cplusplus | |
| 321 extern "C" | |
| 322 { | |
| 323 #endif | |
| 324 | |
| 325 | |
| 326 /** | |
| 327 * @brief Macros required for reciprocal calculation in Normalized LMS | |
| 328 */ | |
| 329 | |
| 330 #define DELTA_Q31 (0x100) | |
| 331 #define DELTA_Q15 0x5 | |
| 332 #define INDEX_MASK 0x0000003F | |
| 333 #ifndef PI | |
| 334 #define PI 3.14159265358979f | |
| 335 #endif | |
| 336 | |
| 337 /** | |
| 338 * @brief Macros required for SINE and COSINE Fast math approximations | |
| 339 */ | |
| 340 | |
| 341 #define FAST_MATH_TABLE_SIZE 512 | |
| 342 #define FAST_MATH_Q31_SHIFT (32 - 10) | |
| 343 #define FAST_MATH_Q15_SHIFT (16 - 10) | |
| 344 #define CONTROLLER_Q31_SHIFT (32 - 9) | |
| 345 #define TABLE_SIZE 256 | |
| 346 #define TABLE_SPACING_Q31 0x400000 | |
| 347 #define TABLE_SPACING_Q15 0x80 | |
| 348 | |
| 349 /** | |
| 350 * @brief Macros required for SINE and COSINE Controller functions | |
| 351 */ | |
| 352 /* 1.31(q31) Fixed value of 2/360 */ | |
| 353 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ | |
| 354 #define INPUT_SPACING 0xB60B61 | |
| 355 | |
| 356 /** | |
| 357 * @brief Macro for Unaligned Support | |
| 358 */ | |
| 359 #ifndef UNALIGNED_SUPPORT_DISABLE | |
| 360 #define ALIGN4 | |
| 361 #else | |
| 362 #if defined (__GNUC__) | |
| 363 #define ALIGN4 __attribute__((aligned(4))) | |
| 364 #else | |
| 365 #define ALIGN4 __align(4) | |
| 366 #endif | |
| 367 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ | |
| 368 | |
| 369 /** | |
| 370 * @brief Error status returned by some functions in the library. | |
| 371 */ | |
| 372 | |
| 373 typedef enum | |
| 374 { | |
| 375 ARM_MATH_SUCCESS = 0, /**< No error */ | |
| 376 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ | |
| 377 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ | |
| 378 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ | |
| 379 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ | |
| 380 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ | |
| 381 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ | |
| 382 } arm_status; | |
| 383 | |
| 384 /** | |
| 385 * @brief 8-bit fractional data type in 1.7 format. | |
| 386 */ | |
| 387 typedef int8_t q7_t; | |
| 388 | |
| 389 /** | |
| 390 * @brief 16-bit fractional data type in 1.15 format. | |
| 391 */ | |
| 392 typedef int16_t q15_t; | |
| 393 | |
| 394 /** | |
| 395 * @brief 32-bit fractional data type in 1.31 format. | |
| 396 */ | |
| 397 typedef int32_t q31_t; | |
| 398 | |
| 399 /** | |
| 400 * @brief 64-bit fractional data type in 1.63 format. | |
| 401 */ | |
| 402 typedef int64_t q63_t; | |
| 403 | |
| 404 /** | |
| 405 * @brief 32-bit floating-point type definition. | |
| 406 */ | |
| 407 typedef float float32_t; | |
| 408 | |
| 409 /** | |
| 410 * @brief 64-bit floating-point type definition. | |
| 411 */ | |
| 412 typedef double float64_t; | |
| 413 | |
| 414 /** | |
| 415 * @brief definition to read/write two 16 bit values. | |
| 416 */ | |
| 417 #if defined __CC_ARM | |
| 418 #define __SIMD32_TYPE int32_t __packed | |
| 419 #define CMSIS_UNUSED __attribute__((unused)) | |
| 420 | |
| 421 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) | |
| 422 #define __SIMD32_TYPE int32_t | |
| 423 #define CMSIS_UNUSED __attribute__((unused)) | |
| 424 | |
| 425 #elif defined __GNUC__ | |
| 426 #define __SIMD32_TYPE int32_t | |
| 427 #define CMSIS_UNUSED __attribute__((unused)) | |
| 428 | |
| 429 #elif defined __ICCARM__ | |
| 430 #define __SIMD32_TYPE int32_t __packed | |
| 431 #define CMSIS_UNUSED | |
| 432 | |
| 433 #elif defined __CSMC__ | |
| 434 #define __SIMD32_TYPE int32_t | |
| 435 #define CMSIS_UNUSED | |
| 436 | |
| 437 #elif defined __TASKING__ | |
| 438 #define __SIMD32_TYPE __unaligned int32_t | |
| 439 #define CMSIS_UNUSED | |
| 440 | |
| 441 #else | |
| 442 #error Unknown compiler | |
| 443 #endif | |
| 444 | |
| 445 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) | |
| 446 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) | |
| 447 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) | |
| 448 #define __SIMD64(addr) (*(int64_t **) & (addr)) | |
| 449 | |
| 450 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) | |
| 451 /** | |
| 452 * @brief definition to pack two 16 bit values. | |
| 453 */ | |
| 454 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ | |
| 455 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) | |
| 456 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ | |
| 457 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) | |
| 458 | |
| 459 #endif | |
| 460 | |
| 461 | |
| 462 /** | |
| 463 * @brief definition to pack four 8 bit values. | |
| 464 */ | |
| 465 #ifndef ARM_MATH_BIG_ENDIAN | |
| 466 | |
| 467 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ | |
| 468 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ | |
| 469 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ | |
| 470 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) | |
| 471 #else | |
| 472 | |
| 473 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ | |
| 474 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ | |
| 475 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ | |
| 476 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) | |
| 477 | |
| 478 #endif | |
| 479 | |
| 480 | |
| 481 /** | |
| 482 * @brief Clips Q63 to Q31 values. | |
| 483 */ | |
| 484 static __INLINE q31_t clip_q63_to_q31( | |
| 485 q63_t x) | |
| 486 { | |
| 487 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
| 488 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; | |
| 489 } | |
| 490 | |
| 491 /** | |
| 492 * @brief Clips Q63 to Q15 values. | |
| 493 */ | |
| 494 static __INLINE q15_t clip_q63_to_q15( | |
| 495 q63_t x) | |
| 496 { | |
| 497 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
| 498 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); | |
| 499 } | |
| 500 | |
| 501 /** | |
| 502 * @brief Clips Q31 to Q7 values. | |
| 503 */ | |
| 504 static __INLINE q7_t clip_q31_to_q7( | |
| 505 q31_t x) | |
| 506 { | |
| 507 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? | |
| 508 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; | |
| 509 } | |
| 510 | |
| 511 /** | |
| 512 * @brief Clips Q31 to Q15 values. | |
| 513 */ | |
| 514 static __INLINE q15_t clip_q31_to_q15( | |
| 515 q31_t x) | |
| 516 { | |
| 517 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? | |
| 518 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; | |
| 519 } | |
| 520 | |
| 521 /** | |
| 522 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. | |
| 523 */ | |
| 524 | |
| 525 static __INLINE q63_t mult32x64( | |
| 526 q63_t x, | |
| 527 q31_t y) | |
| 528 { | |
| 529 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + | |
| 530 (((q63_t) (x >> 32) * y))); | |
| 531 } | |
| 532 | |
| 533 /* | |
| 534 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) | |
| 535 #define __CLZ __clz | |
| 536 #endif | |
| 537 */ | |
| 538 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ | |
| 539 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) | |
| 540 static __INLINE uint32_t __CLZ( | |
| 541 q31_t data); | |
| 542 | |
| 543 static __INLINE uint32_t __CLZ( | |
| 544 q31_t data) | |
| 545 { | |
| 546 uint32_t count = 0; | |
| 547 uint32_t mask = 0x80000000; | |
| 548 | |
| 549 while((data & mask) == 0) | |
| 550 { | |
| 551 count += 1u; | |
| 552 mask = mask >> 1u; | |
| 553 } | |
| 554 | |
| 555 return (count); | |
| 556 } | |
| 557 #endif | |
| 558 | |
| 559 /** | |
| 560 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. | |
| 561 */ | |
| 562 | |
| 563 static __INLINE uint32_t arm_recip_q31( | |
| 564 q31_t in, | |
| 565 q31_t * dst, | |
| 566 q31_t * pRecipTable) | |
| 567 { | |
| 568 q31_t out; | |
| 569 uint32_t tempVal; | |
| 570 uint32_t index, i; | |
| 571 uint32_t signBits; | |
| 572 | |
| 573 if(in > 0) | |
| 574 { | |
| 575 signBits = ((uint32_t) (__CLZ( in) - 1)); | |
| 576 } | |
| 577 else | |
| 578 { | |
| 579 signBits = ((uint32_t) (__CLZ(-in) - 1)); | |
| 580 } | |
| 581 | |
| 582 /* Convert input sample to 1.31 format */ | |
| 583 in = (in << signBits); | |
| 584 | |
| 585 /* calculation of index for initial approximated Val */ | |
| 586 index = (uint32_t)(in >> 24); | |
| 587 index = (index & INDEX_MASK); | |
| 588 | |
| 589 /* 1.31 with exp 1 */ | |
| 590 out = pRecipTable[index]; | |
| 591 | |
| 592 /* calculation of reciprocal value */ | |
| 593 /* running approximation for two iterations */ | |
| 594 for (i = 0u; i < 2u; i++) | |
| 595 { | |
| 596 tempVal = (uint32_t) (((q63_t) in * out) >> 31); | |
| 597 tempVal = 0x7FFFFFFFu - tempVal; | |
| 598 /* 1.31 with exp 1 */ | |
| 599 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ | |
| 600 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); | |
| 601 } | |
| 602 | |
| 603 /* write output */ | |
| 604 *dst = out; | |
| 605 | |
| 606 /* return num of signbits of out = 1/in value */ | |
| 607 return (signBits + 1u); | |
| 608 } | |
| 609 | |
| 610 | |
| 611 /** | |
| 612 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. | |
| 613 */ | |
| 614 static __INLINE uint32_t arm_recip_q15( | |
| 615 q15_t in, | |
| 616 q15_t * dst, | |
| 617 q15_t * pRecipTable) | |
| 618 { | |
| 619 q15_t out = 0; | |
| 620 uint32_t tempVal = 0; | |
| 621 uint32_t index = 0, i = 0; | |
| 622 uint32_t signBits = 0; | |
| 623 | |
| 624 if(in > 0) | |
| 625 { | |
| 626 signBits = ((uint32_t)(__CLZ( in) - 17)); | |
| 627 } | |
| 628 else | |
| 629 { | |
| 630 signBits = ((uint32_t)(__CLZ(-in) - 17)); | |
| 631 } | |
| 632 | |
| 633 /* Convert input sample to 1.15 format */ | |
| 634 in = (in << signBits); | |
| 635 | |
| 636 /* calculation of index for initial approximated Val */ | |
| 637 index = (uint32_t)(in >> 8); | |
| 638 index = (index & INDEX_MASK); | |
| 639 | |
| 640 /* 1.15 with exp 1 */ | |
| 641 out = pRecipTable[index]; | |
| 642 | |
| 643 /* calculation of reciprocal value */ | |
| 644 /* running approximation for two iterations */ | |
| 645 for (i = 0u; i < 2u; i++) | |
| 646 { | |
| 647 tempVal = (uint32_t) (((q31_t) in * out) >> 15); | |
| 648 tempVal = 0x7FFFu - tempVal; | |
| 649 /* 1.15 with exp 1 */ | |
| 650 out = (q15_t) (((q31_t) out * tempVal) >> 14); | |
| 651 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ | |
| 652 } | |
| 653 | |
| 654 /* write output */ | |
| 655 *dst = out; | |
| 656 | |
| 657 /* return num of signbits of out = 1/in value */ | |
| 658 return (signBits + 1); | |
| 659 } | |
| 660 | |
| 661 | |
| 662 /* | |
| 663 * @brief C custom defined intrinisic function for only M0 processors | |
| 664 */ | |
| 665 #if defined(ARM_MATH_CM0_FAMILY) | |
| 666 static __INLINE q31_t __SSAT( | |
| 667 q31_t x, | |
| 668 uint32_t y) | |
| 669 { | |
| 670 int32_t posMax, negMin; | |
| 671 uint32_t i; | |
| 672 | |
| 673 posMax = 1; | |
| 674 for (i = 0; i < (y - 1); i++) | |
| 675 { | |
| 676 posMax = posMax * 2; | |
| 677 } | |
| 678 | |
| 679 if(x > 0) | |
| 680 { | |
| 681 posMax = (posMax - 1); | |
| 682 | |
| 683 if(x > posMax) | |
| 684 { | |
| 685 x = posMax; | |
| 686 } | |
| 687 } | |
| 688 else | |
| 689 { | |
| 690 negMin = -posMax; | |
| 691 | |
| 692 if(x < negMin) | |
| 693 { | |
| 694 x = negMin; | |
| 695 } | |
| 696 } | |
| 697 return (x); | |
| 698 } | |
| 699 #endif /* end of ARM_MATH_CM0_FAMILY */ | |
| 700 | |
| 701 | |
| 702 /* | |
| 703 * @brief C custom defined intrinsic function for M3 and M0 processors | |
| 704 */ | |
| 705 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) | |
| 706 | |
| 707 /* | |
| 708 * @brief C custom defined QADD8 for M3 and M0 processors | |
| 709 */ | |
| 710 static __INLINE uint32_t __QADD8( | |
| 711 uint32_t x, | |
| 712 uint32_t y) | |
| 713 { | |
| 714 q31_t r, s, t, u; | |
| 715 | |
| 716 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; | |
| 717 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; | |
| 718 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; | |
| 719 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; | |
| 720 | |
| 721 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); | |
| 722 } | |
| 723 | |
| 724 | |
| 725 /* | |
| 726 * @brief C custom defined QSUB8 for M3 and M0 processors | |
| 727 */ | |
| 728 static __INLINE uint32_t __QSUB8( | |
| 729 uint32_t x, | |
| 730 uint32_t y) | |
| 731 { | |
| 732 q31_t r, s, t, u; | |
| 733 | |
| 734 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; | |
| 735 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; | |
| 736 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; | |
| 737 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; | |
| 738 | |
| 739 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); | |
| 740 } | |
| 741 | |
| 742 | |
| 743 /* | |
| 744 * @brief C custom defined QADD16 for M3 and M0 processors | |
| 745 */ | |
| 746 static __INLINE uint32_t __QADD16( | |
| 747 uint32_t x, | |
| 748 uint32_t y) | |
| 749 { | |
| 750 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ | |
| 751 q31_t r = 0, s = 0; | |
| 752 | |
| 753 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 754 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 755 | |
| 756 return ((uint32_t)((s << 16) | (r ))); | |
| 757 } | |
| 758 | |
| 759 | |
| 760 /* | |
| 761 * @brief C custom defined SHADD16 for M3 and M0 processors | |
| 762 */ | |
| 763 static __INLINE uint32_t __SHADD16( | |
| 764 uint32_t x, | |
| 765 uint32_t y) | |
| 766 { | |
| 767 q31_t r, s; | |
| 768 | |
| 769 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 770 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 771 | |
| 772 return ((uint32_t)((s << 16) | (r ))); | |
| 773 } | |
| 774 | |
| 775 | |
| 776 /* | |
| 777 * @brief C custom defined QSUB16 for M3 and M0 processors | |
| 778 */ | |
| 779 static __INLINE uint32_t __QSUB16( | |
| 780 uint32_t x, | |
| 781 uint32_t y) | |
| 782 { | |
| 783 q31_t r, s; | |
| 784 | |
| 785 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 786 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 787 | |
| 788 return ((uint32_t)((s << 16) | (r ))); | |
| 789 } | |
| 790 | |
| 791 | |
| 792 /* | |
| 793 * @brief C custom defined SHSUB16 for M3 and M0 processors | |
| 794 */ | |
| 795 static __INLINE uint32_t __SHSUB16( | |
| 796 uint32_t x, | |
| 797 uint32_t y) | |
| 798 { | |
| 799 q31_t r, s; | |
| 800 | |
| 801 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 802 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 803 | |
| 804 return ((uint32_t)((s << 16) | (r ))); | |
| 805 } | |
| 806 | |
| 807 | |
| 808 /* | |
| 809 * @brief C custom defined QASX for M3 and M0 processors | |
| 810 */ | |
| 811 static __INLINE uint32_t __QASX( | |
| 812 uint32_t x, | |
| 813 uint32_t y) | |
| 814 { | |
| 815 q31_t r, s; | |
| 816 | |
| 817 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 818 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 819 | |
| 820 return ((uint32_t)((s << 16) | (r ))); | |
| 821 } | |
| 822 | |
| 823 | |
| 824 /* | |
| 825 * @brief C custom defined SHASX for M3 and M0 processors | |
| 826 */ | |
| 827 static __INLINE uint32_t __SHASX( | |
| 828 uint32_t x, | |
| 829 uint32_t y) | |
| 830 { | |
| 831 q31_t r, s; | |
| 832 | |
| 833 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 834 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 835 | |
| 836 return ((uint32_t)((s << 16) | (r ))); | |
| 837 } | |
| 838 | |
| 839 | |
| 840 /* | |
| 841 * @brief C custom defined QSAX for M3 and M0 processors | |
| 842 */ | |
| 843 static __INLINE uint32_t __QSAX( | |
| 844 uint32_t x, | |
| 845 uint32_t y) | |
| 846 { | |
| 847 q31_t r, s; | |
| 848 | |
| 849 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 850 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
| 851 | |
| 852 return ((uint32_t)((s << 16) | (r ))); | |
| 853 } | |
| 854 | |
| 855 | |
| 856 /* | |
| 857 * @brief C custom defined SHSAX for M3 and M0 processors | |
| 858 */ | |
| 859 static __INLINE uint32_t __SHSAX( | |
| 860 uint32_t x, | |
| 861 uint32_t y) | |
| 862 { | |
| 863 q31_t r, s; | |
| 864 | |
| 865 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 866 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
| 867 | |
| 868 return ((uint32_t)((s << 16) | (r ))); | |
| 869 } | |
| 870 | |
| 871 | |
| 872 /* | |
| 873 * @brief C custom defined SMUSDX for M3 and M0 processors | |
| 874 */ | |
| 875 static __INLINE uint32_t __SMUSDX( | |
| 876 uint32_t x, | |
| 877 uint32_t y) | |
| 878 { | |
| 879 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - | |
| 880 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); | |
| 881 } | |
| 882 | |
| 883 /* | |
| 884 * @brief C custom defined SMUADX for M3 and M0 processors | |
| 885 */ | |
| 886 static __INLINE uint32_t __SMUADX( | |
| 887 uint32_t x, | |
| 888 uint32_t y) | |
| 889 { | |
| 890 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + | |
| 891 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); | |
| 892 } | |
| 893 | |
| 894 | |
| 895 /* | |
| 896 * @brief C custom defined QADD for M3 and M0 processors | |
| 897 */ | |
| 898 static __INLINE int32_t __QADD( | |
| 899 int32_t x, | |
| 900 int32_t y) | |
| 901 { | |
| 902 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); | |
| 903 } | |
| 904 | |
| 905 | |
| 906 /* | |
| 907 * @brief C custom defined QSUB for M3 and M0 processors | |
| 908 */ | |
| 909 static __INLINE int32_t __QSUB( | |
| 910 int32_t x, | |
| 911 int32_t y) | |
| 912 { | |
| 913 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); | |
| 914 } | |
| 915 | |
| 916 | |
| 917 /* | |
| 918 * @brief C custom defined SMLAD for M3 and M0 processors | |
| 919 */ | |
| 920 static __INLINE uint32_t __SMLAD( | |
| 921 uint32_t x, | |
| 922 uint32_t y, | |
| 923 uint32_t sum) | |
| 924 { | |
| 925 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + | |
| 926 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + | |
| 927 ( ((q31_t)sum ) ) )); | |
| 928 } | |
| 929 | |
| 930 | |
| 931 /* | |
| 932 * @brief C custom defined SMLADX for M3 and M0 processors | |
| 933 */ | |
| 934 static __INLINE uint32_t __SMLADX( | |
| 935 uint32_t x, | |
| 936 uint32_t y, | |
| 937 uint32_t sum) | |
| 938 { | |
| 939 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + | |
| 940 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + | |
| 941 ( ((q31_t)sum ) ) )); | |
| 942 } | |
| 943 | |
| 944 | |
| 945 /* | |
| 946 * @brief C custom defined SMLSDX for M3 and M0 processors | |
| 947 */ | |
| 948 static __INLINE uint32_t __SMLSDX( | |
| 949 uint32_t x, | |
| 950 uint32_t y, | |
| 951 uint32_t sum) | |
| 952 { | |
| 953 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - | |
| 954 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + | |
| 955 ( ((q31_t)sum ) ) )); | |
| 956 } | |
| 957 | |
| 958 | |
| 959 /* | |
| 960 * @brief C custom defined SMLALD for M3 and M0 processors | |
| 961 */ | |
| 962 static __INLINE uint64_t __SMLALD( | |
| 963 uint32_t x, | |
| 964 uint32_t y, | |
| 965 uint64_t sum) | |
| 966 { | |
| 967 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ | |
| 968 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + | |
| 969 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + | |
| 970 ( ((q63_t)sum ) ) )); | |
| 971 } | |
| 972 | |
| 973 | |
| 974 /* | |
| 975 * @brief C custom defined SMLALDX for M3 and M0 processors | |
| 976 */ | |
| 977 static __INLINE uint64_t __SMLALDX( | |
| 978 uint32_t x, | |
| 979 uint32_t y, | |
| 980 uint64_t sum) | |
| 981 { | |
| 982 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ | |
| 983 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + | |
| 984 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + | |
| 985 ( ((q63_t)sum ) ) )); | |
| 986 } | |
| 987 | |
| 988 | |
| 989 /* | |
| 990 * @brief C custom defined SMUAD for M3 and M0 processors | |
| 991 */ | |
| 992 static __INLINE uint32_t __SMUAD( | |
| 993 uint32_t x, | |
| 994 uint32_t y) | |
| 995 { | |
| 996 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + | |
| 997 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); | |
| 998 } | |
| 999 | |
| 1000 | |
| 1001 /* | |
| 1002 * @brief C custom defined SMUSD for M3 and M0 processors | |
| 1003 */ | |
| 1004 static __INLINE uint32_t __SMUSD( | |
| 1005 uint32_t x, | |
| 1006 uint32_t y) | |
| 1007 { | |
| 1008 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - | |
| 1009 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); | |
| 1010 } | |
| 1011 | |
| 1012 | |
| 1013 /* | |
| 1014 * @brief C custom defined SXTB16 for M3 and M0 processors | |
| 1015 */ | |
| 1016 static __INLINE uint32_t __SXTB16( | |
| 1017 uint32_t x) | |
| 1018 { | |
| 1019 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | | |
| 1020 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); | |
| 1021 } | |
| 1022 | |
| 1023 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ | |
| 1024 | |
| 1025 | |
| 1026 /** | |
| 1027 * @brief Instance structure for the Q7 FIR filter. | |
| 1028 */ | |
| 1029 typedef struct | |
| 1030 { | |
| 1031 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 1032 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 1033 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 1034 } arm_fir_instance_q7; | |
| 1035 | |
| 1036 /** | |
| 1037 * @brief Instance structure for the Q15 FIR filter. | |
| 1038 */ | |
| 1039 typedef struct | |
| 1040 { | |
| 1041 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 1042 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 1043 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 1044 } arm_fir_instance_q15; | |
| 1045 | |
| 1046 /** | |
| 1047 * @brief Instance structure for the Q31 FIR filter. | |
| 1048 */ | |
| 1049 typedef struct | |
| 1050 { | |
| 1051 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 1052 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 1053 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 1054 } arm_fir_instance_q31; | |
| 1055 | |
| 1056 /** | |
| 1057 * @brief Instance structure for the floating-point FIR filter. | |
| 1058 */ | |
| 1059 typedef struct | |
| 1060 { | |
| 1061 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
| 1062 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 1063 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 1064 } arm_fir_instance_f32; | |
| 1065 | |
| 1066 | |
| 1067 /** | |
| 1068 * @brief Processing function for the Q7 FIR filter. | |
| 1069 * @param[in] S points to an instance of the Q7 FIR filter structure. | |
| 1070 * @param[in] pSrc points to the block of input data. | |
| 1071 * @param[out] pDst points to the block of output data. | |
| 1072 * @param[in] blockSize number of samples to process. | |
| 1073 */ | |
| 1074 void arm_fir_q7( | |
| 1075 const arm_fir_instance_q7 * S, | |
| 1076 q7_t * pSrc, | |
| 1077 q7_t * pDst, | |
| 1078 uint32_t blockSize); | |
| 1079 | |
| 1080 | |
| 1081 /** | |
| 1082 * @brief Initialization function for the Q7 FIR filter. | |
| 1083 * @param[in,out] S points to an instance of the Q7 FIR structure. | |
| 1084 * @param[in] numTaps Number of filter coefficients in the filter. | |
| 1085 * @param[in] pCoeffs points to the filter coefficients. | |
| 1086 * @param[in] pState points to the state buffer. | |
| 1087 * @param[in] blockSize number of samples that are processed. | |
| 1088 */ | |
| 1089 void arm_fir_init_q7( | |
| 1090 arm_fir_instance_q7 * S, | |
| 1091 uint16_t numTaps, | |
| 1092 q7_t * pCoeffs, | |
| 1093 q7_t * pState, | |
| 1094 uint32_t blockSize); | |
| 1095 | |
| 1096 | |
| 1097 /** | |
| 1098 * @brief Processing function for the Q15 FIR filter. | |
| 1099 * @param[in] S points to an instance of the Q15 FIR structure. | |
| 1100 * @param[in] pSrc points to the block of input data. | |
| 1101 * @param[out] pDst points to the block of output data. | |
| 1102 * @param[in] blockSize number of samples to process. | |
| 1103 */ | |
| 1104 void arm_fir_q15( | |
| 1105 const arm_fir_instance_q15 * S, | |
| 1106 q15_t * pSrc, | |
| 1107 q15_t * pDst, | |
| 1108 uint32_t blockSize); | |
| 1109 | |
| 1110 | |
| 1111 /** | |
| 1112 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. | |
| 1113 * @param[in] S points to an instance of the Q15 FIR filter structure. | |
| 1114 * @param[in] pSrc points to the block of input data. | |
| 1115 * @param[out] pDst points to the block of output data. | |
| 1116 * @param[in] blockSize number of samples to process. | |
| 1117 */ | |
| 1118 void arm_fir_fast_q15( | |
| 1119 const arm_fir_instance_q15 * S, | |
| 1120 q15_t * pSrc, | |
| 1121 q15_t * pDst, | |
| 1122 uint32_t blockSize); | |
| 1123 | |
| 1124 | |
| 1125 /** | |
| 1126 * @brief Initialization function for the Q15 FIR filter. | |
| 1127 * @param[in,out] S points to an instance of the Q15 FIR filter structure. | |
| 1128 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. | |
| 1129 * @param[in] pCoeffs points to the filter coefficients. | |
| 1130 * @param[in] pState points to the state buffer. | |
| 1131 * @param[in] blockSize number of samples that are processed at a time. | |
| 1132 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if | |
| 1133 * <code>numTaps</code> is not a supported value. | |
| 1134 */ | |
| 1135 arm_status arm_fir_init_q15( | |
| 1136 arm_fir_instance_q15 * S, | |
| 1137 uint16_t numTaps, | |
| 1138 q15_t * pCoeffs, | |
| 1139 q15_t * pState, | |
| 1140 uint32_t blockSize); | |
| 1141 | |
| 1142 | |
| 1143 /** | |
| 1144 * @brief Processing function for the Q31 FIR filter. | |
| 1145 * @param[in] S points to an instance of the Q31 FIR filter structure. | |
| 1146 * @param[in] pSrc points to the block of input data. | |
| 1147 * @param[out] pDst points to the block of output data. | |
| 1148 * @param[in] blockSize number of samples to process. | |
| 1149 */ | |
| 1150 void arm_fir_q31( | |
| 1151 const arm_fir_instance_q31 * S, | |
| 1152 q31_t * pSrc, | |
| 1153 q31_t * pDst, | |
| 1154 uint32_t blockSize); | |
| 1155 | |
| 1156 | |
| 1157 /** | |
| 1158 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. | |
| 1159 * @param[in] S points to an instance of the Q31 FIR structure. | |
| 1160 * @param[in] pSrc points to the block of input data. | |
| 1161 * @param[out] pDst points to the block of output data. | |
| 1162 * @param[in] blockSize number of samples to process. | |
| 1163 */ | |
| 1164 void arm_fir_fast_q31( | |
| 1165 const arm_fir_instance_q31 * S, | |
| 1166 q31_t * pSrc, | |
| 1167 q31_t * pDst, | |
| 1168 uint32_t blockSize); | |
| 1169 | |
| 1170 | |
| 1171 /** | |
| 1172 * @brief Initialization function for the Q31 FIR filter. | |
| 1173 * @param[in,out] S points to an instance of the Q31 FIR structure. | |
| 1174 * @param[in] numTaps Number of filter coefficients in the filter. | |
| 1175 * @param[in] pCoeffs points to the filter coefficients. | |
| 1176 * @param[in] pState points to the state buffer. | |
| 1177 * @param[in] blockSize number of samples that are processed at a time. | |
| 1178 */ | |
| 1179 void arm_fir_init_q31( | |
| 1180 arm_fir_instance_q31 * S, | |
| 1181 uint16_t numTaps, | |
| 1182 q31_t * pCoeffs, | |
| 1183 q31_t * pState, | |
| 1184 uint32_t blockSize); | |
| 1185 | |
| 1186 | |
| 1187 /** | |
| 1188 * @brief Processing function for the floating-point FIR filter. | |
| 1189 * @param[in] S points to an instance of the floating-point FIR structure. | |
| 1190 * @param[in] pSrc points to the block of input data. | |
| 1191 * @param[out] pDst points to the block of output data. | |
| 1192 * @param[in] blockSize number of samples to process. | |
| 1193 */ | |
| 1194 void arm_fir_f32( | |
| 1195 const arm_fir_instance_f32 * S, | |
| 1196 float32_t * pSrc, | |
| 1197 float32_t * pDst, | |
| 1198 uint32_t blockSize); | |
| 1199 | |
| 1200 | |
| 1201 /** | |
| 1202 * @brief Initialization function for the floating-point FIR filter. | |
| 1203 * @param[in,out] S points to an instance of the floating-point FIR filter structure. | |
| 1204 * @param[in] numTaps Number of filter coefficients in the filter. | |
| 1205 * @param[in] pCoeffs points to the filter coefficients. | |
| 1206 * @param[in] pState points to the state buffer. | |
| 1207 * @param[in] blockSize number of samples that are processed at a time. | |
| 1208 */ | |
| 1209 void arm_fir_init_f32( | |
| 1210 arm_fir_instance_f32 * S, | |
| 1211 uint16_t numTaps, | |
| 1212 float32_t * pCoeffs, | |
| 1213 float32_t * pState, | |
| 1214 uint32_t blockSize); | |
| 1215 | |
| 1216 | |
| 1217 /** | |
| 1218 * @brief Instance structure for the Q15 Biquad cascade filter. | |
| 1219 */ | |
| 1220 typedef struct | |
| 1221 { | |
| 1222 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 1223 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 1224 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
| 1225 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
| 1226 } arm_biquad_casd_df1_inst_q15; | |
| 1227 | |
| 1228 /** | |
| 1229 * @brief Instance structure for the Q31 Biquad cascade filter. | |
| 1230 */ | |
| 1231 typedef struct | |
| 1232 { | |
| 1233 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 1234 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 1235 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
| 1236 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
| 1237 } arm_biquad_casd_df1_inst_q31; | |
| 1238 | |
| 1239 /** | |
| 1240 * @brief Instance structure for the floating-point Biquad cascade filter. | |
| 1241 */ | |
| 1242 typedef struct | |
| 1243 { | |
| 1244 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 1245 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 1246 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
| 1247 } arm_biquad_casd_df1_inst_f32; | |
| 1248 | |
| 1249 | |
| 1250 /** | |
| 1251 * @brief Processing function for the Q15 Biquad cascade filter. | |
| 1252 * @param[in] S points to an instance of the Q15 Biquad cascade structure. | |
| 1253 * @param[in] pSrc points to the block of input data. | |
| 1254 * @param[out] pDst points to the block of output data. | |
| 1255 * @param[in] blockSize number of samples to process. | |
| 1256 */ | |
| 1257 void arm_biquad_cascade_df1_q15( | |
| 1258 const arm_biquad_casd_df1_inst_q15 * S, | |
| 1259 q15_t * pSrc, | |
| 1260 q15_t * pDst, | |
| 1261 uint32_t blockSize); | |
| 1262 | |
| 1263 | |
| 1264 /** | |
| 1265 * @brief Initialization function for the Q15 Biquad cascade filter. | |
| 1266 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. | |
| 1267 * @param[in] numStages number of 2nd order stages in the filter. | |
| 1268 * @param[in] pCoeffs points to the filter coefficients. | |
| 1269 * @param[in] pState points to the state buffer. | |
| 1270 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
| 1271 */ | |
| 1272 void arm_biquad_cascade_df1_init_q15( | |
| 1273 arm_biquad_casd_df1_inst_q15 * S, | |
| 1274 uint8_t numStages, | |
| 1275 q15_t * pCoeffs, | |
| 1276 q15_t * pState, | |
| 1277 int8_t postShift); | |
| 1278 | |
| 1279 | |
| 1280 /** | |
| 1281 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
| 1282 * @param[in] S points to an instance of the Q15 Biquad cascade structure. | |
| 1283 * @param[in] pSrc points to the block of input data. | |
| 1284 * @param[out] pDst points to the block of output data. | |
| 1285 * @param[in] blockSize number of samples to process. | |
| 1286 */ | |
| 1287 void arm_biquad_cascade_df1_fast_q15( | |
| 1288 const arm_biquad_casd_df1_inst_q15 * S, | |
| 1289 q15_t * pSrc, | |
| 1290 q15_t * pDst, | |
| 1291 uint32_t blockSize); | |
| 1292 | |
| 1293 | |
| 1294 /** | |
| 1295 * @brief Processing function for the Q31 Biquad cascade filter | |
| 1296 * @param[in] S points to an instance of the Q31 Biquad cascade structure. | |
| 1297 * @param[in] pSrc points to the block of input data. | |
| 1298 * @param[out] pDst points to the block of output data. | |
| 1299 * @param[in] blockSize number of samples to process. | |
| 1300 */ | |
| 1301 void arm_biquad_cascade_df1_q31( | |
| 1302 const arm_biquad_casd_df1_inst_q31 * S, | |
| 1303 q31_t * pSrc, | |
| 1304 q31_t * pDst, | |
| 1305 uint32_t blockSize); | |
| 1306 | |
| 1307 | |
| 1308 /** | |
| 1309 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
| 1310 * @param[in] S points to an instance of the Q31 Biquad cascade structure. | |
| 1311 * @param[in] pSrc points to the block of input data. | |
| 1312 * @param[out] pDst points to the block of output data. | |
| 1313 * @param[in] blockSize number of samples to process. | |
| 1314 */ | |
| 1315 void arm_biquad_cascade_df1_fast_q31( | |
| 1316 const arm_biquad_casd_df1_inst_q31 * S, | |
| 1317 q31_t * pSrc, | |
| 1318 q31_t * pDst, | |
| 1319 uint32_t blockSize); | |
| 1320 | |
| 1321 | |
| 1322 /** | |
| 1323 * @brief Initialization function for the Q31 Biquad cascade filter. | |
| 1324 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. | |
| 1325 * @param[in] numStages number of 2nd order stages in the filter. | |
| 1326 * @param[in] pCoeffs points to the filter coefficients. | |
| 1327 * @param[in] pState points to the state buffer. | |
| 1328 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
| 1329 */ | |
| 1330 void arm_biquad_cascade_df1_init_q31( | |
| 1331 arm_biquad_casd_df1_inst_q31 * S, | |
| 1332 uint8_t numStages, | |
| 1333 q31_t * pCoeffs, | |
| 1334 q31_t * pState, | |
| 1335 int8_t postShift); | |
| 1336 | |
| 1337 | |
| 1338 /** | |
| 1339 * @brief Processing function for the floating-point Biquad cascade filter. | |
| 1340 * @param[in] S points to an instance of the floating-point Biquad cascade structure. | |
| 1341 * @param[in] pSrc points to the block of input data. | |
| 1342 * @param[out] pDst points to the block of output data. | |
| 1343 * @param[in] blockSize number of samples to process. | |
| 1344 */ | |
| 1345 void arm_biquad_cascade_df1_f32( | |
| 1346 const arm_biquad_casd_df1_inst_f32 * S, | |
| 1347 float32_t * pSrc, | |
| 1348 float32_t * pDst, | |
| 1349 uint32_t blockSize); | |
| 1350 | |
| 1351 | |
| 1352 /** | |
| 1353 * @brief Initialization function for the floating-point Biquad cascade filter. | |
| 1354 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. | |
| 1355 * @param[in] numStages number of 2nd order stages in the filter. | |
| 1356 * @param[in] pCoeffs points to the filter coefficients. | |
| 1357 * @param[in] pState points to the state buffer. | |
| 1358 */ | |
| 1359 void arm_biquad_cascade_df1_init_f32( | |
| 1360 arm_biquad_casd_df1_inst_f32 * S, | |
| 1361 uint8_t numStages, | |
| 1362 float32_t * pCoeffs, | |
| 1363 float32_t * pState); | |
| 1364 | |
| 1365 | |
| 1366 /** | |
| 1367 * @brief Instance structure for the floating-point matrix structure. | |
| 1368 */ | |
| 1369 typedef struct | |
| 1370 { | |
| 1371 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1372 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1373 float32_t *pData; /**< points to the data of the matrix. */ | |
| 1374 } arm_matrix_instance_f32; | |
| 1375 | |
| 1376 | |
| 1377 /** | |
| 1378 * @brief Instance structure for the floating-point matrix structure. | |
| 1379 */ | |
| 1380 typedef struct | |
| 1381 { | |
| 1382 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1383 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1384 float64_t *pData; /**< points to the data of the matrix. */ | |
| 1385 } arm_matrix_instance_f64; | |
| 1386 | |
| 1387 /** | |
| 1388 * @brief Instance structure for the Q15 matrix structure. | |
| 1389 */ | |
| 1390 typedef struct | |
| 1391 { | |
| 1392 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1393 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1394 q15_t *pData; /**< points to the data of the matrix. */ | |
| 1395 } arm_matrix_instance_q15; | |
| 1396 | |
| 1397 /** | |
| 1398 * @brief Instance structure for the Q31 matrix structure. | |
| 1399 */ | |
| 1400 typedef struct | |
| 1401 { | |
| 1402 uint16_t numRows; /**< number of rows of the matrix. */ | |
| 1403 uint16_t numCols; /**< number of columns of the matrix. */ | |
| 1404 q31_t *pData; /**< points to the data of the matrix. */ | |
| 1405 } arm_matrix_instance_q31; | |
| 1406 | |
| 1407 | |
| 1408 /** | |
| 1409 * @brief Floating-point matrix addition. | |
| 1410 * @param[in] pSrcA points to the first input matrix structure | |
| 1411 * @param[in] pSrcB points to the second input matrix structure | |
| 1412 * @param[out] pDst points to output matrix structure | |
| 1413 * @return The function returns either | |
| 1414 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1415 */ | |
| 1416 arm_status arm_mat_add_f32( | |
| 1417 const arm_matrix_instance_f32 * pSrcA, | |
| 1418 const arm_matrix_instance_f32 * pSrcB, | |
| 1419 arm_matrix_instance_f32 * pDst); | |
| 1420 | |
| 1421 | |
| 1422 /** | |
| 1423 * @brief Q15 matrix addition. | |
| 1424 * @param[in] pSrcA points to the first input matrix structure | |
| 1425 * @param[in] pSrcB points to the second input matrix structure | |
| 1426 * @param[out] pDst points to output matrix structure | |
| 1427 * @return The function returns either | |
| 1428 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1429 */ | |
| 1430 arm_status arm_mat_add_q15( | |
| 1431 const arm_matrix_instance_q15 * pSrcA, | |
| 1432 const arm_matrix_instance_q15 * pSrcB, | |
| 1433 arm_matrix_instance_q15 * pDst); | |
| 1434 | |
| 1435 | |
| 1436 /** | |
| 1437 * @brief Q31 matrix addition. | |
| 1438 * @param[in] pSrcA points to the first input matrix structure | |
| 1439 * @param[in] pSrcB points to the second input matrix structure | |
| 1440 * @param[out] pDst points to output matrix structure | |
| 1441 * @return The function returns either | |
| 1442 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1443 */ | |
| 1444 arm_status arm_mat_add_q31( | |
| 1445 const arm_matrix_instance_q31 * pSrcA, | |
| 1446 const arm_matrix_instance_q31 * pSrcB, | |
| 1447 arm_matrix_instance_q31 * pDst); | |
| 1448 | |
| 1449 | |
| 1450 /** | |
| 1451 * @brief Floating-point, complex, matrix multiplication. | |
| 1452 * @param[in] pSrcA points to the first input matrix structure | |
| 1453 * @param[in] pSrcB points to the second input matrix structure | |
| 1454 * @param[out] pDst points to output matrix structure | |
| 1455 * @return The function returns either | |
| 1456 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1457 */ | |
| 1458 arm_status arm_mat_cmplx_mult_f32( | |
| 1459 const arm_matrix_instance_f32 * pSrcA, | |
| 1460 const arm_matrix_instance_f32 * pSrcB, | |
| 1461 arm_matrix_instance_f32 * pDst); | |
| 1462 | |
| 1463 | |
| 1464 /** | |
| 1465 * @brief Q15, complex, matrix multiplication. | |
| 1466 * @param[in] pSrcA points to the first input matrix structure | |
| 1467 * @param[in] pSrcB points to the second input matrix structure | |
| 1468 * @param[out] pDst points to output matrix structure | |
| 1469 * @return The function returns either | |
| 1470 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1471 */ | |
| 1472 arm_status arm_mat_cmplx_mult_q15( | |
| 1473 const arm_matrix_instance_q15 * pSrcA, | |
| 1474 const arm_matrix_instance_q15 * pSrcB, | |
| 1475 arm_matrix_instance_q15 * pDst, | |
| 1476 q15_t * pScratch); | |
| 1477 | |
| 1478 | |
| 1479 /** | |
| 1480 * @brief Q31, complex, matrix multiplication. | |
| 1481 * @param[in] pSrcA points to the first input matrix structure | |
| 1482 * @param[in] pSrcB points to the second input matrix structure | |
| 1483 * @param[out] pDst points to output matrix structure | |
| 1484 * @return The function returns either | |
| 1485 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1486 */ | |
| 1487 arm_status arm_mat_cmplx_mult_q31( | |
| 1488 const arm_matrix_instance_q31 * pSrcA, | |
| 1489 const arm_matrix_instance_q31 * pSrcB, | |
| 1490 arm_matrix_instance_q31 * pDst); | |
| 1491 | |
| 1492 | |
| 1493 /** | |
| 1494 * @brief Floating-point matrix transpose. | |
| 1495 * @param[in] pSrc points to the input matrix | |
| 1496 * @param[out] pDst points to the output matrix | |
| 1497 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
| 1498 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1499 */ | |
| 1500 arm_status arm_mat_trans_f32( | |
| 1501 const arm_matrix_instance_f32 * pSrc, | |
| 1502 arm_matrix_instance_f32 * pDst); | |
| 1503 | |
| 1504 | |
| 1505 /** | |
| 1506 * @brief Q15 matrix transpose. | |
| 1507 * @param[in] pSrc points to the input matrix | |
| 1508 * @param[out] pDst points to the output matrix | |
| 1509 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
| 1510 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1511 */ | |
| 1512 arm_status arm_mat_trans_q15( | |
| 1513 const arm_matrix_instance_q15 * pSrc, | |
| 1514 arm_matrix_instance_q15 * pDst); | |
| 1515 | |
| 1516 | |
| 1517 /** | |
| 1518 * @brief Q31 matrix transpose. | |
| 1519 * @param[in] pSrc points to the input matrix | |
| 1520 * @param[out] pDst points to the output matrix | |
| 1521 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
| 1522 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1523 */ | |
| 1524 arm_status arm_mat_trans_q31( | |
| 1525 const arm_matrix_instance_q31 * pSrc, | |
| 1526 arm_matrix_instance_q31 * pDst); | |
| 1527 | |
| 1528 | |
| 1529 /** | |
| 1530 * @brief Floating-point matrix multiplication | |
| 1531 * @param[in] pSrcA points to the first input matrix structure | |
| 1532 * @param[in] pSrcB points to the second input matrix structure | |
| 1533 * @param[out] pDst points to output matrix structure | |
| 1534 * @return The function returns either | |
| 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1536 */ | |
| 1537 arm_status arm_mat_mult_f32( | |
| 1538 const arm_matrix_instance_f32 * pSrcA, | |
| 1539 const arm_matrix_instance_f32 * pSrcB, | |
| 1540 arm_matrix_instance_f32 * pDst); | |
| 1541 | |
| 1542 | |
| 1543 /** | |
| 1544 * @brief Q15 matrix multiplication | |
| 1545 * @param[in] pSrcA points to the first input matrix structure | |
| 1546 * @param[in] pSrcB points to the second input matrix structure | |
| 1547 * @param[out] pDst points to output matrix structure | |
| 1548 * @param[in] pState points to the array for storing intermediate results | |
| 1549 * @return The function returns either | |
| 1550 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1551 */ | |
| 1552 arm_status arm_mat_mult_q15( | |
| 1553 const arm_matrix_instance_q15 * pSrcA, | |
| 1554 const arm_matrix_instance_q15 * pSrcB, | |
| 1555 arm_matrix_instance_q15 * pDst, | |
| 1556 q15_t * pState); | |
| 1557 | |
| 1558 | |
| 1559 /** | |
| 1560 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
| 1561 * @param[in] pSrcA points to the first input matrix structure | |
| 1562 * @param[in] pSrcB points to the second input matrix structure | |
| 1563 * @param[out] pDst points to output matrix structure | |
| 1564 * @param[in] pState points to the array for storing intermediate results | |
| 1565 * @return The function returns either | |
| 1566 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1567 */ | |
| 1568 arm_status arm_mat_mult_fast_q15( | |
| 1569 const arm_matrix_instance_q15 * pSrcA, | |
| 1570 const arm_matrix_instance_q15 * pSrcB, | |
| 1571 arm_matrix_instance_q15 * pDst, | |
| 1572 q15_t * pState); | |
| 1573 | |
| 1574 | |
| 1575 /** | |
| 1576 * @brief Q31 matrix multiplication | |
| 1577 * @param[in] pSrcA points to the first input matrix structure | |
| 1578 * @param[in] pSrcB points to the second input matrix structure | |
| 1579 * @param[out] pDst points to output matrix structure | |
| 1580 * @return The function returns either | |
| 1581 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1582 */ | |
| 1583 arm_status arm_mat_mult_q31( | |
| 1584 const arm_matrix_instance_q31 * pSrcA, | |
| 1585 const arm_matrix_instance_q31 * pSrcB, | |
| 1586 arm_matrix_instance_q31 * pDst); | |
| 1587 | |
| 1588 | |
| 1589 /** | |
| 1590 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
| 1591 * @param[in] pSrcA points to the first input matrix structure | |
| 1592 * @param[in] pSrcB points to the second input matrix structure | |
| 1593 * @param[out] pDst points to output matrix structure | |
| 1594 * @return The function returns either | |
| 1595 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1596 */ | |
| 1597 arm_status arm_mat_mult_fast_q31( | |
| 1598 const arm_matrix_instance_q31 * pSrcA, | |
| 1599 const arm_matrix_instance_q31 * pSrcB, | |
| 1600 arm_matrix_instance_q31 * pDst); | |
| 1601 | |
| 1602 | |
| 1603 /** | |
| 1604 * @brief Floating-point matrix subtraction | |
| 1605 * @param[in] pSrcA points to the first input matrix structure | |
| 1606 * @param[in] pSrcB points to the second input matrix structure | |
| 1607 * @param[out] pDst points to output matrix structure | |
| 1608 * @return The function returns either | |
| 1609 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1610 */ | |
| 1611 arm_status arm_mat_sub_f32( | |
| 1612 const arm_matrix_instance_f32 * pSrcA, | |
| 1613 const arm_matrix_instance_f32 * pSrcB, | |
| 1614 arm_matrix_instance_f32 * pDst); | |
| 1615 | |
| 1616 | |
| 1617 /** | |
| 1618 * @brief Q15 matrix subtraction | |
| 1619 * @param[in] pSrcA points to the first input matrix structure | |
| 1620 * @param[in] pSrcB points to the second input matrix structure | |
| 1621 * @param[out] pDst points to output matrix structure | |
| 1622 * @return The function returns either | |
| 1623 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1624 */ | |
| 1625 arm_status arm_mat_sub_q15( | |
| 1626 const arm_matrix_instance_q15 * pSrcA, | |
| 1627 const arm_matrix_instance_q15 * pSrcB, | |
| 1628 arm_matrix_instance_q15 * pDst); | |
| 1629 | |
| 1630 | |
| 1631 /** | |
| 1632 * @brief Q31 matrix subtraction | |
| 1633 * @param[in] pSrcA points to the first input matrix structure | |
| 1634 * @param[in] pSrcB points to the second input matrix structure | |
| 1635 * @param[out] pDst points to output matrix structure | |
| 1636 * @return The function returns either | |
| 1637 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1638 */ | |
| 1639 arm_status arm_mat_sub_q31( | |
| 1640 const arm_matrix_instance_q31 * pSrcA, | |
| 1641 const arm_matrix_instance_q31 * pSrcB, | |
| 1642 arm_matrix_instance_q31 * pDst); | |
| 1643 | |
| 1644 | |
| 1645 /** | |
| 1646 * @brief Floating-point matrix scaling. | |
| 1647 * @param[in] pSrc points to the input matrix | |
| 1648 * @param[in] scale scale factor | |
| 1649 * @param[out] pDst points to the output matrix | |
| 1650 * @return The function returns either | |
| 1651 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1652 */ | |
| 1653 arm_status arm_mat_scale_f32( | |
| 1654 const arm_matrix_instance_f32 * pSrc, | |
| 1655 float32_t scale, | |
| 1656 arm_matrix_instance_f32 * pDst); | |
| 1657 | |
| 1658 | |
| 1659 /** | |
| 1660 * @brief Q15 matrix scaling. | |
| 1661 * @param[in] pSrc points to input matrix | |
| 1662 * @param[in] scaleFract fractional portion of the scale factor | |
| 1663 * @param[in] shift number of bits to shift the result by | |
| 1664 * @param[out] pDst points to output matrix | |
| 1665 * @return The function returns either | |
| 1666 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1667 */ | |
| 1668 arm_status arm_mat_scale_q15( | |
| 1669 const arm_matrix_instance_q15 * pSrc, | |
| 1670 q15_t scaleFract, | |
| 1671 int32_t shift, | |
| 1672 arm_matrix_instance_q15 * pDst); | |
| 1673 | |
| 1674 | |
| 1675 /** | |
| 1676 * @brief Q31 matrix scaling. | |
| 1677 * @param[in] pSrc points to input matrix | |
| 1678 * @param[in] scaleFract fractional portion of the scale factor | |
| 1679 * @param[in] shift number of bits to shift the result by | |
| 1680 * @param[out] pDst points to output matrix structure | |
| 1681 * @return The function returns either | |
| 1682 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
| 1683 */ | |
| 1684 arm_status arm_mat_scale_q31( | |
| 1685 const arm_matrix_instance_q31 * pSrc, | |
| 1686 q31_t scaleFract, | |
| 1687 int32_t shift, | |
| 1688 arm_matrix_instance_q31 * pDst); | |
| 1689 | |
| 1690 | |
| 1691 /** | |
| 1692 * @brief Q31 matrix initialization. | |
| 1693 * @param[in,out] S points to an instance of the floating-point matrix structure. | |
| 1694 * @param[in] nRows number of rows in the matrix. | |
| 1695 * @param[in] nColumns number of columns in the matrix. | |
| 1696 * @param[in] pData points to the matrix data array. | |
| 1697 */ | |
| 1698 void arm_mat_init_q31( | |
| 1699 arm_matrix_instance_q31 * S, | |
| 1700 uint16_t nRows, | |
| 1701 uint16_t nColumns, | |
| 1702 q31_t * pData); | |
| 1703 | |
| 1704 | |
| 1705 /** | |
| 1706 * @brief Q15 matrix initialization. | |
| 1707 * @param[in,out] S points to an instance of the floating-point matrix structure. | |
| 1708 * @param[in] nRows number of rows in the matrix. | |
| 1709 * @param[in] nColumns number of columns in the matrix. | |
| 1710 * @param[in] pData points to the matrix data array. | |
| 1711 */ | |
| 1712 void arm_mat_init_q15( | |
| 1713 arm_matrix_instance_q15 * S, | |
| 1714 uint16_t nRows, | |
| 1715 uint16_t nColumns, | |
| 1716 q15_t * pData); | |
| 1717 | |
| 1718 | |
| 1719 /** | |
| 1720 * @brief Floating-point matrix initialization. | |
| 1721 * @param[in,out] S points to an instance of the floating-point matrix structure. | |
| 1722 * @param[in] nRows number of rows in the matrix. | |
| 1723 * @param[in] nColumns number of columns in the matrix. | |
| 1724 * @param[in] pData points to the matrix data array. | |
| 1725 */ | |
| 1726 void arm_mat_init_f32( | |
| 1727 arm_matrix_instance_f32 * S, | |
| 1728 uint16_t nRows, | |
| 1729 uint16_t nColumns, | |
| 1730 float32_t * pData); | |
| 1731 | |
| 1732 | |
| 1733 | |
| 1734 /** | |
| 1735 * @brief Instance structure for the Q15 PID Control. | |
| 1736 */ | |
| 1737 typedef struct | |
| 1738 { | |
| 1739 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
| 1740 #ifdef ARM_MATH_CM0_FAMILY | |
| 1741 q15_t A1; | |
| 1742 q15_t A2; | |
| 1743 #else | |
| 1744 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ | |
| 1745 #endif | |
| 1746 q15_t state[3]; /**< The state array of length 3. */ | |
| 1747 q15_t Kp; /**< The proportional gain. */ | |
| 1748 q15_t Ki; /**< The integral gain. */ | |
| 1749 q15_t Kd; /**< The derivative gain. */ | |
| 1750 } arm_pid_instance_q15; | |
| 1751 | |
| 1752 /** | |
| 1753 * @brief Instance structure for the Q31 PID Control. | |
| 1754 */ | |
| 1755 typedef struct | |
| 1756 { | |
| 1757 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
| 1758 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
| 1759 q31_t A2; /**< The derived gain, A2 = Kd . */ | |
| 1760 q31_t state[3]; /**< The state array of length 3. */ | |
| 1761 q31_t Kp; /**< The proportional gain. */ | |
| 1762 q31_t Ki; /**< The integral gain. */ | |
| 1763 q31_t Kd; /**< The derivative gain. */ | |
| 1764 } arm_pid_instance_q31; | |
| 1765 | |
| 1766 /** | |
| 1767 * @brief Instance structure for the floating-point PID Control. | |
| 1768 */ | |
| 1769 typedef struct | |
| 1770 { | |
| 1771 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
| 1772 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
| 1773 float32_t A2; /**< The derived gain, A2 = Kd . */ | |
| 1774 float32_t state[3]; /**< The state array of length 3. */ | |
| 1775 float32_t Kp; /**< The proportional gain. */ | |
| 1776 float32_t Ki; /**< The integral gain. */ | |
| 1777 float32_t Kd; /**< The derivative gain. */ | |
| 1778 } arm_pid_instance_f32; | |
| 1779 | |
| 1780 | |
| 1781 | |
| 1782 /** | |
| 1783 * @brief Initialization function for the floating-point PID Control. | |
| 1784 * @param[in,out] S points to an instance of the PID structure. | |
| 1785 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
| 1786 */ | |
| 1787 void arm_pid_init_f32( | |
| 1788 arm_pid_instance_f32 * S, | |
| 1789 int32_t resetStateFlag); | |
| 1790 | |
| 1791 | |
| 1792 /** | |
| 1793 * @brief Reset function for the floating-point PID Control. | |
| 1794 * @param[in,out] S is an instance of the floating-point PID Control structure | |
| 1795 */ | |
| 1796 void arm_pid_reset_f32( | |
| 1797 arm_pid_instance_f32 * S); | |
| 1798 | |
| 1799 | |
| 1800 /** | |
| 1801 * @brief Initialization function for the Q31 PID Control. | |
| 1802 * @param[in,out] S points to an instance of the Q15 PID structure. | |
| 1803 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
| 1804 */ | |
| 1805 void arm_pid_init_q31( | |
| 1806 arm_pid_instance_q31 * S, | |
| 1807 int32_t resetStateFlag); | |
| 1808 | |
| 1809 | |
| 1810 /** | |
| 1811 * @brief Reset function for the Q31 PID Control. | |
| 1812 * @param[in,out] S points to an instance of the Q31 PID Control structure | |
| 1813 */ | |
| 1814 | |
| 1815 void arm_pid_reset_q31( | |
| 1816 arm_pid_instance_q31 * S); | |
| 1817 | |
| 1818 | |
| 1819 /** | |
| 1820 * @brief Initialization function for the Q15 PID Control. | |
| 1821 * @param[in,out] S points to an instance of the Q15 PID structure. | |
| 1822 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
| 1823 */ | |
| 1824 void arm_pid_init_q15( | |
| 1825 arm_pid_instance_q15 * S, | |
| 1826 int32_t resetStateFlag); | |
| 1827 | |
| 1828 | |
| 1829 /** | |
| 1830 * @brief Reset function for the Q15 PID Control. | |
| 1831 * @param[in,out] S points to an instance of the q15 PID Control structure | |
| 1832 */ | |
| 1833 void arm_pid_reset_q15( | |
| 1834 arm_pid_instance_q15 * S); | |
| 1835 | |
| 1836 | |
| 1837 /** | |
| 1838 * @brief Instance structure for the floating-point Linear Interpolate function. | |
| 1839 */ | |
| 1840 typedef struct | |
| 1841 { | |
| 1842 uint32_t nValues; /**< nValues */ | |
| 1843 float32_t x1; /**< x1 */ | |
| 1844 float32_t xSpacing; /**< xSpacing */ | |
| 1845 float32_t *pYData; /**< pointer to the table of Y values */ | |
| 1846 } arm_linear_interp_instance_f32; | |
| 1847 | |
| 1848 /** | |
| 1849 * @brief Instance structure for the floating-point bilinear interpolation function. | |
| 1850 */ | |
| 1851 typedef struct | |
| 1852 { | |
| 1853 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1854 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1855 float32_t *pData; /**< points to the data table. */ | |
| 1856 } arm_bilinear_interp_instance_f32; | |
| 1857 | |
| 1858 /** | |
| 1859 * @brief Instance structure for the Q31 bilinear interpolation function. | |
| 1860 */ | |
| 1861 typedef struct | |
| 1862 { | |
| 1863 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1864 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1865 q31_t *pData; /**< points to the data table. */ | |
| 1866 } arm_bilinear_interp_instance_q31; | |
| 1867 | |
| 1868 /** | |
| 1869 * @brief Instance structure for the Q15 bilinear interpolation function. | |
| 1870 */ | |
| 1871 typedef struct | |
| 1872 { | |
| 1873 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1874 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1875 q15_t *pData; /**< points to the data table. */ | |
| 1876 } arm_bilinear_interp_instance_q15; | |
| 1877 | |
| 1878 /** | |
| 1879 * @brief Instance structure for the Q15 bilinear interpolation function. | |
| 1880 */ | |
| 1881 typedef struct | |
| 1882 { | |
| 1883 uint16_t numRows; /**< number of rows in the data table. */ | |
| 1884 uint16_t numCols; /**< number of columns in the data table. */ | |
| 1885 q7_t *pData; /**< points to the data table. */ | |
| 1886 } arm_bilinear_interp_instance_q7; | |
| 1887 | |
| 1888 | |
| 1889 /** | |
| 1890 * @brief Q7 vector multiplication. | |
| 1891 * @param[in] pSrcA points to the first input vector | |
| 1892 * @param[in] pSrcB points to the second input vector | |
| 1893 * @param[out] pDst points to the output vector | |
| 1894 * @param[in] blockSize number of samples in each vector | |
| 1895 */ | |
| 1896 void arm_mult_q7( | |
| 1897 q7_t * pSrcA, | |
| 1898 q7_t * pSrcB, | |
| 1899 q7_t * pDst, | |
| 1900 uint32_t blockSize); | |
| 1901 | |
| 1902 | |
| 1903 /** | |
| 1904 * @brief Q15 vector multiplication. | |
| 1905 * @param[in] pSrcA points to the first input vector | |
| 1906 * @param[in] pSrcB points to the second input vector | |
| 1907 * @param[out] pDst points to the output vector | |
| 1908 * @param[in] blockSize number of samples in each vector | |
| 1909 */ | |
| 1910 void arm_mult_q15( | |
| 1911 q15_t * pSrcA, | |
| 1912 q15_t * pSrcB, | |
| 1913 q15_t * pDst, | |
| 1914 uint32_t blockSize); | |
| 1915 | |
| 1916 | |
| 1917 /** | |
| 1918 * @brief Q31 vector multiplication. | |
| 1919 * @param[in] pSrcA points to the first input vector | |
| 1920 * @param[in] pSrcB points to the second input vector | |
| 1921 * @param[out] pDst points to the output vector | |
| 1922 * @param[in] blockSize number of samples in each vector | |
| 1923 */ | |
| 1924 void arm_mult_q31( | |
| 1925 q31_t * pSrcA, | |
| 1926 q31_t * pSrcB, | |
| 1927 q31_t * pDst, | |
| 1928 uint32_t blockSize); | |
| 1929 | |
| 1930 | |
| 1931 /** | |
| 1932 * @brief Floating-point vector multiplication. | |
| 1933 * @param[in] pSrcA points to the first input vector | |
| 1934 * @param[in] pSrcB points to the second input vector | |
| 1935 * @param[out] pDst points to the output vector | |
| 1936 * @param[in] blockSize number of samples in each vector | |
| 1937 */ | |
| 1938 void arm_mult_f32( | |
| 1939 float32_t * pSrcA, | |
| 1940 float32_t * pSrcB, | |
| 1941 float32_t * pDst, | |
| 1942 uint32_t blockSize); | |
| 1943 | |
| 1944 | |
| 1945 /** | |
| 1946 * @brief Instance structure for the Q15 CFFT/CIFFT function. | |
| 1947 */ | |
| 1948 typedef struct | |
| 1949 { | |
| 1950 uint16_t fftLen; /**< length of the FFT. */ | |
| 1951 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 1952 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 1953 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ | |
| 1954 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 1955 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 1956 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 1957 } arm_cfft_radix2_instance_q15; | |
| 1958 | |
| 1959 /* Deprecated */ | |
| 1960 arm_status arm_cfft_radix2_init_q15( | |
| 1961 arm_cfft_radix2_instance_q15 * S, | |
| 1962 uint16_t fftLen, | |
| 1963 uint8_t ifftFlag, | |
| 1964 uint8_t bitReverseFlag); | |
| 1965 | |
| 1966 /* Deprecated */ | |
| 1967 void arm_cfft_radix2_q15( | |
| 1968 const arm_cfft_radix2_instance_q15 * S, | |
| 1969 q15_t * pSrc); | |
| 1970 | |
| 1971 | |
| 1972 /** | |
| 1973 * @brief Instance structure for the Q15 CFFT/CIFFT function. | |
| 1974 */ | |
| 1975 typedef struct | |
| 1976 { | |
| 1977 uint16_t fftLen; /**< length of the FFT. */ | |
| 1978 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 1979 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 1980 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 1981 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 1982 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 1983 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 1984 } arm_cfft_radix4_instance_q15; | |
| 1985 | |
| 1986 /* Deprecated */ | |
| 1987 arm_status arm_cfft_radix4_init_q15( | |
| 1988 arm_cfft_radix4_instance_q15 * S, | |
| 1989 uint16_t fftLen, | |
| 1990 uint8_t ifftFlag, | |
| 1991 uint8_t bitReverseFlag); | |
| 1992 | |
| 1993 /* Deprecated */ | |
| 1994 void arm_cfft_radix4_q15( | |
| 1995 const arm_cfft_radix4_instance_q15 * S, | |
| 1996 q15_t * pSrc); | |
| 1997 | |
| 1998 /** | |
| 1999 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. | |
| 2000 */ | |
| 2001 typedef struct | |
| 2002 { | |
| 2003 uint16_t fftLen; /**< length of the FFT. */ | |
| 2004 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 2005 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 2006 q31_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
| 2007 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2008 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2009 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 2010 } arm_cfft_radix2_instance_q31; | |
| 2011 | |
| 2012 /* Deprecated */ | |
| 2013 arm_status arm_cfft_radix2_init_q31( | |
| 2014 arm_cfft_radix2_instance_q31 * S, | |
| 2015 uint16_t fftLen, | |
| 2016 uint8_t ifftFlag, | |
| 2017 uint8_t bitReverseFlag); | |
| 2018 | |
| 2019 /* Deprecated */ | |
| 2020 void arm_cfft_radix2_q31( | |
| 2021 const arm_cfft_radix2_instance_q31 * S, | |
| 2022 q31_t * pSrc); | |
| 2023 | |
| 2024 /** | |
| 2025 * @brief Instance structure for the Q31 CFFT/CIFFT function. | |
| 2026 */ | |
| 2027 typedef struct | |
| 2028 { | |
| 2029 uint16_t fftLen; /**< length of the FFT. */ | |
| 2030 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 2031 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 2032 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2033 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2034 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2035 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 2036 } arm_cfft_radix4_instance_q31; | |
| 2037 | |
| 2038 /* Deprecated */ | |
| 2039 void arm_cfft_radix4_q31( | |
| 2040 const arm_cfft_radix4_instance_q31 * S, | |
| 2041 q31_t * pSrc); | |
| 2042 | |
| 2043 /* Deprecated */ | |
| 2044 arm_status arm_cfft_radix4_init_q31( | |
| 2045 arm_cfft_radix4_instance_q31 * S, | |
| 2046 uint16_t fftLen, | |
| 2047 uint8_t ifftFlag, | |
| 2048 uint8_t bitReverseFlag); | |
| 2049 | |
| 2050 /** | |
| 2051 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
| 2052 */ | |
| 2053 typedef struct | |
| 2054 { | |
| 2055 uint16_t fftLen; /**< length of the FFT. */ | |
| 2056 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 2057 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 2058 float32_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
| 2059 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2060 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2061 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 2062 float32_t onebyfftLen; /**< value of 1/fftLen. */ | |
| 2063 } arm_cfft_radix2_instance_f32; | |
| 2064 | |
| 2065 /* Deprecated */ | |
| 2066 arm_status arm_cfft_radix2_init_f32( | |
| 2067 arm_cfft_radix2_instance_f32 * S, | |
| 2068 uint16_t fftLen, | |
| 2069 uint8_t ifftFlag, | |
| 2070 uint8_t bitReverseFlag); | |
| 2071 | |
| 2072 /* Deprecated */ | |
| 2073 void arm_cfft_radix2_f32( | |
| 2074 const arm_cfft_radix2_instance_f32 * S, | |
| 2075 float32_t * pSrc); | |
| 2076 | |
| 2077 /** | |
| 2078 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
| 2079 */ | |
| 2080 typedef struct | |
| 2081 { | |
| 2082 uint16_t fftLen; /**< length of the FFT. */ | |
| 2083 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
| 2084 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
| 2085 float32_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
| 2086 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2087 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2088 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
| 2089 float32_t onebyfftLen; /**< value of 1/fftLen. */ | |
| 2090 } arm_cfft_radix4_instance_f32; | |
| 2091 | |
| 2092 /* Deprecated */ | |
| 2093 arm_status arm_cfft_radix4_init_f32( | |
| 2094 arm_cfft_radix4_instance_f32 * S, | |
| 2095 uint16_t fftLen, | |
| 2096 uint8_t ifftFlag, | |
| 2097 uint8_t bitReverseFlag); | |
| 2098 | |
| 2099 /* Deprecated */ | |
| 2100 void arm_cfft_radix4_f32( | |
| 2101 const arm_cfft_radix4_instance_f32 * S, | |
| 2102 float32_t * pSrc); | |
| 2103 | |
| 2104 /** | |
| 2105 * @brief Instance structure for the fixed-point CFFT/CIFFT function. | |
| 2106 */ | |
| 2107 typedef struct | |
| 2108 { | |
| 2109 uint16_t fftLen; /**< length of the FFT. */ | |
| 2110 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
| 2111 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2112 uint16_t bitRevLength; /**< bit reversal table length. */ | |
| 2113 } arm_cfft_instance_q15; | |
| 2114 | |
| 2115 void arm_cfft_q15( | |
| 2116 const arm_cfft_instance_q15 * S, | |
| 2117 q15_t * p1, | |
| 2118 uint8_t ifftFlag, | |
| 2119 uint8_t bitReverseFlag); | |
| 2120 | |
| 2121 /** | |
| 2122 * @brief Instance structure for the fixed-point CFFT/CIFFT function. | |
| 2123 */ | |
| 2124 typedef struct | |
| 2125 { | |
| 2126 uint16_t fftLen; /**< length of the FFT. */ | |
| 2127 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
| 2128 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2129 uint16_t bitRevLength; /**< bit reversal table length. */ | |
| 2130 } arm_cfft_instance_q31; | |
| 2131 | |
| 2132 void arm_cfft_q31( | |
| 2133 const arm_cfft_instance_q31 * S, | |
| 2134 q31_t * p1, | |
| 2135 uint8_t ifftFlag, | |
| 2136 uint8_t bitReverseFlag); | |
| 2137 | |
| 2138 /** | |
| 2139 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
| 2140 */ | |
| 2141 typedef struct | |
| 2142 { | |
| 2143 uint16_t fftLen; /**< length of the FFT. */ | |
| 2144 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
| 2145 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
| 2146 uint16_t bitRevLength; /**< bit reversal table length. */ | |
| 2147 } arm_cfft_instance_f32; | |
| 2148 | |
| 2149 void arm_cfft_f32( | |
| 2150 const arm_cfft_instance_f32 * S, | |
| 2151 float32_t * p1, | |
| 2152 uint8_t ifftFlag, | |
| 2153 uint8_t bitReverseFlag); | |
| 2154 | |
| 2155 /** | |
| 2156 * @brief Instance structure for the Q15 RFFT/RIFFT function. | |
| 2157 */ | |
| 2158 typedef struct | |
| 2159 { | |
| 2160 uint32_t fftLenReal; /**< length of the real FFT. */ | |
| 2161 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
| 2162 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
| 2163 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2164 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
| 2165 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
| 2166 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
| 2167 } arm_rfft_instance_q15; | |
| 2168 | |
| 2169 arm_status arm_rfft_init_q15( | |
| 2170 arm_rfft_instance_q15 * S, | |
| 2171 uint32_t fftLenReal, | |
| 2172 uint32_t ifftFlagR, | |
| 2173 uint32_t bitReverseFlag); | |
| 2174 | |
| 2175 void arm_rfft_q15( | |
| 2176 const arm_rfft_instance_q15 * S, | |
| 2177 q15_t * pSrc, | |
| 2178 q15_t * pDst); | |
| 2179 | |
| 2180 /** | |
| 2181 * @brief Instance structure for the Q31 RFFT/RIFFT function. | |
| 2182 */ | |
| 2183 typedef struct | |
| 2184 { | |
| 2185 uint32_t fftLenReal; /**< length of the real FFT. */ | |
| 2186 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
| 2187 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
| 2188 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2189 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
| 2190 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
| 2191 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
| 2192 } arm_rfft_instance_q31; | |
| 2193 | |
| 2194 arm_status arm_rfft_init_q31( | |
| 2195 arm_rfft_instance_q31 * S, | |
| 2196 uint32_t fftLenReal, | |
| 2197 uint32_t ifftFlagR, | |
| 2198 uint32_t bitReverseFlag); | |
| 2199 | |
| 2200 void arm_rfft_q31( | |
| 2201 const arm_rfft_instance_q31 * S, | |
| 2202 q31_t * pSrc, | |
| 2203 q31_t * pDst); | |
| 2204 | |
| 2205 /** | |
| 2206 * @brief Instance structure for the floating-point RFFT/RIFFT function. | |
| 2207 */ | |
| 2208 typedef struct | |
| 2209 { | |
| 2210 uint32_t fftLenReal; /**< length of the real FFT. */ | |
| 2211 uint16_t fftLenBy2; /**< length of the complex FFT. */ | |
| 2212 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
| 2213 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
| 2214 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
| 2215 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
| 2216 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
| 2217 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
| 2218 } arm_rfft_instance_f32; | |
| 2219 | |
| 2220 arm_status arm_rfft_init_f32( | |
| 2221 arm_rfft_instance_f32 * S, | |
| 2222 arm_cfft_radix4_instance_f32 * S_CFFT, | |
| 2223 uint32_t fftLenReal, | |
| 2224 uint32_t ifftFlagR, | |
| 2225 uint32_t bitReverseFlag); | |
| 2226 | |
| 2227 void arm_rfft_f32( | |
| 2228 const arm_rfft_instance_f32 * S, | |
| 2229 float32_t * pSrc, | |
| 2230 float32_t * pDst); | |
| 2231 | |
| 2232 /** | |
| 2233 * @brief Instance structure for the floating-point RFFT/RIFFT function. | |
| 2234 */ | |
| 2235 typedef struct | |
| 2236 { | |
| 2237 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ | |
| 2238 uint16_t fftLenRFFT; /**< length of the real sequence */ | |
| 2239 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ | |
| 2240 } arm_rfft_fast_instance_f32 ; | |
| 2241 | |
| 2242 arm_status arm_rfft_fast_init_f32 ( | |
| 2243 arm_rfft_fast_instance_f32 * S, | |
| 2244 uint16_t fftLen); | |
| 2245 | |
| 2246 void arm_rfft_fast_f32( | |
| 2247 arm_rfft_fast_instance_f32 * S, | |
| 2248 float32_t * p, float32_t * pOut, | |
| 2249 uint8_t ifftFlag); | |
| 2250 | |
| 2251 /** | |
| 2252 * @brief Instance structure for the floating-point DCT4/IDCT4 function. | |
| 2253 */ | |
| 2254 typedef struct | |
| 2255 { | |
| 2256 uint16_t N; /**< length of the DCT4. */ | |
| 2257 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
| 2258 float32_t normalize; /**< normalizing factor. */ | |
| 2259 float32_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2260 float32_t *pCosFactor; /**< points to the cosFactor table. */ | |
| 2261 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ | |
| 2262 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
| 2263 } arm_dct4_instance_f32; | |
| 2264 | |
| 2265 | |
| 2266 /** | |
| 2267 * @brief Initialization function for the floating-point DCT4/IDCT4. | |
| 2268 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. | |
| 2269 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. | |
| 2270 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. | |
| 2271 * @param[in] N length of the DCT4. | |
| 2272 * @param[in] Nby2 half of the length of the DCT4. | |
| 2273 * @param[in] normalize normalizing factor. | |
| 2274 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. | |
| 2275 */ | |
| 2276 arm_status arm_dct4_init_f32( | |
| 2277 arm_dct4_instance_f32 * S, | |
| 2278 arm_rfft_instance_f32 * S_RFFT, | |
| 2279 arm_cfft_radix4_instance_f32 * S_CFFT, | |
| 2280 uint16_t N, | |
| 2281 uint16_t Nby2, | |
| 2282 float32_t normalize); | |
| 2283 | |
| 2284 | |
| 2285 /** | |
| 2286 * @brief Processing function for the floating-point DCT4/IDCT4. | |
| 2287 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. | |
| 2288 * @param[in] pState points to state buffer. | |
| 2289 * @param[in,out] pInlineBuffer points to the in-place input and output buffer. | |
| 2290 */ | |
| 2291 void arm_dct4_f32( | |
| 2292 const arm_dct4_instance_f32 * S, | |
| 2293 float32_t * pState, | |
| 2294 float32_t * pInlineBuffer); | |
| 2295 | |
| 2296 | |
| 2297 /** | |
| 2298 * @brief Instance structure for the Q31 DCT4/IDCT4 function. | |
| 2299 */ | |
| 2300 typedef struct | |
| 2301 { | |
| 2302 uint16_t N; /**< length of the DCT4. */ | |
| 2303 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
| 2304 q31_t normalize; /**< normalizing factor. */ | |
| 2305 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2306 q31_t *pCosFactor; /**< points to the cosFactor table. */ | |
| 2307 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ | |
| 2308 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
| 2309 } arm_dct4_instance_q31; | |
| 2310 | |
| 2311 | |
| 2312 /** | |
| 2313 * @brief Initialization function for the Q31 DCT4/IDCT4. | |
| 2314 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. | |
| 2315 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure | |
| 2316 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure | |
| 2317 * @param[in] N length of the DCT4. | |
| 2318 * @param[in] Nby2 half of the length of the DCT4. | |
| 2319 * @param[in] normalize normalizing factor. | |
| 2320 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
| 2321 */ | |
| 2322 arm_status arm_dct4_init_q31( | |
| 2323 arm_dct4_instance_q31 * S, | |
| 2324 arm_rfft_instance_q31 * S_RFFT, | |
| 2325 arm_cfft_radix4_instance_q31 * S_CFFT, | |
| 2326 uint16_t N, | |
| 2327 uint16_t Nby2, | |
| 2328 q31_t normalize); | |
| 2329 | |
| 2330 | |
| 2331 /** | |
| 2332 * @brief Processing function for the Q31 DCT4/IDCT4. | |
| 2333 * @param[in] S points to an instance of the Q31 DCT4 structure. | |
| 2334 * @param[in] pState points to state buffer. | |
| 2335 * @param[in,out] pInlineBuffer points to the in-place input and output buffer. | |
| 2336 */ | |
| 2337 void arm_dct4_q31( | |
| 2338 const arm_dct4_instance_q31 * S, | |
| 2339 q31_t * pState, | |
| 2340 q31_t * pInlineBuffer); | |
| 2341 | |
| 2342 | |
| 2343 /** | |
| 2344 * @brief Instance structure for the Q15 DCT4/IDCT4 function. | |
| 2345 */ | |
| 2346 typedef struct | |
| 2347 { | |
| 2348 uint16_t N; /**< length of the DCT4. */ | |
| 2349 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
| 2350 q15_t normalize; /**< normalizing factor. */ | |
| 2351 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
| 2352 q15_t *pCosFactor; /**< points to the cosFactor table. */ | |
| 2353 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ | |
| 2354 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
| 2355 } arm_dct4_instance_q15; | |
| 2356 | |
| 2357 | |
| 2358 /** | |
| 2359 * @brief Initialization function for the Q15 DCT4/IDCT4. | |
| 2360 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. | |
| 2361 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. | |
| 2362 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. | |
| 2363 * @param[in] N length of the DCT4. | |
| 2364 * @param[in] Nby2 half of the length of the DCT4. | |
| 2365 * @param[in] normalize normalizing factor. | |
| 2366 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
| 2367 */ | |
| 2368 arm_status arm_dct4_init_q15( | |
| 2369 arm_dct4_instance_q15 * S, | |
| 2370 arm_rfft_instance_q15 * S_RFFT, | |
| 2371 arm_cfft_radix4_instance_q15 * S_CFFT, | |
| 2372 uint16_t N, | |
| 2373 uint16_t Nby2, | |
| 2374 q15_t normalize); | |
| 2375 | |
| 2376 | |
| 2377 /** | |
| 2378 * @brief Processing function for the Q15 DCT4/IDCT4. | |
| 2379 * @param[in] S points to an instance of the Q15 DCT4 structure. | |
| 2380 * @param[in] pState points to state buffer. | |
| 2381 * @param[in,out] pInlineBuffer points to the in-place input and output buffer. | |
| 2382 */ | |
| 2383 void arm_dct4_q15( | |
| 2384 const arm_dct4_instance_q15 * S, | |
| 2385 q15_t * pState, | |
| 2386 q15_t * pInlineBuffer); | |
| 2387 | |
| 2388 | |
| 2389 /** | |
| 2390 * @brief Floating-point vector addition. | |
| 2391 * @param[in] pSrcA points to the first input vector | |
| 2392 * @param[in] pSrcB points to the second input vector | |
| 2393 * @param[out] pDst points to the output vector | |
| 2394 * @param[in] blockSize number of samples in each vector | |
| 2395 */ | |
| 2396 void arm_add_f32( | |
| 2397 float32_t * pSrcA, | |
| 2398 float32_t * pSrcB, | |
| 2399 float32_t * pDst, | |
| 2400 uint32_t blockSize); | |
| 2401 | |
| 2402 | |
| 2403 /** | |
| 2404 * @brief Q7 vector addition. | |
| 2405 * @param[in] pSrcA points to the first input vector | |
| 2406 * @param[in] pSrcB points to the second input vector | |
| 2407 * @param[out] pDst points to the output vector | |
| 2408 * @param[in] blockSize number of samples in each vector | |
| 2409 */ | |
| 2410 void arm_add_q7( | |
| 2411 q7_t * pSrcA, | |
| 2412 q7_t * pSrcB, | |
| 2413 q7_t * pDst, | |
| 2414 uint32_t blockSize); | |
| 2415 | |
| 2416 | |
| 2417 /** | |
| 2418 * @brief Q15 vector addition. | |
| 2419 * @param[in] pSrcA points to the first input vector | |
| 2420 * @param[in] pSrcB points to the second input vector | |
| 2421 * @param[out] pDst points to the output vector | |
| 2422 * @param[in] blockSize number of samples in each vector | |
| 2423 */ | |
| 2424 void arm_add_q15( | |
| 2425 q15_t * pSrcA, | |
| 2426 q15_t * pSrcB, | |
| 2427 q15_t * pDst, | |
| 2428 uint32_t blockSize); | |
| 2429 | |
| 2430 | |
| 2431 /** | |
| 2432 * @brief Q31 vector addition. | |
| 2433 * @param[in] pSrcA points to the first input vector | |
| 2434 * @param[in] pSrcB points to the second input vector | |
| 2435 * @param[out] pDst points to the output vector | |
| 2436 * @param[in] blockSize number of samples in each vector | |
| 2437 */ | |
| 2438 void arm_add_q31( | |
| 2439 q31_t * pSrcA, | |
| 2440 q31_t * pSrcB, | |
| 2441 q31_t * pDst, | |
| 2442 uint32_t blockSize); | |
| 2443 | |
| 2444 | |
| 2445 /** | |
| 2446 * @brief Floating-point vector subtraction. | |
| 2447 * @param[in] pSrcA points to the first input vector | |
| 2448 * @param[in] pSrcB points to the second input vector | |
| 2449 * @param[out] pDst points to the output vector | |
| 2450 * @param[in] blockSize number of samples in each vector | |
| 2451 */ | |
| 2452 void arm_sub_f32( | |
| 2453 float32_t * pSrcA, | |
| 2454 float32_t * pSrcB, | |
| 2455 float32_t * pDst, | |
| 2456 uint32_t blockSize); | |
| 2457 | |
| 2458 | |
| 2459 /** | |
| 2460 * @brief Q7 vector subtraction. | |
| 2461 * @param[in] pSrcA points to the first input vector | |
| 2462 * @param[in] pSrcB points to the second input vector | |
| 2463 * @param[out] pDst points to the output vector | |
| 2464 * @param[in] blockSize number of samples in each vector | |
| 2465 */ | |
| 2466 void arm_sub_q7( | |
| 2467 q7_t * pSrcA, | |
| 2468 q7_t * pSrcB, | |
| 2469 q7_t * pDst, | |
| 2470 uint32_t blockSize); | |
| 2471 | |
| 2472 | |
| 2473 /** | |
| 2474 * @brief Q15 vector subtraction. | |
| 2475 * @param[in] pSrcA points to the first input vector | |
| 2476 * @param[in] pSrcB points to the second input vector | |
| 2477 * @param[out] pDst points to the output vector | |
| 2478 * @param[in] blockSize number of samples in each vector | |
| 2479 */ | |
| 2480 void arm_sub_q15( | |
| 2481 q15_t * pSrcA, | |
| 2482 q15_t * pSrcB, | |
| 2483 q15_t * pDst, | |
| 2484 uint32_t blockSize); | |
| 2485 | |
| 2486 | |
| 2487 /** | |
| 2488 * @brief Q31 vector subtraction. | |
| 2489 * @param[in] pSrcA points to the first input vector | |
| 2490 * @param[in] pSrcB points to the second input vector | |
| 2491 * @param[out] pDst points to the output vector | |
| 2492 * @param[in] blockSize number of samples in each vector | |
| 2493 */ | |
| 2494 void arm_sub_q31( | |
| 2495 q31_t * pSrcA, | |
| 2496 q31_t * pSrcB, | |
| 2497 q31_t * pDst, | |
| 2498 uint32_t blockSize); | |
| 2499 | |
| 2500 | |
| 2501 /** | |
| 2502 * @brief Multiplies a floating-point vector by a scalar. | |
| 2503 * @param[in] pSrc points to the input vector | |
| 2504 * @param[in] scale scale factor to be applied | |
| 2505 * @param[out] pDst points to the output vector | |
| 2506 * @param[in] blockSize number of samples in the vector | |
| 2507 */ | |
| 2508 void arm_scale_f32( | |
| 2509 float32_t * pSrc, | |
| 2510 float32_t scale, | |
| 2511 float32_t * pDst, | |
| 2512 uint32_t blockSize); | |
| 2513 | |
| 2514 | |
| 2515 /** | |
| 2516 * @brief Multiplies a Q7 vector by a scalar. | |
| 2517 * @param[in] pSrc points to the input vector | |
| 2518 * @param[in] scaleFract fractional portion of the scale value | |
| 2519 * @param[in] shift number of bits to shift the result by | |
| 2520 * @param[out] pDst points to the output vector | |
| 2521 * @param[in] blockSize number of samples in the vector | |
| 2522 */ | |
| 2523 void arm_scale_q7( | |
| 2524 q7_t * pSrc, | |
| 2525 q7_t scaleFract, | |
| 2526 int8_t shift, | |
| 2527 q7_t * pDst, | |
| 2528 uint32_t blockSize); | |
| 2529 | |
| 2530 | |
| 2531 /** | |
| 2532 * @brief Multiplies a Q15 vector by a scalar. | |
| 2533 * @param[in] pSrc points to the input vector | |
| 2534 * @param[in] scaleFract fractional portion of the scale value | |
| 2535 * @param[in] shift number of bits to shift the result by | |
| 2536 * @param[out] pDst points to the output vector | |
| 2537 * @param[in] blockSize number of samples in the vector | |
| 2538 */ | |
| 2539 void arm_scale_q15( | |
| 2540 q15_t * pSrc, | |
| 2541 q15_t scaleFract, | |
| 2542 int8_t shift, | |
| 2543 q15_t * pDst, | |
| 2544 uint32_t blockSize); | |
| 2545 | |
| 2546 | |
| 2547 /** | |
| 2548 * @brief Multiplies a Q31 vector by a scalar. | |
| 2549 * @param[in] pSrc points to the input vector | |
| 2550 * @param[in] scaleFract fractional portion of the scale value | |
| 2551 * @param[in] shift number of bits to shift the result by | |
| 2552 * @param[out] pDst points to the output vector | |
| 2553 * @param[in] blockSize number of samples in the vector | |
| 2554 */ | |
| 2555 void arm_scale_q31( | |
| 2556 q31_t * pSrc, | |
| 2557 q31_t scaleFract, | |
| 2558 int8_t shift, | |
| 2559 q31_t * pDst, | |
| 2560 uint32_t blockSize); | |
| 2561 | |
| 2562 | |
| 2563 /** | |
| 2564 * @brief Q7 vector absolute value. | |
| 2565 * @param[in] pSrc points to the input buffer | |
| 2566 * @param[out] pDst points to the output buffer | |
| 2567 * @param[in] blockSize number of samples in each vector | |
| 2568 */ | |
| 2569 void arm_abs_q7( | |
| 2570 q7_t * pSrc, | |
| 2571 q7_t * pDst, | |
| 2572 uint32_t blockSize); | |
| 2573 | |
| 2574 | |
| 2575 /** | |
| 2576 * @brief Floating-point vector absolute value. | |
| 2577 * @param[in] pSrc points to the input buffer | |
| 2578 * @param[out] pDst points to the output buffer | |
| 2579 * @param[in] blockSize number of samples in each vector | |
| 2580 */ | |
| 2581 void arm_abs_f32( | |
| 2582 float32_t * pSrc, | |
| 2583 float32_t * pDst, | |
| 2584 uint32_t blockSize); | |
| 2585 | |
| 2586 | |
| 2587 /** | |
| 2588 * @brief Q15 vector absolute value. | |
| 2589 * @param[in] pSrc points to the input buffer | |
| 2590 * @param[out] pDst points to the output buffer | |
| 2591 * @param[in] blockSize number of samples in each vector | |
| 2592 */ | |
| 2593 void arm_abs_q15( | |
| 2594 q15_t * pSrc, | |
| 2595 q15_t * pDst, | |
| 2596 uint32_t blockSize); | |
| 2597 | |
| 2598 | |
| 2599 /** | |
| 2600 * @brief Q31 vector absolute value. | |
| 2601 * @param[in] pSrc points to the input buffer | |
| 2602 * @param[out] pDst points to the output buffer | |
| 2603 * @param[in] blockSize number of samples in each vector | |
| 2604 */ | |
| 2605 void arm_abs_q31( | |
| 2606 q31_t * pSrc, | |
| 2607 q31_t * pDst, | |
| 2608 uint32_t blockSize); | |
| 2609 | |
| 2610 | |
| 2611 /** | |
| 2612 * @brief Dot product of floating-point vectors. | |
| 2613 * @param[in] pSrcA points to the first input vector | |
| 2614 * @param[in] pSrcB points to the second input vector | |
| 2615 * @param[in] blockSize number of samples in each vector | |
| 2616 * @param[out] result output result returned here | |
| 2617 */ | |
| 2618 void arm_dot_prod_f32( | |
| 2619 float32_t * pSrcA, | |
| 2620 float32_t * pSrcB, | |
| 2621 uint32_t blockSize, | |
| 2622 float32_t * result); | |
| 2623 | |
| 2624 | |
| 2625 /** | |
| 2626 * @brief Dot product of Q7 vectors. | |
| 2627 * @param[in] pSrcA points to the first input vector | |
| 2628 * @param[in] pSrcB points to the second input vector | |
| 2629 * @param[in] blockSize number of samples in each vector | |
| 2630 * @param[out] result output result returned here | |
| 2631 */ | |
| 2632 void arm_dot_prod_q7( | |
| 2633 q7_t * pSrcA, | |
| 2634 q7_t * pSrcB, | |
| 2635 uint32_t blockSize, | |
| 2636 q31_t * result); | |
| 2637 | |
| 2638 | |
| 2639 /** | |
| 2640 * @brief Dot product of Q15 vectors. | |
| 2641 * @param[in] pSrcA points to the first input vector | |
| 2642 * @param[in] pSrcB points to the second input vector | |
| 2643 * @param[in] blockSize number of samples in each vector | |
| 2644 * @param[out] result output result returned here | |
| 2645 */ | |
| 2646 void arm_dot_prod_q15( | |
| 2647 q15_t * pSrcA, | |
| 2648 q15_t * pSrcB, | |
| 2649 uint32_t blockSize, | |
| 2650 q63_t * result); | |
| 2651 | |
| 2652 | |
| 2653 /** | |
| 2654 * @brief Dot product of Q31 vectors. | |
| 2655 * @param[in] pSrcA points to the first input vector | |
| 2656 * @param[in] pSrcB points to the second input vector | |
| 2657 * @param[in] blockSize number of samples in each vector | |
| 2658 * @param[out] result output result returned here | |
| 2659 */ | |
| 2660 void arm_dot_prod_q31( | |
| 2661 q31_t * pSrcA, | |
| 2662 q31_t * pSrcB, | |
| 2663 uint32_t blockSize, | |
| 2664 q63_t * result); | |
| 2665 | |
| 2666 | |
| 2667 /** | |
| 2668 * @brief Shifts the elements of a Q7 vector a specified number of bits. | |
| 2669 * @param[in] pSrc points to the input vector | |
| 2670 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
| 2671 * @param[out] pDst points to the output vector | |
| 2672 * @param[in] blockSize number of samples in the vector | |
| 2673 */ | |
| 2674 void arm_shift_q7( | |
| 2675 q7_t * pSrc, | |
| 2676 int8_t shiftBits, | |
| 2677 q7_t * pDst, | |
| 2678 uint32_t blockSize); | |
| 2679 | |
| 2680 | |
| 2681 /** | |
| 2682 * @brief Shifts the elements of a Q15 vector a specified number of bits. | |
| 2683 * @param[in] pSrc points to the input vector | |
| 2684 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
| 2685 * @param[out] pDst points to the output vector | |
| 2686 * @param[in] blockSize number of samples in the vector | |
| 2687 */ | |
| 2688 void arm_shift_q15( | |
| 2689 q15_t * pSrc, | |
| 2690 int8_t shiftBits, | |
| 2691 q15_t * pDst, | |
| 2692 uint32_t blockSize); | |
| 2693 | |
| 2694 | |
| 2695 /** | |
| 2696 * @brief Shifts the elements of a Q31 vector a specified number of bits. | |
| 2697 * @param[in] pSrc points to the input vector | |
| 2698 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
| 2699 * @param[out] pDst points to the output vector | |
| 2700 * @param[in] blockSize number of samples in the vector | |
| 2701 */ | |
| 2702 void arm_shift_q31( | |
| 2703 q31_t * pSrc, | |
| 2704 int8_t shiftBits, | |
| 2705 q31_t * pDst, | |
| 2706 uint32_t blockSize); | |
| 2707 | |
| 2708 | |
| 2709 /** | |
| 2710 * @brief Adds a constant offset to a floating-point vector. | |
| 2711 * @param[in] pSrc points to the input vector | |
| 2712 * @param[in] offset is the offset to be added | |
| 2713 * @param[out] pDst points to the output vector | |
| 2714 * @param[in] blockSize number of samples in the vector | |
| 2715 */ | |
| 2716 void arm_offset_f32( | |
| 2717 float32_t * pSrc, | |
| 2718 float32_t offset, | |
| 2719 float32_t * pDst, | |
| 2720 uint32_t blockSize); | |
| 2721 | |
| 2722 | |
| 2723 /** | |
| 2724 * @brief Adds a constant offset to a Q7 vector. | |
| 2725 * @param[in] pSrc points to the input vector | |
| 2726 * @param[in] offset is the offset to be added | |
| 2727 * @param[out] pDst points to the output vector | |
| 2728 * @param[in] blockSize number of samples in the vector | |
| 2729 */ | |
| 2730 void arm_offset_q7( | |
| 2731 q7_t * pSrc, | |
| 2732 q7_t offset, | |
| 2733 q7_t * pDst, | |
| 2734 uint32_t blockSize); | |
| 2735 | |
| 2736 | |
| 2737 /** | |
| 2738 * @brief Adds a constant offset to a Q15 vector. | |
| 2739 * @param[in] pSrc points to the input vector | |
| 2740 * @param[in] offset is the offset to be added | |
| 2741 * @param[out] pDst points to the output vector | |
| 2742 * @param[in] blockSize number of samples in the vector | |
| 2743 */ | |
| 2744 void arm_offset_q15( | |
| 2745 q15_t * pSrc, | |
| 2746 q15_t offset, | |
| 2747 q15_t * pDst, | |
| 2748 uint32_t blockSize); | |
| 2749 | |
| 2750 | |
| 2751 /** | |
| 2752 * @brief Adds a constant offset to a Q31 vector. | |
| 2753 * @param[in] pSrc points to the input vector | |
| 2754 * @param[in] offset is the offset to be added | |
| 2755 * @param[out] pDst points to the output vector | |
| 2756 * @param[in] blockSize number of samples in the vector | |
| 2757 */ | |
| 2758 void arm_offset_q31( | |
| 2759 q31_t * pSrc, | |
| 2760 q31_t offset, | |
| 2761 q31_t * pDst, | |
| 2762 uint32_t blockSize); | |
| 2763 | |
| 2764 | |
| 2765 /** | |
| 2766 * @brief Negates the elements of a floating-point vector. | |
| 2767 * @param[in] pSrc points to the input vector | |
| 2768 * @param[out] pDst points to the output vector | |
| 2769 * @param[in] blockSize number of samples in the vector | |
| 2770 */ | |
| 2771 void arm_negate_f32( | |
| 2772 float32_t * pSrc, | |
| 2773 float32_t * pDst, | |
| 2774 uint32_t blockSize); | |
| 2775 | |
| 2776 | |
| 2777 /** | |
| 2778 * @brief Negates the elements of a Q7 vector. | |
| 2779 * @param[in] pSrc points to the input vector | |
| 2780 * @param[out] pDst points to the output vector | |
| 2781 * @param[in] blockSize number of samples in the vector | |
| 2782 */ | |
| 2783 void arm_negate_q7( | |
| 2784 q7_t * pSrc, | |
| 2785 q7_t * pDst, | |
| 2786 uint32_t blockSize); | |
| 2787 | |
| 2788 | |
| 2789 /** | |
| 2790 * @brief Negates the elements of a Q15 vector. | |
| 2791 * @param[in] pSrc points to the input vector | |
| 2792 * @param[out] pDst points to the output vector | |
| 2793 * @param[in] blockSize number of samples in the vector | |
| 2794 */ | |
| 2795 void arm_negate_q15( | |
| 2796 q15_t * pSrc, | |
| 2797 q15_t * pDst, | |
| 2798 uint32_t blockSize); | |
| 2799 | |
| 2800 | |
| 2801 /** | |
| 2802 * @brief Negates the elements of a Q31 vector. | |
| 2803 * @param[in] pSrc points to the input vector | |
| 2804 * @param[out] pDst points to the output vector | |
| 2805 * @param[in] blockSize number of samples in the vector | |
| 2806 */ | |
| 2807 void arm_negate_q31( | |
| 2808 q31_t * pSrc, | |
| 2809 q31_t * pDst, | |
| 2810 uint32_t blockSize); | |
| 2811 | |
| 2812 | |
| 2813 /** | |
| 2814 * @brief Copies the elements of a floating-point vector. | |
| 2815 * @param[in] pSrc input pointer | |
| 2816 * @param[out] pDst output pointer | |
| 2817 * @param[in] blockSize number of samples to process | |
| 2818 */ | |
| 2819 void arm_copy_f32( | |
| 2820 float32_t * pSrc, | |
| 2821 float32_t * pDst, | |
| 2822 uint32_t blockSize); | |
| 2823 | |
| 2824 | |
| 2825 /** | |
| 2826 * @brief Copies the elements of a Q7 vector. | |
| 2827 * @param[in] pSrc input pointer | |
| 2828 * @param[out] pDst output pointer | |
| 2829 * @param[in] blockSize number of samples to process | |
| 2830 */ | |
| 2831 void arm_copy_q7( | |
| 2832 q7_t * pSrc, | |
| 2833 q7_t * pDst, | |
| 2834 uint32_t blockSize); | |
| 2835 | |
| 2836 | |
| 2837 /** | |
| 2838 * @brief Copies the elements of a Q15 vector. | |
| 2839 * @param[in] pSrc input pointer | |
| 2840 * @param[out] pDst output pointer | |
| 2841 * @param[in] blockSize number of samples to process | |
| 2842 */ | |
| 2843 void arm_copy_q15( | |
| 2844 q15_t * pSrc, | |
| 2845 q15_t * pDst, | |
| 2846 uint32_t blockSize); | |
| 2847 | |
| 2848 | |
| 2849 /** | |
| 2850 * @brief Copies the elements of a Q31 vector. | |
| 2851 * @param[in] pSrc input pointer | |
| 2852 * @param[out] pDst output pointer | |
| 2853 * @param[in] blockSize number of samples to process | |
| 2854 */ | |
| 2855 void arm_copy_q31( | |
| 2856 q31_t * pSrc, | |
| 2857 q31_t * pDst, | |
| 2858 uint32_t blockSize); | |
| 2859 | |
| 2860 | |
| 2861 /** | |
| 2862 * @brief Fills a constant value into a floating-point vector. | |
| 2863 * @param[in] value input value to be filled | |
| 2864 * @param[out] pDst output pointer | |
| 2865 * @param[in] blockSize number of samples to process | |
| 2866 */ | |
| 2867 void arm_fill_f32( | |
| 2868 float32_t value, | |
| 2869 float32_t * pDst, | |
| 2870 uint32_t blockSize); | |
| 2871 | |
| 2872 | |
| 2873 /** | |
| 2874 * @brief Fills a constant value into a Q7 vector. | |
| 2875 * @param[in] value input value to be filled | |
| 2876 * @param[out] pDst output pointer | |
| 2877 * @param[in] blockSize number of samples to process | |
| 2878 */ | |
| 2879 void arm_fill_q7( | |
| 2880 q7_t value, | |
| 2881 q7_t * pDst, | |
| 2882 uint32_t blockSize); | |
| 2883 | |
| 2884 | |
| 2885 /** | |
| 2886 * @brief Fills a constant value into a Q15 vector. | |
| 2887 * @param[in] value input value to be filled | |
| 2888 * @param[out] pDst output pointer | |
| 2889 * @param[in] blockSize number of samples to process | |
| 2890 */ | |
| 2891 void arm_fill_q15( | |
| 2892 q15_t value, | |
| 2893 q15_t * pDst, | |
| 2894 uint32_t blockSize); | |
| 2895 | |
| 2896 | |
| 2897 /** | |
| 2898 * @brief Fills a constant value into a Q31 vector. | |
| 2899 * @param[in] value input value to be filled | |
| 2900 * @param[out] pDst output pointer | |
| 2901 * @param[in] blockSize number of samples to process | |
| 2902 */ | |
| 2903 void arm_fill_q31( | |
| 2904 q31_t value, | |
| 2905 q31_t * pDst, | |
| 2906 uint32_t blockSize); | |
| 2907 | |
| 2908 | |
| 2909 /** | |
| 2910 * @brief Convolution of floating-point sequences. | |
| 2911 * @param[in] pSrcA points to the first input sequence. | |
| 2912 * @param[in] srcALen length of the first input sequence. | |
| 2913 * @param[in] pSrcB points to the second input sequence. | |
| 2914 * @param[in] srcBLen length of the second input sequence. | |
| 2915 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
| 2916 */ | |
| 2917 void arm_conv_f32( | |
| 2918 float32_t * pSrcA, | |
| 2919 uint32_t srcALen, | |
| 2920 float32_t * pSrcB, | |
| 2921 uint32_t srcBLen, | |
| 2922 float32_t * pDst); | |
| 2923 | |
| 2924 | |
| 2925 /** | |
| 2926 * @brief Convolution of Q15 sequences. | |
| 2927 * @param[in] pSrcA points to the first input sequence. | |
| 2928 * @param[in] srcALen length of the first input sequence. | |
| 2929 * @param[in] pSrcB points to the second input sequence. | |
| 2930 * @param[in] srcBLen length of the second input sequence. | |
| 2931 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 2932 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 2933 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
| 2934 */ | |
| 2935 void arm_conv_opt_q15( | |
| 2936 q15_t * pSrcA, | |
| 2937 uint32_t srcALen, | |
| 2938 q15_t * pSrcB, | |
| 2939 uint32_t srcBLen, | |
| 2940 q15_t * pDst, | |
| 2941 q15_t * pScratch1, | |
| 2942 q15_t * pScratch2); | |
| 2943 | |
| 2944 | |
| 2945 /** | |
| 2946 * @brief Convolution of Q15 sequences. | |
| 2947 * @param[in] pSrcA points to the first input sequence. | |
| 2948 * @param[in] srcALen length of the first input sequence. | |
| 2949 * @param[in] pSrcB points to the second input sequence. | |
| 2950 * @param[in] srcBLen length of the second input sequence. | |
| 2951 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
| 2952 */ | |
| 2953 void arm_conv_q15( | |
| 2954 q15_t * pSrcA, | |
| 2955 uint32_t srcALen, | |
| 2956 q15_t * pSrcB, | |
| 2957 uint32_t srcBLen, | |
| 2958 q15_t * pDst); | |
| 2959 | |
| 2960 | |
| 2961 /** | |
| 2962 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 2963 * @param[in] pSrcA points to the first input sequence. | |
| 2964 * @param[in] srcALen length of the first input sequence. | |
| 2965 * @param[in] pSrcB points to the second input sequence. | |
| 2966 * @param[in] srcBLen length of the second input sequence. | |
| 2967 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 2968 */ | |
| 2969 void arm_conv_fast_q15( | |
| 2970 q15_t * pSrcA, | |
| 2971 uint32_t srcALen, | |
| 2972 q15_t * pSrcB, | |
| 2973 uint32_t srcBLen, | |
| 2974 q15_t * pDst); | |
| 2975 | |
| 2976 | |
| 2977 /** | |
| 2978 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 2979 * @param[in] pSrcA points to the first input sequence. | |
| 2980 * @param[in] srcALen length of the first input sequence. | |
| 2981 * @param[in] pSrcB points to the second input sequence. | |
| 2982 * @param[in] srcBLen length of the second input sequence. | |
| 2983 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 2984 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 2985 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
| 2986 */ | |
| 2987 void arm_conv_fast_opt_q15( | |
| 2988 q15_t * pSrcA, | |
| 2989 uint32_t srcALen, | |
| 2990 q15_t * pSrcB, | |
| 2991 uint32_t srcBLen, | |
| 2992 q15_t * pDst, | |
| 2993 q15_t * pScratch1, | |
| 2994 q15_t * pScratch2); | |
| 2995 | |
| 2996 | |
| 2997 /** | |
| 2998 * @brief Convolution of Q31 sequences. | |
| 2999 * @param[in] pSrcA points to the first input sequence. | |
| 3000 * @param[in] srcALen length of the first input sequence. | |
| 3001 * @param[in] pSrcB points to the second input sequence. | |
| 3002 * @param[in] srcBLen length of the second input sequence. | |
| 3003 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3004 */ | |
| 3005 void arm_conv_q31( | |
| 3006 q31_t * pSrcA, | |
| 3007 uint32_t srcALen, | |
| 3008 q31_t * pSrcB, | |
| 3009 uint32_t srcBLen, | |
| 3010 q31_t * pDst); | |
| 3011 | |
| 3012 | |
| 3013 /** | |
| 3014 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3015 * @param[in] pSrcA points to the first input sequence. | |
| 3016 * @param[in] srcALen length of the first input sequence. | |
| 3017 * @param[in] pSrcB points to the second input sequence. | |
| 3018 * @param[in] srcBLen length of the second input sequence. | |
| 3019 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3020 */ | |
| 3021 void arm_conv_fast_q31( | |
| 3022 q31_t * pSrcA, | |
| 3023 uint32_t srcALen, | |
| 3024 q31_t * pSrcB, | |
| 3025 uint32_t srcBLen, | |
| 3026 q31_t * pDst); | |
| 3027 | |
| 3028 | |
| 3029 /** | |
| 3030 * @brief Convolution of Q7 sequences. | |
| 3031 * @param[in] pSrcA points to the first input sequence. | |
| 3032 * @param[in] srcALen length of the first input sequence. | |
| 3033 * @param[in] pSrcB points to the second input sequence. | |
| 3034 * @param[in] srcBLen length of the second input sequence. | |
| 3035 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3036 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 3037 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | |
| 3038 */ | |
| 3039 void arm_conv_opt_q7( | |
| 3040 q7_t * pSrcA, | |
| 3041 uint32_t srcALen, | |
| 3042 q7_t * pSrcB, | |
| 3043 uint32_t srcBLen, | |
| 3044 q7_t * pDst, | |
| 3045 q15_t * pScratch1, | |
| 3046 q15_t * pScratch2); | |
| 3047 | |
| 3048 | |
| 3049 /** | |
| 3050 * @brief Convolution of Q7 sequences. | |
| 3051 * @param[in] pSrcA points to the first input sequence. | |
| 3052 * @param[in] srcALen length of the first input sequence. | |
| 3053 * @param[in] pSrcB points to the second input sequence. | |
| 3054 * @param[in] srcBLen length of the second input sequence. | |
| 3055 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
| 3056 */ | |
| 3057 void arm_conv_q7( | |
| 3058 q7_t * pSrcA, | |
| 3059 uint32_t srcALen, | |
| 3060 q7_t * pSrcB, | |
| 3061 uint32_t srcBLen, | |
| 3062 q7_t * pDst); | |
| 3063 | |
| 3064 | |
| 3065 /** | |
| 3066 * @brief Partial convolution of floating-point sequences. | |
| 3067 * @param[in] pSrcA points to the first input sequence. | |
| 3068 * @param[in] srcALen length of the first input sequence. | |
| 3069 * @param[in] pSrcB points to the second input sequence. | |
| 3070 * @param[in] srcBLen length of the second input sequence. | |
| 3071 * @param[out] pDst points to the block of output data | |
| 3072 * @param[in] firstIndex is the first output sample to start with. | |
| 3073 * @param[in] numPoints is the number of output points to be computed. | |
| 3074 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3075 */ | |
| 3076 arm_status arm_conv_partial_f32( | |
| 3077 float32_t * pSrcA, | |
| 3078 uint32_t srcALen, | |
| 3079 float32_t * pSrcB, | |
| 3080 uint32_t srcBLen, | |
| 3081 float32_t * pDst, | |
| 3082 uint32_t firstIndex, | |
| 3083 uint32_t numPoints); | |
| 3084 | |
| 3085 | |
| 3086 /** | |
| 3087 * @brief Partial convolution of Q15 sequences. | |
| 3088 * @param[in] pSrcA points to the first input sequence. | |
| 3089 * @param[in] srcALen length of the first input sequence. | |
| 3090 * @param[in] pSrcB points to the second input sequence. | |
| 3091 * @param[in] srcBLen length of the second input sequence. | |
| 3092 * @param[out] pDst points to the block of output data | |
| 3093 * @param[in] firstIndex is the first output sample to start with. | |
| 3094 * @param[in] numPoints is the number of output points to be computed. | |
| 3095 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 3096 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
| 3097 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3098 */ | |
| 3099 arm_status arm_conv_partial_opt_q15( | |
| 3100 q15_t * pSrcA, | |
| 3101 uint32_t srcALen, | |
| 3102 q15_t * pSrcB, | |
| 3103 uint32_t srcBLen, | |
| 3104 q15_t * pDst, | |
| 3105 uint32_t firstIndex, | |
| 3106 uint32_t numPoints, | |
| 3107 q15_t * pScratch1, | |
| 3108 q15_t * pScratch2); | |
| 3109 | |
| 3110 | |
| 3111 /** | |
| 3112 * @brief Partial convolution of Q15 sequences. | |
| 3113 * @param[in] pSrcA points to the first input sequence. | |
| 3114 * @param[in] srcALen length of the first input sequence. | |
| 3115 * @param[in] pSrcB points to the second input sequence. | |
| 3116 * @param[in] srcBLen length of the second input sequence. | |
| 3117 * @param[out] pDst points to the block of output data | |
| 3118 * @param[in] firstIndex is the first output sample to start with. | |
| 3119 * @param[in] numPoints is the number of output points to be computed. | |
| 3120 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3121 */ | |
| 3122 arm_status arm_conv_partial_q15( | |
| 3123 q15_t * pSrcA, | |
| 3124 uint32_t srcALen, | |
| 3125 q15_t * pSrcB, | |
| 3126 uint32_t srcBLen, | |
| 3127 q15_t * pDst, | |
| 3128 uint32_t firstIndex, | |
| 3129 uint32_t numPoints); | |
| 3130 | |
| 3131 | |
| 3132 /** | |
| 3133 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3134 * @param[in] pSrcA points to the first input sequence. | |
| 3135 * @param[in] srcALen length of the first input sequence. | |
| 3136 * @param[in] pSrcB points to the second input sequence. | |
| 3137 * @param[in] srcBLen length of the second input sequence. | |
| 3138 * @param[out] pDst points to the block of output data | |
| 3139 * @param[in] firstIndex is the first output sample to start with. | |
| 3140 * @param[in] numPoints is the number of output points to be computed. | |
| 3141 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3142 */ | |
| 3143 arm_status arm_conv_partial_fast_q15( | |
| 3144 q15_t * pSrcA, | |
| 3145 uint32_t srcALen, | |
| 3146 q15_t * pSrcB, | |
| 3147 uint32_t srcBLen, | |
| 3148 q15_t * pDst, | |
| 3149 uint32_t firstIndex, | |
| 3150 uint32_t numPoints); | |
| 3151 | |
| 3152 | |
| 3153 /** | |
| 3154 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3155 * @param[in] pSrcA points to the first input sequence. | |
| 3156 * @param[in] srcALen length of the first input sequence. | |
| 3157 * @param[in] pSrcB points to the second input sequence. | |
| 3158 * @param[in] srcBLen length of the second input sequence. | |
| 3159 * @param[out] pDst points to the block of output data | |
| 3160 * @param[in] firstIndex is the first output sample to start with. | |
| 3161 * @param[in] numPoints is the number of output points to be computed. | |
| 3162 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 3163 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
| 3164 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3165 */ | |
| 3166 arm_status arm_conv_partial_fast_opt_q15( | |
| 3167 q15_t * pSrcA, | |
| 3168 uint32_t srcALen, | |
| 3169 q15_t * pSrcB, | |
| 3170 uint32_t srcBLen, | |
| 3171 q15_t * pDst, | |
| 3172 uint32_t firstIndex, | |
| 3173 uint32_t numPoints, | |
| 3174 q15_t * pScratch1, | |
| 3175 q15_t * pScratch2); | |
| 3176 | |
| 3177 | |
| 3178 /** | |
| 3179 * @brief Partial convolution of Q31 sequences. | |
| 3180 * @param[in] pSrcA points to the first input sequence. | |
| 3181 * @param[in] srcALen length of the first input sequence. | |
| 3182 * @param[in] pSrcB points to the second input sequence. | |
| 3183 * @param[in] srcBLen length of the second input sequence. | |
| 3184 * @param[out] pDst points to the block of output data | |
| 3185 * @param[in] firstIndex is the first output sample to start with. | |
| 3186 * @param[in] numPoints is the number of output points to be computed. | |
| 3187 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3188 */ | |
| 3189 arm_status arm_conv_partial_q31( | |
| 3190 q31_t * pSrcA, | |
| 3191 uint32_t srcALen, | |
| 3192 q31_t * pSrcB, | |
| 3193 uint32_t srcBLen, | |
| 3194 q31_t * pDst, | |
| 3195 uint32_t firstIndex, | |
| 3196 uint32_t numPoints); | |
| 3197 | |
| 3198 | |
| 3199 /** | |
| 3200 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 3201 * @param[in] pSrcA points to the first input sequence. | |
| 3202 * @param[in] srcALen length of the first input sequence. | |
| 3203 * @param[in] pSrcB points to the second input sequence. | |
| 3204 * @param[in] srcBLen length of the second input sequence. | |
| 3205 * @param[out] pDst points to the block of output data | |
| 3206 * @param[in] firstIndex is the first output sample to start with. | |
| 3207 * @param[in] numPoints is the number of output points to be computed. | |
| 3208 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3209 */ | |
| 3210 arm_status arm_conv_partial_fast_q31( | |
| 3211 q31_t * pSrcA, | |
| 3212 uint32_t srcALen, | |
| 3213 q31_t * pSrcB, | |
| 3214 uint32_t srcBLen, | |
| 3215 q31_t * pDst, | |
| 3216 uint32_t firstIndex, | |
| 3217 uint32_t numPoints); | |
| 3218 | |
| 3219 | |
| 3220 /** | |
| 3221 * @brief Partial convolution of Q7 sequences | |
| 3222 * @param[in] pSrcA points to the first input sequence. | |
| 3223 * @param[in] srcALen length of the first input sequence. | |
| 3224 * @param[in] pSrcB points to the second input sequence. | |
| 3225 * @param[in] srcBLen length of the second input sequence. | |
| 3226 * @param[out] pDst points to the block of output data | |
| 3227 * @param[in] firstIndex is the first output sample to start with. | |
| 3228 * @param[in] numPoints is the number of output points to be computed. | |
| 3229 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 3230 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | |
| 3231 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3232 */ | |
| 3233 arm_status arm_conv_partial_opt_q7( | |
| 3234 q7_t * pSrcA, | |
| 3235 uint32_t srcALen, | |
| 3236 q7_t * pSrcB, | |
| 3237 uint32_t srcBLen, | |
| 3238 q7_t * pDst, | |
| 3239 uint32_t firstIndex, | |
| 3240 uint32_t numPoints, | |
| 3241 q15_t * pScratch1, | |
| 3242 q15_t * pScratch2); | |
| 3243 | |
| 3244 | |
| 3245 /** | |
| 3246 * @brief Partial convolution of Q7 sequences. | |
| 3247 * @param[in] pSrcA points to the first input sequence. | |
| 3248 * @param[in] srcALen length of the first input sequence. | |
| 3249 * @param[in] pSrcB points to the second input sequence. | |
| 3250 * @param[in] srcBLen length of the second input sequence. | |
| 3251 * @param[out] pDst points to the block of output data | |
| 3252 * @param[in] firstIndex is the first output sample to start with. | |
| 3253 * @param[in] numPoints is the number of output points to be computed. | |
| 3254 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
| 3255 */ | |
| 3256 arm_status arm_conv_partial_q7( | |
| 3257 q7_t * pSrcA, | |
| 3258 uint32_t srcALen, | |
| 3259 q7_t * pSrcB, | |
| 3260 uint32_t srcBLen, | |
| 3261 q7_t * pDst, | |
| 3262 uint32_t firstIndex, | |
| 3263 uint32_t numPoints); | |
| 3264 | |
| 3265 | |
| 3266 /** | |
| 3267 * @brief Instance structure for the Q15 FIR decimator. | |
| 3268 */ | |
| 3269 typedef struct | |
| 3270 { | |
| 3271 uint8_t M; /**< decimation factor. */ | |
| 3272 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3273 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 3274 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3275 } arm_fir_decimate_instance_q15; | |
| 3276 | |
| 3277 /** | |
| 3278 * @brief Instance structure for the Q31 FIR decimator. | |
| 3279 */ | |
| 3280 typedef struct | |
| 3281 { | |
| 3282 uint8_t M; /**< decimation factor. */ | |
| 3283 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3284 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 3285 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3286 } arm_fir_decimate_instance_q31; | |
| 3287 | |
| 3288 /** | |
| 3289 * @brief Instance structure for the floating-point FIR decimator. | |
| 3290 */ | |
| 3291 typedef struct | |
| 3292 { | |
| 3293 uint8_t M; /**< decimation factor. */ | |
| 3294 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3295 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 3296 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3297 } arm_fir_decimate_instance_f32; | |
| 3298 | |
| 3299 | |
| 3300 /** | |
| 3301 * @brief Processing function for the floating-point FIR decimator. | |
| 3302 * @param[in] S points to an instance of the floating-point FIR decimator structure. | |
| 3303 * @param[in] pSrc points to the block of input data. | |
| 3304 * @param[out] pDst points to the block of output data | |
| 3305 * @param[in] blockSize number of input samples to process per call. | |
| 3306 */ | |
| 3307 void arm_fir_decimate_f32( | |
| 3308 const arm_fir_decimate_instance_f32 * S, | |
| 3309 float32_t * pSrc, | |
| 3310 float32_t * pDst, | |
| 3311 uint32_t blockSize); | |
| 3312 | |
| 3313 | |
| 3314 /** | |
| 3315 * @brief Initialization function for the floating-point FIR decimator. | |
| 3316 * @param[in,out] S points to an instance of the floating-point FIR decimator structure. | |
| 3317 * @param[in] numTaps number of coefficients in the filter. | |
| 3318 * @param[in] M decimation factor. | |
| 3319 * @param[in] pCoeffs points to the filter coefficients. | |
| 3320 * @param[in] pState points to the state buffer. | |
| 3321 * @param[in] blockSize number of input samples to process per call. | |
| 3322 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3323 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
| 3324 */ | |
| 3325 arm_status arm_fir_decimate_init_f32( | |
| 3326 arm_fir_decimate_instance_f32 * S, | |
| 3327 uint16_t numTaps, | |
| 3328 uint8_t M, | |
| 3329 float32_t * pCoeffs, | |
| 3330 float32_t * pState, | |
| 3331 uint32_t blockSize); | |
| 3332 | |
| 3333 | |
| 3334 /** | |
| 3335 * @brief Processing function for the Q15 FIR decimator. | |
| 3336 * @param[in] S points to an instance of the Q15 FIR decimator structure. | |
| 3337 * @param[in] pSrc points to the block of input data. | |
| 3338 * @param[out] pDst points to the block of output data | |
| 3339 * @param[in] blockSize number of input samples to process per call. | |
| 3340 */ | |
| 3341 void arm_fir_decimate_q15( | |
| 3342 const arm_fir_decimate_instance_q15 * S, | |
| 3343 q15_t * pSrc, | |
| 3344 q15_t * pDst, | |
| 3345 uint32_t blockSize); | |
| 3346 | |
| 3347 | |
| 3348 /** | |
| 3349 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
| 3350 * @param[in] S points to an instance of the Q15 FIR decimator structure. | |
| 3351 * @param[in] pSrc points to the block of input data. | |
| 3352 * @param[out] pDst points to the block of output data | |
| 3353 * @param[in] blockSize number of input samples to process per call. | |
| 3354 */ | |
| 3355 void arm_fir_decimate_fast_q15( | |
| 3356 const arm_fir_decimate_instance_q15 * S, | |
| 3357 q15_t * pSrc, | |
| 3358 q15_t * pDst, | |
| 3359 uint32_t blockSize); | |
| 3360 | |
| 3361 | |
| 3362 /** | |
| 3363 * @brief Initialization function for the Q15 FIR decimator. | |
| 3364 * @param[in,out] S points to an instance of the Q15 FIR decimator structure. | |
| 3365 * @param[in] numTaps number of coefficients in the filter. | |
| 3366 * @param[in] M decimation factor. | |
| 3367 * @param[in] pCoeffs points to the filter coefficients. | |
| 3368 * @param[in] pState points to the state buffer. | |
| 3369 * @param[in] blockSize number of input samples to process per call. | |
| 3370 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3371 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
| 3372 */ | |
| 3373 arm_status arm_fir_decimate_init_q15( | |
| 3374 arm_fir_decimate_instance_q15 * S, | |
| 3375 uint16_t numTaps, | |
| 3376 uint8_t M, | |
| 3377 q15_t * pCoeffs, | |
| 3378 q15_t * pState, | |
| 3379 uint32_t blockSize); | |
| 3380 | |
| 3381 | |
| 3382 /** | |
| 3383 * @brief Processing function for the Q31 FIR decimator. | |
| 3384 * @param[in] S points to an instance of the Q31 FIR decimator structure. | |
| 3385 * @param[in] pSrc points to the block of input data. | |
| 3386 * @param[out] pDst points to the block of output data | |
| 3387 * @param[in] blockSize number of input samples to process per call. | |
| 3388 */ | |
| 3389 void arm_fir_decimate_q31( | |
| 3390 const arm_fir_decimate_instance_q31 * S, | |
| 3391 q31_t * pSrc, | |
| 3392 q31_t * pDst, | |
| 3393 uint32_t blockSize); | |
| 3394 | |
| 3395 /** | |
| 3396 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
| 3397 * @param[in] S points to an instance of the Q31 FIR decimator structure. | |
| 3398 * @param[in] pSrc points to the block of input data. | |
| 3399 * @param[out] pDst points to the block of output data | |
| 3400 * @param[in] blockSize number of input samples to process per call. | |
| 3401 */ | |
| 3402 void arm_fir_decimate_fast_q31( | |
| 3403 arm_fir_decimate_instance_q31 * S, | |
| 3404 q31_t * pSrc, | |
| 3405 q31_t * pDst, | |
| 3406 uint32_t blockSize); | |
| 3407 | |
| 3408 | |
| 3409 /** | |
| 3410 * @brief Initialization function for the Q31 FIR decimator. | |
| 3411 * @param[in,out] S points to an instance of the Q31 FIR decimator structure. | |
| 3412 * @param[in] numTaps number of coefficients in the filter. | |
| 3413 * @param[in] M decimation factor. | |
| 3414 * @param[in] pCoeffs points to the filter coefficients. | |
| 3415 * @param[in] pState points to the state buffer. | |
| 3416 * @param[in] blockSize number of input samples to process per call. | |
| 3417 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3418 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
| 3419 */ | |
| 3420 arm_status arm_fir_decimate_init_q31( | |
| 3421 arm_fir_decimate_instance_q31 * S, | |
| 3422 uint16_t numTaps, | |
| 3423 uint8_t M, | |
| 3424 q31_t * pCoeffs, | |
| 3425 q31_t * pState, | |
| 3426 uint32_t blockSize); | |
| 3427 | |
| 3428 | |
| 3429 /** | |
| 3430 * @brief Instance structure for the Q15 FIR interpolator. | |
| 3431 */ | |
| 3432 typedef struct | |
| 3433 { | |
| 3434 uint8_t L; /**< upsample factor. */ | |
| 3435 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
| 3436 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
| 3437 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
| 3438 } arm_fir_interpolate_instance_q15; | |
| 3439 | |
| 3440 /** | |
| 3441 * @brief Instance structure for the Q31 FIR interpolator. | |
| 3442 */ | |
| 3443 typedef struct | |
| 3444 { | |
| 3445 uint8_t L; /**< upsample factor. */ | |
| 3446 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
| 3447 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
| 3448 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
| 3449 } arm_fir_interpolate_instance_q31; | |
| 3450 | |
| 3451 /** | |
| 3452 * @brief Instance structure for the floating-point FIR interpolator. | |
| 3453 */ | |
| 3454 typedef struct | |
| 3455 { | |
| 3456 uint8_t L; /**< upsample factor. */ | |
| 3457 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
| 3458 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
| 3459 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ | |
| 3460 } arm_fir_interpolate_instance_f32; | |
| 3461 | |
| 3462 | |
| 3463 /** | |
| 3464 * @brief Processing function for the Q15 FIR interpolator. | |
| 3465 * @param[in] S points to an instance of the Q15 FIR interpolator structure. | |
| 3466 * @param[in] pSrc points to the block of input data. | |
| 3467 * @param[out] pDst points to the block of output data. | |
| 3468 * @param[in] blockSize number of input samples to process per call. | |
| 3469 */ | |
| 3470 void arm_fir_interpolate_q15( | |
| 3471 const arm_fir_interpolate_instance_q15 * S, | |
| 3472 q15_t * pSrc, | |
| 3473 q15_t * pDst, | |
| 3474 uint32_t blockSize); | |
| 3475 | |
| 3476 | |
| 3477 /** | |
| 3478 * @brief Initialization function for the Q15 FIR interpolator. | |
| 3479 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. | |
| 3480 * @param[in] L upsample factor. | |
| 3481 * @param[in] numTaps number of filter coefficients in the filter. | |
| 3482 * @param[in] pCoeffs points to the filter coefficient buffer. | |
| 3483 * @param[in] pState points to the state buffer. | |
| 3484 * @param[in] blockSize number of input samples to process per call. | |
| 3485 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3486 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
| 3487 */ | |
| 3488 arm_status arm_fir_interpolate_init_q15( | |
| 3489 arm_fir_interpolate_instance_q15 * S, | |
| 3490 uint8_t L, | |
| 3491 uint16_t numTaps, | |
| 3492 q15_t * pCoeffs, | |
| 3493 q15_t * pState, | |
| 3494 uint32_t blockSize); | |
| 3495 | |
| 3496 | |
| 3497 /** | |
| 3498 * @brief Processing function for the Q31 FIR interpolator. | |
| 3499 * @param[in] S points to an instance of the Q15 FIR interpolator structure. | |
| 3500 * @param[in] pSrc points to the block of input data. | |
| 3501 * @param[out] pDst points to the block of output data. | |
| 3502 * @param[in] blockSize number of input samples to process per call. | |
| 3503 */ | |
| 3504 void arm_fir_interpolate_q31( | |
| 3505 const arm_fir_interpolate_instance_q31 * S, | |
| 3506 q31_t * pSrc, | |
| 3507 q31_t * pDst, | |
| 3508 uint32_t blockSize); | |
| 3509 | |
| 3510 | |
| 3511 /** | |
| 3512 * @brief Initialization function for the Q31 FIR interpolator. | |
| 3513 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. | |
| 3514 * @param[in] L upsample factor. | |
| 3515 * @param[in] numTaps number of filter coefficients in the filter. | |
| 3516 * @param[in] pCoeffs points to the filter coefficient buffer. | |
| 3517 * @param[in] pState points to the state buffer. | |
| 3518 * @param[in] blockSize number of input samples to process per call. | |
| 3519 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3520 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
| 3521 */ | |
| 3522 arm_status arm_fir_interpolate_init_q31( | |
| 3523 arm_fir_interpolate_instance_q31 * S, | |
| 3524 uint8_t L, | |
| 3525 uint16_t numTaps, | |
| 3526 q31_t * pCoeffs, | |
| 3527 q31_t * pState, | |
| 3528 uint32_t blockSize); | |
| 3529 | |
| 3530 | |
| 3531 /** | |
| 3532 * @brief Processing function for the floating-point FIR interpolator. | |
| 3533 * @param[in] S points to an instance of the floating-point FIR interpolator structure. | |
| 3534 * @param[in] pSrc points to the block of input data. | |
| 3535 * @param[out] pDst points to the block of output data. | |
| 3536 * @param[in] blockSize number of input samples to process per call. | |
| 3537 */ | |
| 3538 void arm_fir_interpolate_f32( | |
| 3539 const arm_fir_interpolate_instance_f32 * S, | |
| 3540 float32_t * pSrc, | |
| 3541 float32_t * pDst, | |
| 3542 uint32_t blockSize); | |
| 3543 | |
| 3544 | |
| 3545 /** | |
| 3546 * @brief Initialization function for the floating-point FIR interpolator. | |
| 3547 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. | |
| 3548 * @param[in] L upsample factor. | |
| 3549 * @param[in] numTaps number of filter coefficients in the filter. | |
| 3550 * @param[in] pCoeffs points to the filter coefficient buffer. | |
| 3551 * @param[in] pState points to the state buffer. | |
| 3552 * @param[in] blockSize number of input samples to process per call. | |
| 3553 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
| 3554 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
| 3555 */ | |
| 3556 arm_status arm_fir_interpolate_init_f32( | |
| 3557 arm_fir_interpolate_instance_f32 * S, | |
| 3558 uint8_t L, | |
| 3559 uint16_t numTaps, | |
| 3560 float32_t * pCoeffs, | |
| 3561 float32_t * pState, | |
| 3562 uint32_t blockSize); | |
| 3563 | |
| 3564 | |
| 3565 /** | |
| 3566 * @brief Instance structure for the high precision Q31 Biquad cascade filter. | |
| 3567 */ | |
| 3568 typedef struct | |
| 3569 { | |
| 3570 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 3571 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 3572 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
| 3573 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ | |
| 3574 } arm_biquad_cas_df1_32x64_ins_q31; | |
| 3575 | |
| 3576 | |
| 3577 /** | |
| 3578 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
| 3579 * @param[in] pSrc points to the block of input data. | |
| 3580 * @param[out] pDst points to the block of output data | |
| 3581 * @param[in] blockSize number of samples to process. | |
| 3582 */ | |
| 3583 void arm_biquad_cas_df1_32x64_q31( | |
| 3584 const arm_biquad_cas_df1_32x64_ins_q31 * S, | |
| 3585 q31_t * pSrc, | |
| 3586 q31_t * pDst, | |
| 3587 uint32_t blockSize); | |
| 3588 | |
| 3589 | |
| 3590 /** | |
| 3591 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
| 3592 * @param[in] numStages number of 2nd order stages in the filter. | |
| 3593 * @param[in] pCoeffs points to the filter coefficients. | |
| 3594 * @param[in] pState points to the state buffer. | |
| 3595 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format | |
| 3596 */ | |
| 3597 void arm_biquad_cas_df1_32x64_init_q31( | |
| 3598 arm_biquad_cas_df1_32x64_ins_q31 * S, | |
| 3599 uint8_t numStages, | |
| 3600 q31_t * pCoeffs, | |
| 3601 q63_t * pState, | |
| 3602 uint8_t postShift); | |
| 3603 | |
| 3604 | |
| 3605 /** | |
| 3606 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
| 3607 */ | |
| 3608 typedef struct | |
| 3609 { | |
| 3610 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 3611 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | |
| 3612 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
| 3613 } arm_biquad_cascade_df2T_instance_f32; | |
| 3614 | |
| 3615 /** | |
| 3616 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
| 3617 */ | |
| 3618 typedef struct | |
| 3619 { | |
| 3620 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 3621 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | |
| 3622 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
| 3623 } arm_biquad_cascade_stereo_df2T_instance_f32; | |
| 3624 | |
| 3625 /** | |
| 3626 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
| 3627 */ | |
| 3628 typedef struct | |
| 3629 { | |
| 3630 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
| 3631 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | |
| 3632 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
| 3633 } arm_biquad_cascade_df2T_instance_f64; | |
| 3634 | |
| 3635 | |
| 3636 /** | |
| 3637 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3638 * @param[in] S points to an instance of the filter data structure. | |
| 3639 * @param[in] pSrc points to the block of input data. | |
| 3640 * @param[out] pDst points to the block of output data | |
| 3641 * @param[in] blockSize number of samples to process. | |
| 3642 */ | |
| 3643 void arm_biquad_cascade_df2T_f32( | |
| 3644 const arm_biquad_cascade_df2T_instance_f32 * S, | |
| 3645 float32_t * pSrc, | |
| 3646 float32_t * pDst, | |
| 3647 uint32_t blockSize); | |
| 3648 | |
| 3649 | |
| 3650 /** | |
| 3651 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels | |
| 3652 * @param[in] S points to an instance of the filter data structure. | |
| 3653 * @param[in] pSrc points to the block of input data. | |
| 3654 * @param[out] pDst points to the block of output data | |
| 3655 * @param[in] blockSize number of samples to process. | |
| 3656 */ | |
| 3657 void arm_biquad_cascade_stereo_df2T_f32( | |
| 3658 const arm_biquad_cascade_stereo_df2T_instance_f32 * S, | |
| 3659 float32_t * pSrc, | |
| 3660 float32_t * pDst, | |
| 3661 uint32_t blockSize); | |
| 3662 | |
| 3663 | |
| 3664 /** | |
| 3665 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3666 * @param[in] S points to an instance of the filter data structure. | |
| 3667 * @param[in] pSrc points to the block of input data. | |
| 3668 * @param[out] pDst points to the block of output data | |
| 3669 * @param[in] blockSize number of samples to process. | |
| 3670 */ | |
| 3671 void arm_biquad_cascade_df2T_f64( | |
| 3672 const arm_biquad_cascade_df2T_instance_f64 * S, | |
| 3673 float64_t * pSrc, | |
| 3674 float64_t * pDst, | |
| 3675 uint32_t blockSize); | |
| 3676 | |
| 3677 | |
| 3678 /** | |
| 3679 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3680 * @param[in,out] S points to an instance of the filter data structure. | |
| 3681 * @param[in] numStages number of 2nd order stages in the filter. | |
| 3682 * @param[in] pCoeffs points to the filter coefficients. | |
| 3683 * @param[in] pState points to the state buffer. | |
| 3684 */ | |
| 3685 void arm_biquad_cascade_df2T_init_f32( | |
| 3686 arm_biquad_cascade_df2T_instance_f32 * S, | |
| 3687 uint8_t numStages, | |
| 3688 float32_t * pCoeffs, | |
| 3689 float32_t * pState); | |
| 3690 | |
| 3691 | |
| 3692 /** | |
| 3693 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3694 * @param[in,out] S points to an instance of the filter data structure. | |
| 3695 * @param[in] numStages number of 2nd order stages in the filter. | |
| 3696 * @param[in] pCoeffs points to the filter coefficients. | |
| 3697 * @param[in] pState points to the state buffer. | |
| 3698 */ | |
| 3699 void arm_biquad_cascade_stereo_df2T_init_f32( | |
| 3700 arm_biquad_cascade_stereo_df2T_instance_f32 * S, | |
| 3701 uint8_t numStages, | |
| 3702 float32_t * pCoeffs, | |
| 3703 float32_t * pState); | |
| 3704 | |
| 3705 | |
| 3706 /** | |
| 3707 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
| 3708 * @param[in,out] S points to an instance of the filter data structure. | |
| 3709 * @param[in] numStages number of 2nd order stages in the filter. | |
| 3710 * @param[in] pCoeffs points to the filter coefficients. | |
| 3711 * @param[in] pState points to the state buffer. | |
| 3712 */ | |
| 3713 void arm_biquad_cascade_df2T_init_f64( | |
| 3714 arm_biquad_cascade_df2T_instance_f64 * S, | |
| 3715 uint8_t numStages, | |
| 3716 float64_t * pCoeffs, | |
| 3717 float64_t * pState); | |
| 3718 | |
| 3719 | |
| 3720 /** | |
| 3721 * @brief Instance structure for the Q15 FIR lattice filter. | |
| 3722 */ | |
| 3723 typedef struct | |
| 3724 { | |
| 3725 uint16_t numStages; /**< number of filter stages. */ | |
| 3726 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
| 3727 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
| 3728 } arm_fir_lattice_instance_q15; | |
| 3729 | |
| 3730 /** | |
| 3731 * @brief Instance structure for the Q31 FIR lattice filter. | |
| 3732 */ | |
| 3733 typedef struct | |
| 3734 { | |
| 3735 uint16_t numStages; /**< number of filter stages. */ | |
| 3736 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
| 3737 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
| 3738 } arm_fir_lattice_instance_q31; | |
| 3739 | |
| 3740 /** | |
| 3741 * @brief Instance structure for the floating-point FIR lattice filter. | |
| 3742 */ | |
| 3743 typedef struct | |
| 3744 { | |
| 3745 uint16_t numStages; /**< number of filter stages. */ | |
| 3746 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
| 3747 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
| 3748 } arm_fir_lattice_instance_f32; | |
| 3749 | |
| 3750 | |
| 3751 /** | |
| 3752 * @brief Initialization function for the Q15 FIR lattice filter. | |
| 3753 * @param[in] S points to an instance of the Q15 FIR lattice structure. | |
| 3754 * @param[in] numStages number of filter stages. | |
| 3755 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. | |
| 3756 * @param[in] pState points to the state buffer. The array is of length numStages. | |
| 3757 */ | |
| 3758 void arm_fir_lattice_init_q15( | |
| 3759 arm_fir_lattice_instance_q15 * S, | |
| 3760 uint16_t numStages, | |
| 3761 q15_t * pCoeffs, | |
| 3762 q15_t * pState); | |
| 3763 | |
| 3764 | |
| 3765 /** | |
| 3766 * @brief Processing function for the Q15 FIR lattice filter. | |
| 3767 * @param[in] S points to an instance of the Q15 FIR lattice structure. | |
| 3768 * @param[in] pSrc points to the block of input data. | |
| 3769 * @param[out] pDst points to the block of output data. | |
| 3770 * @param[in] blockSize number of samples to process. | |
| 3771 */ | |
| 3772 void arm_fir_lattice_q15( | |
| 3773 const arm_fir_lattice_instance_q15 * S, | |
| 3774 q15_t * pSrc, | |
| 3775 q15_t * pDst, | |
| 3776 uint32_t blockSize); | |
| 3777 | |
| 3778 | |
| 3779 /** | |
| 3780 * @brief Initialization function for the Q31 FIR lattice filter. | |
| 3781 * @param[in] S points to an instance of the Q31 FIR lattice structure. | |
| 3782 * @param[in] numStages number of filter stages. | |
| 3783 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. | |
| 3784 * @param[in] pState points to the state buffer. The array is of length numStages. | |
| 3785 */ | |
| 3786 void arm_fir_lattice_init_q31( | |
| 3787 arm_fir_lattice_instance_q31 * S, | |
| 3788 uint16_t numStages, | |
| 3789 q31_t * pCoeffs, | |
| 3790 q31_t * pState); | |
| 3791 | |
| 3792 | |
| 3793 /** | |
| 3794 * @brief Processing function for the Q31 FIR lattice filter. | |
| 3795 * @param[in] S points to an instance of the Q31 FIR lattice structure. | |
| 3796 * @param[in] pSrc points to the block of input data. | |
| 3797 * @param[out] pDst points to the block of output data | |
| 3798 * @param[in] blockSize number of samples to process. | |
| 3799 */ | |
| 3800 void arm_fir_lattice_q31( | |
| 3801 const arm_fir_lattice_instance_q31 * S, | |
| 3802 q31_t * pSrc, | |
| 3803 q31_t * pDst, | |
| 3804 uint32_t blockSize); | |
| 3805 | |
| 3806 | |
| 3807 /** | |
| 3808 * @brief Initialization function for the floating-point FIR lattice filter. | |
| 3809 * @param[in] S points to an instance of the floating-point FIR lattice structure. | |
| 3810 * @param[in] numStages number of filter stages. | |
| 3811 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. | |
| 3812 * @param[in] pState points to the state buffer. The array is of length numStages. | |
| 3813 */ | |
| 3814 void arm_fir_lattice_init_f32( | |
| 3815 arm_fir_lattice_instance_f32 * S, | |
| 3816 uint16_t numStages, | |
| 3817 float32_t * pCoeffs, | |
| 3818 float32_t * pState); | |
| 3819 | |
| 3820 | |
| 3821 /** | |
| 3822 * @brief Processing function for the floating-point FIR lattice filter. | |
| 3823 * @param[in] S points to an instance of the floating-point FIR lattice structure. | |
| 3824 * @param[in] pSrc points to the block of input data. | |
| 3825 * @param[out] pDst points to the block of output data | |
| 3826 * @param[in] blockSize number of samples to process. | |
| 3827 */ | |
| 3828 void arm_fir_lattice_f32( | |
| 3829 const arm_fir_lattice_instance_f32 * S, | |
| 3830 float32_t * pSrc, | |
| 3831 float32_t * pDst, | |
| 3832 uint32_t blockSize); | |
| 3833 | |
| 3834 | |
| 3835 /** | |
| 3836 * @brief Instance structure for the Q15 IIR lattice filter. | |
| 3837 */ | |
| 3838 typedef struct | |
| 3839 { | |
| 3840 uint16_t numStages; /**< number of stages in the filter. */ | |
| 3841 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
| 3842 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
| 3843 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
| 3844 } arm_iir_lattice_instance_q15; | |
| 3845 | |
| 3846 /** | |
| 3847 * @brief Instance structure for the Q31 IIR lattice filter. | |
| 3848 */ | |
| 3849 typedef struct | |
| 3850 { | |
| 3851 uint16_t numStages; /**< number of stages in the filter. */ | |
| 3852 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
| 3853 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
| 3854 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
| 3855 } arm_iir_lattice_instance_q31; | |
| 3856 | |
| 3857 /** | |
| 3858 * @brief Instance structure for the floating-point IIR lattice filter. | |
| 3859 */ | |
| 3860 typedef struct | |
| 3861 { | |
| 3862 uint16_t numStages; /**< number of stages in the filter. */ | |
| 3863 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
| 3864 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
| 3865 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
| 3866 } arm_iir_lattice_instance_f32; | |
| 3867 | |
| 3868 | |
| 3869 /** | |
| 3870 * @brief Processing function for the floating-point IIR lattice filter. | |
| 3871 * @param[in] S points to an instance of the floating-point IIR lattice structure. | |
| 3872 * @param[in] pSrc points to the block of input data. | |
| 3873 * @param[out] pDst points to the block of output data. | |
| 3874 * @param[in] blockSize number of samples to process. | |
| 3875 */ | |
| 3876 void arm_iir_lattice_f32( | |
| 3877 const arm_iir_lattice_instance_f32 * S, | |
| 3878 float32_t * pSrc, | |
| 3879 float32_t * pDst, | |
| 3880 uint32_t blockSize); | |
| 3881 | |
| 3882 | |
| 3883 /** | |
| 3884 * @brief Initialization function for the floating-point IIR lattice filter. | |
| 3885 * @param[in] S points to an instance of the floating-point IIR lattice structure. | |
| 3886 * @param[in] numStages number of stages in the filter. | |
| 3887 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
| 3888 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
| 3889 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. | |
| 3890 * @param[in] blockSize number of samples to process. | |
| 3891 */ | |
| 3892 void arm_iir_lattice_init_f32( | |
| 3893 arm_iir_lattice_instance_f32 * S, | |
| 3894 uint16_t numStages, | |
| 3895 float32_t * pkCoeffs, | |
| 3896 float32_t * pvCoeffs, | |
| 3897 float32_t * pState, | |
| 3898 uint32_t blockSize); | |
| 3899 | |
| 3900 | |
| 3901 /** | |
| 3902 * @brief Processing function for the Q31 IIR lattice filter. | |
| 3903 * @param[in] S points to an instance of the Q31 IIR lattice structure. | |
| 3904 * @param[in] pSrc points to the block of input data. | |
| 3905 * @param[out] pDst points to the block of output data. | |
| 3906 * @param[in] blockSize number of samples to process. | |
| 3907 */ | |
| 3908 void arm_iir_lattice_q31( | |
| 3909 const arm_iir_lattice_instance_q31 * S, | |
| 3910 q31_t * pSrc, | |
| 3911 q31_t * pDst, | |
| 3912 uint32_t blockSize); | |
| 3913 | |
| 3914 | |
| 3915 /** | |
| 3916 * @brief Initialization function for the Q31 IIR lattice filter. | |
| 3917 * @param[in] S points to an instance of the Q31 IIR lattice structure. | |
| 3918 * @param[in] numStages number of stages in the filter. | |
| 3919 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
| 3920 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
| 3921 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. | |
| 3922 * @param[in] blockSize number of samples to process. | |
| 3923 */ | |
| 3924 void arm_iir_lattice_init_q31( | |
| 3925 arm_iir_lattice_instance_q31 * S, | |
| 3926 uint16_t numStages, | |
| 3927 q31_t * pkCoeffs, | |
| 3928 q31_t * pvCoeffs, | |
| 3929 q31_t * pState, | |
| 3930 uint32_t blockSize); | |
| 3931 | |
| 3932 | |
| 3933 /** | |
| 3934 * @brief Processing function for the Q15 IIR lattice filter. | |
| 3935 * @param[in] S points to an instance of the Q15 IIR lattice structure. | |
| 3936 * @param[in] pSrc points to the block of input data. | |
| 3937 * @param[out] pDst points to the block of output data. | |
| 3938 * @param[in] blockSize number of samples to process. | |
| 3939 */ | |
| 3940 void arm_iir_lattice_q15( | |
| 3941 const arm_iir_lattice_instance_q15 * S, | |
| 3942 q15_t * pSrc, | |
| 3943 q15_t * pDst, | |
| 3944 uint32_t blockSize); | |
| 3945 | |
| 3946 | |
| 3947 /** | |
| 3948 * @brief Initialization function for the Q15 IIR lattice filter. | |
| 3949 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. | |
| 3950 * @param[in] numStages number of stages in the filter. | |
| 3951 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. | |
| 3952 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. | |
| 3953 * @param[in] pState points to state buffer. The array is of length numStages+blockSize. | |
| 3954 * @param[in] blockSize number of samples to process per call. | |
| 3955 */ | |
| 3956 void arm_iir_lattice_init_q15( | |
| 3957 arm_iir_lattice_instance_q15 * S, | |
| 3958 uint16_t numStages, | |
| 3959 q15_t * pkCoeffs, | |
| 3960 q15_t * pvCoeffs, | |
| 3961 q15_t * pState, | |
| 3962 uint32_t blockSize); | |
| 3963 | |
| 3964 | |
| 3965 /** | |
| 3966 * @brief Instance structure for the floating-point LMS filter. | |
| 3967 */ | |
| 3968 typedef struct | |
| 3969 { | |
| 3970 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 3971 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 3972 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 3973 float32_t mu; /**< step size that controls filter coefficient updates. */ | |
| 3974 } arm_lms_instance_f32; | |
| 3975 | |
| 3976 | |
| 3977 /** | |
| 3978 * @brief Processing function for floating-point LMS filter. | |
| 3979 * @param[in] S points to an instance of the floating-point LMS filter structure. | |
| 3980 * @param[in] pSrc points to the block of input data. | |
| 3981 * @param[in] pRef points to the block of reference data. | |
| 3982 * @param[out] pOut points to the block of output data. | |
| 3983 * @param[out] pErr points to the block of error data. | |
| 3984 * @param[in] blockSize number of samples to process. | |
| 3985 */ | |
| 3986 void arm_lms_f32( | |
| 3987 const arm_lms_instance_f32 * S, | |
| 3988 float32_t * pSrc, | |
| 3989 float32_t * pRef, | |
| 3990 float32_t * pOut, | |
| 3991 float32_t * pErr, | |
| 3992 uint32_t blockSize); | |
| 3993 | |
| 3994 | |
| 3995 /** | |
| 3996 * @brief Initialization function for floating-point LMS filter. | |
| 3997 * @param[in] S points to an instance of the floating-point LMS filter structure. | |
| 3998 * @param[in] numTaps number of filter coefficients. | |
| 3999 * @param[in] pCoeffs points to the coefficient buffer. | |
| 4000 * @param[in] pState points to state buffer. | |
| 4001 * @param[in] mu step size that controls filter coefficient updates. | |
| 4002 * @param[in] blockSize number of samples to process. | |
| 4003 */ | |
| 4004 void arm_lms_init_f32( | |
| 4005 arm_lms_instance_f32 * S, | |
| 4006 uint16_t numTaps, | |
| 4007 float32_t * pCoeffs, | |
| 4008 float32_t * pState, | |
| 4009 float32_t mu, | |
| 4010 uint32_t blockSize); | |
| 4011 | |
| 4012 | |
| 4013 /** | |
| 4014 * @brief Instance structure for the Q15 LMS filter. | |
| 4015 */ | |
| 4016 typedef struct | |
| 4017 { | |
| 4018 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4019 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4020 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4021 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4022 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
| 4023 } arm_lms_instance_q15; | |
| 4024 | |
| 4025 | |
| 4026 /** | |
| 4027 * @brief Initialization function for the Q15 LMS filter. | |
| 4028 * @param[in] S points to an instance of the Q15 LMS filter structure. | |
| 4029 * @param[in] numTaps number of filter coefficients. | |
| 4030 * @param[in] pCoeffs points to the coefficient buffer. | |
| 4031 * @param[in] pState points to the state buffer. | |
| 4032 * @param[in] mu step size that controls filter coefficient updates. | |
| 4033 * @param[in] blockSize number of samples to process. | |
| 4034 * @param[in] postShift bit shift applied to coefficients. | |
| 4035 */ | |
| 4036 void arm_lms_init_q15( | |
| 4037 arm_lms_instance_q15 * S, | |
| 4038 uint16_t numTaps, | |
| 4039 q15_t * pCoeffs, | |
| 4040 q15_t * pState, | |
| 4041 q15_t mu, | |
| 4042 uint32_t blockSize, | |
| 4043 uint32_t postShift); | |
| 4044 | |
| 4045 | |
| 4046 /** | |
| 4047 * @brief Processing function for Q15 LMS filter. | |
| 4048 * @param[in] S points to an instance of the Q15 LMS filter structure. | |
| 4049 * @param[in] pSrc points to the block of input data. | |
| 4050 * @param[in] pRef points to the block of reference data. | |
| 4051 * @param[out] pOut points to the block of output data. | |
| 4052 * @param[out] pErr points to the block of error data. | |
| 4053 * @param[in] blockSize number of samples to process. | |
| 4054 */ | |
| 4055 void arm_lms_q15( | |
| 4056 const arm_lms_instance_q15 * S, | |
| 4057 q15_t * pSrc, | |
| 4058 q15_t * pRef, | |
| 4059 q15_t * pOut, | |
| 4060 q15_t * pErr, | |
| 4061 uint32_t blockSize); | |
| 4062 | |
| 4063 | |
| 4064 /** | |
| 4065 * @brief Instance structure for the Q31 LMS filter. | |
| 4066 */ | |
| 4067 typedef struct | |
| 4068 { | |
| 4069 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4070 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4071 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4072 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4073 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
| 4074 } arm_lms_instance_q31; | |
| 4075 | |
| 4076 | |
| 4077 /** | |
| 4078 * @brief Processing function for Q31 LMS filter. | |
| 4079 * @param[in] S points to an instance of the Q15 LMS filter structure. | |
| 4080 * @param[in] pSrc points to the block of input data. | |
| 4081 * @param[in] pRef points to the block of reference data. | |
| 4082 * @param[out] pOut points to the block of output data. | |
| 4083 * @param[out] pErr points to the block of error data. | |
| 4084 * @param[in] blockSize number of samples to process. | |
| 4085 */ | |
| 4086 void arm_lms_q31( | |
| 4087 const arm_lms_instance_q31 * S, | |
| 4088 q31_t * pSrc, | |
| 4089 q31_t * pRef, | |
| 4090 q31_t * pOut, | |
| 4091 q31_t * pErr, | |
| 4092 uint32_t blockSize); | |
| 4093 | |
| 4094 | |
| 4095 /** | |
| 4096 * @brief Initialization function for Q31 LMS filter. | |
| 4097 * @param[in] S points to an instance of the Q31 LMS filter structure. | |
| 4098 * @param[in] numTaps number of filter coefficients. | |
| 4099 * @param[in] pCoeffs points to coefficient buffer. | |
| 4100 * @param[in] pState points to state buffer. | |
| 4101 * @param[in] mu step size that controls filter coefficient updates. | |
| 4102 * @param[in] blockSize number of samples to process. | |
| 4103 * @param[in] postShift bit shift applied to coefficients. | |
| 4104 */ | |
| 4105 void arm_lms_init_q31( | |
| 4106 arm_lms_instance_q31 * S, | |
| 4107 uint16_t numTaps, | |
| 4108 q31_t * pCoeffs, | |
| 4109 q31_t * pState, | |
| 4110 q31_t mu, | |
| 4111 uint32_t blockSize, | |
| 4112 uint32_t postShift); | |
| 4113 | |
| 4114 | |
| 4115 /** | |
| 4116 * @brief Instance structure for the floating-point normalized LMS filter. | |
| 4117 */ | |
| 4118 typedef struct | |
| 4119 { | |
| 4120 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4121 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4122 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4123 float32_t mu; /**< step size that control filter coefficient updates. */ | |
| 4124 float32_t energy; /**< saves previous frame energy. */ | |
| 4125 float32_t x0; /**< saves previous input sample. */ | |
| 4126 } arm_lms_norm_instance_f32; | |
| 4127 | |
| 4128 | |
| 4129 /** | |
| 4130 * @brief Processing function for floating-point normalized LMS filter. | |
| 4131 * @param[in] S points to an instance of the floating-point normalized LMS filter structure. | |
| 4132 * @param[in] pSrc points to the block of input data. | |
| 4133 * @param[in] pRef points to the block of reference data. | |
| 4134 * @param[out] pOut points to the block of output data. | |
| 4135 * @param[out] pErr points to the block of error data. | |
| 4136 * @param[in] blockSize number of samples to process. | |
| 4137 */ | |
| 4138 void arm_lms_norm_f32( | |
| 4139 arm_lms_norm_instance_f32 * S, | |
| 4140 float32_t * pSrc, | |
| 4141 float32_t * pRef, | |
| 4142 float32_t * pOut, | |
| 4143 float32_t * pErr, | |
| 4144 uint32_t blockSize); | |
| 4145 | |
| 4146 | |
| 4147 /** | |
| 4148 * @brief Initialization function for floating-point normalized LMS filter. | |
| 4149 * @param[in] S points to an instance of the floating-point LMS filter structure. | |
| 4150 * @param[in] numTaps number of filter coefficients. | |
| 4151 * @param[in] pCoeffs points to coefficient buffer. | |
| 4152 * @param[in] pState points to state buffer. | |
| 4153 * @param[in] mu step size that controls filter coefficient updates. | |
| 4154 * @param[in] blockSize number of samples to process. | |
| 4155 */ | |
| 4156 void arm_lms_norm_init_f32( | |
| 4157 arm_lms_norm_instance_f32 * S, | |
| 4158 uint16_t numTaps, | |
| 4159 float32_t * pCoeffs, | |
| 4160 float32_t * pState, | |
| 4161 float32_t mu, | |
| 4162 uint32_t blockSize); | |
| 4163 | |
| 4164 | |
| 4165 /** | |
| 4166 * @brief Instance structure for the Q31 normalized LMS filter. | |
| 4167 */ | |
| 4168 typedef struct | |
| 4169 { | |
| 4170 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4171 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4172 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4173 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4174 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
| 4175 q31_t *recipTable; /**< points to the reciprocal initial value table. */ | |
| 4176 q31_t energy; /**< saves previous frame energy. */ | |
| 4177 q31_t x0; /**< saves previous input sample. */ | |
| 4178 } arm_lms_norm_instance_q31; | |
| 4179 | |
| 4180 | |
| 4181 /** | |
| 4182 * @brief Processing function for Q31 normalized LMS filter. | |
| 4183 * @param[in] S points to an instance of the Q31 normalized LMS filter structure. | |
| 4184 * @param[in] pSrc points to the block of input data. | |
| 4185 * @param[in] pRef points to the block of reference data. | |
| 4186 * @param[out] pOut points to the block of output data. | |
| 4187 * @param[out] pErr points to the block of error data. | |
| 4188 * @param[in] blockSize number of samples to process. | |
| 4189 */ | |
| 4190 void arm_lms_norm_q31( | |
| 4191 arm_lms_norm_instance_q31 * S, | |
| 4192 q31_t * pSrc, | |
| 4193 q31_t * pRef, | |
| 4194 q31_t * pOut, | |
| 4195 q31_t * pErr, | |
| 4196 uint32_t blockSize); | |
| 4197 | |
| 4198 | |
| 4199 /** | |
| 4200 * @brief Initialization function for Q31 normalized LMS filter. | |
| 4201 * @param[in] S points to an instance of the Q31 normalized LMS filter structure. | |
| 4202 * @param[in] numTaps number of filter coefficients. | |
| 4203 * @param[in] pCoeffs points to coefficient buffer. | |
| 4204 * @param[in] pState points to state buffer. | |
| 4205 * @param[in] mu step size that controls filter coefficient updates. | |
| 4206 * @param[in] blockSize number of samples to process. | |
| 4207 * @param[in] postShift bit shift applied to coefficients. | |
| 4208 */ | |
| 4209 void arm_lms_norm_init_q31( | |
| 4210 arm_lms_norm_instance_q31 * S, | |
| 4211 uint16_t numTaps, | |
| 4212 q31_t * pCoeffs, | |
| 4213 q31_t * pState, | |
| 4214 q31_t mu, | |
| 4215 uint32_t blockSize, | |
| 4216 uint8_t postShift); | |
| 4217 | |
| 4218 | |
| 4219 /** | |
| 4220 * @brief Instance structure for the Q15 normalized LMS filter. | |
| 4221 */ | |
| 4222 typedef struct | |
| 4223 { | |
| 4224 uint16_t numTaps; /**< Number of coefficients in the filter. */ | |
| 4225 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
| 4226 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
| 4227 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
| 4228 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
| 4229 q15_t *recipTable; /**< Points to the reciprocal initial value table. */ | |
| 4230 q15_t energy; /**< saves previous frame energy. */ | |
| 4231 q15_t x0; /**< saves previous input sample. */ | |
| 4232 } arm_lms_norm_instance_q15; | |
| 4233 | |
| 4234 | |
| 4235 /** | |
| 4236 * @brief Processing function for Q15 normalized LMS filter. | |
| 4237 * @param[in] S points to an instance of the Q15 normalized LMS filter structure. | |
| 4238 * @param[in] pSrc points to the block of input data. | |
| 4239 * @param[in] pRef points to the block of reference data. | |
| 4240 * @param[out] pOut points to the block of output data. | |
| 4241 * @param[out] pErr points to the block of error data. | |
| 4242 * @param[in] blockSize number of samples to process. | |
| 4243 */ | |
| 4244 void arm_lms_norm_q15( | |
| 4245 arm_lms_norm_instance_q15 * S, | |
| 4246 q15_t * pSrc, | |
| 4247 q15_t * pRef, | |
| 4248 q15_t * pOut, | |
| 4249 q15_t * pErr, | |
| 4250 uint32_t blockSize); | |
| 4251 | |
| 4252 | |
| 4253 /** | |
| 4254 * @brief Initialization function for Q15 normalized LMS filter. | |
| 4255 * @param[in] S points to an instance of the Q15 normalized LMS filter structure. | |
| 4256 * @param[in] numTaps number of filter coefficients. | |
| 4257 * @param[in] pCoeffs points to coefficient buffer. | |
| 4258 * @param[in] pState points to state buffer. | |
| 4259 * @param[in] mu step size that controls filter coefficient updates. | |
| 4260 * @param[in] blockSize number of samples to process. | |
| 4261 * @param[in] postShift bit shift applied to coefficients. | |
| 4262 */ | |
| 4263 void arm_lms_norm_init_q15( | |
| 4264 arm_lms_norm_instance_q15 * S, | |
| 4265 uint16_t numTaps, | |
| 4266 q15_t * pCoeffs, | |
| 4267 q15_t * pState, | |
| 4268 q15_t mu, | |
| 4269 uint32_t blockSize, | |
| 4270 uint8_t postShift); | |
| 4271 | |
| 4272 | |
| 4273 /** | |
| 4274 * @brief Correlation of floating-point sequences. | |
| 4275 * @param[in] pSrcA points to the first input sequence. | |
| 4276 * @param[in] srcALen length of the first input sequence. | |
| 4277 * @param[in] pSrcB points to the second input sequence. | |
| 4278 * @param[in] srcBLen length of the second input sequence. | |
| 4279 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4280 */ | |
| 4281 void arm_correlate_f32( | |
| 4282 float32_t * pSrcA, | |
| 4283 uint32_t srcALen, | |
| 4284 float32_t * pSrcB, | |
| 4285 uint32_t srcBLen, | |
| 4286 float32_t * pDst); | |
| 4287 | |
| 4288 | |
| 4289 /** | |
| 4290 * @brief Correlation of Q15 sequences | |
| 4291 * @param[in] pSrcA points to the first input sequence. | |
| 4292 * @param[in] srcALen length of the first input sequence. | |
| 4293 * @param[in] pSrcB points to the second input sequence. | |
| 4294 * @param[in] srcBLen length of the second input sequence. | |
| 4295 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4296 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 4297 */ | |
| 4298 void arm_correlate_opt_q15( | |
| 4299 q15_t * pSrcA, | |
| 4300 uint32_t srcALen, | |
| 4301 q15_t * pSrcB, | |
| 4302 uint32_t srcBLen, | |
| 4303 q15_t * pDst, | |
| 4304 q15_t * pScratch); | |
| 4305 | |
| 4306 | |
| 4307 /** | |
| 4308 * @brief Correlation of Q15 sequences. | |
| 4309 * @param[in] pSrcA points to the first input sequence. | |
| 4310 * @param[in] srcALen length of the first input sequence. | |
| 4311 * @param[in] pSrcB points to the second input sequence. | |
| 4312 * @param[in] srcBLen length of the second input sequence. | |
| 4313 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4314 */ | |
| 4315 | |
| 4316 void arm_correlate_q15( | |
| 4317 q15_t * pSrcA, | |
| 4318 uint32_t srcALen, | |
| 4319 q15_t * pSrcB, | |
| 4320 uint32_t srcBLen, | |
| 4321 q15_t * pDst); | |
| 4322 | |
| 4323 | |
| 4324 /** | |
| 4325 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | |
| 4326 * @param[in] pSrcA points to the first input sequence. | |
| 4327 * @param[in] srcALen length of the first input sequence. | |
| 4328 * @param[in] pSrcB points to the second input sequence. | |
| 4329 * @param[in] srcBLen length of the second input sequence. | |
| 4330 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4331 */ | |
| 4332 | |
| 4333 void arm_correlate_fast_q15( | |
| 4334 q15_t * pSrcA, | |
| 4335 uint32_t srcALen, | |
| 4336 q15_t * pSrcB, | |
| 4337 uint32_t srcBLen, | |
| 4338 q15_t * pDst); | |
| 4339 | |
| 4340 | |
| 4341 /** | |
| 4342 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | |
| 4343 * @param[in] pSrcA points to the first input sequence. | |
| 4344 * @param[in] srcALen length of the first input sequence. | |
| 4345 * @param[in] pSrcB points to the second input sequence. | |
| 4346 * @param[in] srcBLen length of the second input sequence. | |
| 4347 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4348 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 4349 */ | |
| 4350 void arm_correlate_fast_opt_q15( | |
| 4351 q15_t * pSrcA, | |
| 4352 uint32_t srcALen, | |
| 4353 q15_t * pSrcB, | |
| 4354 uint32_t srcBLen, | |
| 4355 q15_t * pDst, | |
| 4356 q15_t * pScratch); | |
| 4357 | |
| 4358 | |
| 4359 /** | |
| 4360 * @brief Correlation of Q31 sequences. | |
| 4361 * @param[in] pSrcA points to the first input sequence. | |
| 4362 * @param[in] srcALen length of the first input sequence. | |
| 4363 * @param[in] pSrcB points to the second input sequence. | |
| 4364 * @param[in] srcBLen length of the second input sequence. | |
| 4365 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4366 */ | |
| 4367 void arm_correlate_q31( | |
| 4368 q31_t * pSrcA, | |
| 4369 uint32_t srcALen, | |
| 4370 q31_t * pSrcB, | |
| 4371 uint32_t srcBLen, | |
| 4372 q31_t * pDst); | |
| 4373 | |
| 4374 | |
| 4375 /** | |
| 4376 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
| 4377 * @param[in] pSrcA points to the first input sequence. | |
| 4378 * @param[in] srcALen length of the first input sequence. | |
| 4379 * @param[in] pSrcB points to the second input sequence. | |
| 4380 * @param[in] srcBLen length of the second input sequence. | |
| 4381 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4382 */ | |
| 4383 void arm_correlate_fast_q31( | |
| 4384 q31_t * pSrcA, | |
| 4385 uint32_t srcALen, | |
| 4386 q31_t * pSrcB, | |
| 4387 uint32_t srcBLen, | |
| 4388 q31_t * pDst); | |
| 4389 | |
| 4390 | |
| 4391 /** | |
| 4392 * @brief Correlation of Q7 sequences. | |
| 4393 * @param[in] pSrcA points to the first input sequence. | |
| 4394 * @param[in] srcALen length of the first input sequence. | |
| 4395 * @param[in] pSrcB points to the second input sequence. | |
| 4396 * @param[in] srcBLen length of the second input sequence. | |
| 4397 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4398 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
| 4399 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | |
| 4400 */ | |
| 4401 void arm_correlate_opt_q7( | |
| 4402 q7_t * pSrcA, | |
| 4403 uint32_t srcALen, | |
| 4404 q7_t * pSrcB, | |
| 4405 uint32_t srcBLen, | |
| 4406 q7_t * pDst, | |
| 4407 q15_t * pScratch1, | |
| 4408 q15_t * pScratch2); | |
| 4409 | |
| 4410 | |
| 4411 /** | |
| 4412 * @brief Correlation of Q7 sequences. | |
| 4413 * @param[in] pSrcA points to the first input sequence. | |
| 4414 * @param[in] srcALen length of the first input sequence. | |
| 4415 * @param[in] pSrcB points to the second input sequence. | |
| 4416 * @param[in] srcBLen length of the second input sequence. | |
| 4417 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
| 4418 */ | |
| 4419 void arm_correlate_q7( | |
| 4420 q7_t * pSrcA, | |
| 4421 uint32_t srcALen, | |
| 4422 q7_t * pSrcB, | |
| 4423 uint32_t srcBLen, | |
| 4424 q7_t * pDst); | |
| 4425 | |
| 4426 | |
| 4427 /** | |
| 4428 * @brief Instance structure for the floating-point sparse FIR filter. | |
| 4429 */ | |
| 4430 typedef struct | |
| 4431 { | |
| 4432 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4433 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4434 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4435 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4436 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4437 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4438 } arm_fir_sparse_instance_f32; | |
| 4439 | |
| 4440 /** | |
| 4441 * @brief Instance structure for the Q31 sparse FIR filter. | |
| 4442 */ | |
| 4443 typedef struct | |
| 4444 { | |
| 4445 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4446 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4447 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4448 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4449 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4450 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4451 } arm_fir_sparse_instance_q31; | |
| 4452 | |
| 4453 /** | |
| 4454 * @brief Instance structure for the Q15 sparse FIR filter. | |
| 4455 */ | |
| 4456 typedef struct | |
| 4457 { | |
| 4458 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4459 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4460 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4461 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4462 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4463 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4464 } arm_fir_sparse_instance_q15; | |
| 4465 | |
| 4466 /** | |
| 4467 * @brief Instance structure for the Q7 sparse FIR filter. | |
| 4468 */ | |
| 4469 typedef struct | |
| 4470 { | |
| 4471 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
| 4472 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
| 4473 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
| 4474 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
| 4475 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
| 4476 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
| 4477 } arm_fir_sparse_instance_q7; | |
| 4478 | |
| 4479 | |
| 4480 /** | |
| 4481 * @brief Processing function for the floating-point sparse FIR filter. | |
| 4482 * @param[in] S points to an instance of the floating-point sparse FIR structure. | |
| 4483 * @param[in] pSrc points to the block of input data. | |
| 4484 * @param[out] pDst points to the block of output data | |
| 4485 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
| 4486 * @param[in] blockSize number of input samples to process per call. | |
| 4487 */ | |
| 4488 void arm_fir_sparse_f32( | |
| 4489 arm_fir_sparse_instance_f32 * S, | |
| 4490 float32_t * pSrc, | |
| 4491 float32_t * pDst, | |
| 4492 float32_t * pScratchIn, | |
| 4493 uint32_t blockSize); | |
| 4494 | |
| 4495 | |
| 4496 /** | |
| 4497 * @brief Initialization function for the floating-point sparse FIR filter. | |
| 4498 * @param[in,out] S points to an instance of the floating-point sparse FIR structure. | |
| 4499 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4500 * @param[in] pCoeffs points to the array of filter coefficients. | |
| 4501 * @param[in] pState points to the state buffer. | |
| 4502 * @param[in] pTapDelay points to the array of offset times. | |
| 4503 * @param[in] maxDelay maximum offset time supported. | |
| 4504 * @param[in] blockSize number of samples that will be processed per block. | |
| 4505 */ | |
| 4506 void arm_fir_sparse_init_f32( | |
| 4507 arm_fir_sparse_instance_f32 * S, | |
| 4508 uint16_t numTaps, | |
| 4509 float32_t * pCoeffs, | |
| 4510 float32_t * pState, | |
| 4511 int32_t * pTapDelay, | |
| 4512 uint16_t maxDelay, | |
| 4513 uint32_t blockSize); | |
| 4514 | |
| 4515 | |
| 4516 /** | |
| 4517 * @brief Processing function for the Q31 sparse FIR filter. | |
| 4518 * @param[in] S points to an instance of the Q31 sparse FIR structure. | |
| 4519 * @param[in] pSrc points to the block of input data. | |
| 4520 * @param[out] pDst points to the block of output data | |
| 4521 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
| 4522 * @param[in] blockSize number of input samples to process per call. | |
| 4523 */ | |
| 4524 void arm_fir_sparse_q31( | |
| 4525 arm_fir_sparse_instance_q31 * S, | |
| 4526 q31_t * pSrc, | |
| 4527 q31_t * pDst, | |
| 4528 q31_t * pScratchIn, | |
| 4529 uint32_t blockSize); | |
| 4530 | |
| 4531 | |
| 4532 /** | |
| 4533 * @brief Initialization function for the Q31 sparse FIR filter. | |
| 4534 * @param[in,out] S points to an instance of the Q31 sparse FIR structure. | |
| 4535 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4536 * @param[in] pCoeffs points to the array of filter coefficients. | |
| 4537 * @param[in] pState points to the state buffer. | |
| 4538 * @param[in] pTapDelay points to the array of offset times. | |
| 4539 * @param[in] maxDelay maximum offset time supported. | |
| 4540 * @param[in] blockSize number of samples that will be processed per block. | |
| 4541 */ | |
| 4542 void arm_fir_sparse_init_q31( | |
| 4543 arm_fir_sparse_instance_q31 * S, | |
| 4544 uint16_t numTaps, | |
| 4545 q31_t * pCoeffs, | |
| 4546 q31_t * pState, | |
| 4547 int32_t * pTapDelay, | |
| 4548 uint16_t maxDelay, | |
| 4549 uint32_t blockSize); | |
| 4550 | |
| 4551 | |
| 4552 /** | |
| 4553 * @brief Processing function for the Q15 sparse FIR filter. | |
| 4554 * @param[in] S points to an instance of the Q15 sparse FIR structure. | |
| 4555 * @param[in] pSrc points to the block of input data. | |
| 4556 * @param[out] pDst points to the block of output data | |
| 4557 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
| 4558 * @param[in] pScratchOut points to a temporary buffer of size blockSize. | |
| 4559 * @param[in] blockSize number of input samples to process per call. | |
| 4560 */ | |
| 4561 void arm_fir_sparse_q15( | |
| 4562 arm_fir_sparse_instance_q15 * S, | |
| 4563 q15_t * pSrc, | |
| 4564 q15_t * pDst, | |
| 4565 q15_t * pScratchIn, | |
| 4566 q31_t * pScratchOut, | |
| 4567 uint32_t blockSize); | |
| 4568 | |
| 4569 | |
| 4570 /** | |
| 4571 * @brief Initialization function for the Q15 sparse FIR filter. | |
| 4572 * @param[in,out] S points to an instance of the Q15 sparse FIR structure. | |
| 4573 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4574 * @param[in] pCoeffs points to the array of filter coefficients. | |
| 4575 * @param[in] pState points to the state buffer. | |
| 4576 * @param[in] pTapDelay points to the array of offset times. | |
| 4577 * @param[in] maxDelay maximum offset time supported. | |
| 4578 * @param[in] blockSize number of samples that will be processed per block. | |
| 4579 */ | |
| 4580 void arm_fir_sparse_init_q15( | |
| 4581 arm_fir_sparse_instance_q15 * S, | |
| 4582 uint16_t numTaps, | |
| 4583 q15_t * pCoeffs, | |
| 4584 q15_t * pState, | |
| 4585 int32_t * pTapDelay, | |
| 4586 uint16_t maxDelay, | |
| 4587 uint32_t blockSize); | |
| 4588 | |
| 4589 | |
| 4590 /** | |
| 4591 * @brief Processing function for the Q7 sparse FIR filter. | |
| 4592 * @param[in] S points to an instance of the Q7 sparse FIR structure. | |
| 4593 * @param[in] pSrc points to the block of input data. | |
| 4594 * @param[out] pDst points to the block of output data | |
| 4595 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
| 4596 * @param[in] pScratchOut points to a temporary buffer of size blockSize. | |
| 4597 * @param[in] blockSize number of input samples to process per call. | |
| 4598 */ | |
| 4599 void arm_fir_sparse_q7( | |
| 4600 arm_fir_sparse_instance_q7 * S, | |
| 4601 q7_t * pSrc, | |
| 4602 q7_t * pDst, | |
| 4603 q7_t * pScratchIn, | |
| 4604 q31_t * pScratchOut, | |
| 4605 uint32_t blockSize); | |
| 4606 | |
| 4607 | |
| 4608 /** | |
| 4609 * @brief Initialization function for the Q7 sparse FIR filter. | |
| 4610 * @param[in,out] S points to an instance of the Q7 sparse FIR structure. | |
| 4611 * @param[in] numTaps number of nonzero coefficients in the filter. | |
| 4612 * @param[in] pCoeffs points to the array of filter coefficients. | |
| 4613 * @param[in] pState points to the state buffer. | |
| 4614 * @param[in] pTapDelay points to the array of offset times. | |
| 4615 * @param[in] maxDelay maximum offset time supported. | |
| 4616 * @param[in] blockSize number of samples that will be processed per block. | |
| 4617 */ | |
| 4618 void arm_fir_sparse_init_q7( | |
| 4619 arm_fir_sparse_instance_q7 * S, | |
| 4620 uint16_t numTaps, | |
| 4621 q7_t * pCoeffs, | |
| 4622 q7_t * pState, | |
| 4623 int32_t * pTapDelay, | |
| 4624 uint16_t maxDelay, | |
| 4625 uint32_t blockSize); | |
| 4626 | |
| 4627 | |
| 4628 /** | |
| 4629 * @brief Floating-point sin_cos function. | |
| 4630 * @param[in] theta input value in degrees | |
| 4631 * @param[out] pSinVal points to the processed sine output. | |
| 4632 * @param[out] pCosVal points to the processed cos output. | |
| 4633 */ | |
| 4634 void arm_sin_cos_f32( | |
| 4635 float32_t theta, | |
| 4636 float32_t * pSinVal, | |
| 4637 float32_t * pCosVal); | |
| 4638 | |
| 4639 | |
| 4640 /** | |
| 4641 * @brief Q31 sin_cos function. | |
| 4642 * @param[in] theta scaled input value in degrees | |
| 4643 * @param[out] pSinVal points to the processed sine output. | |
| 4644 * @param[out] pCosVal points to the processed cosine output. | |
| 4645 */ | |
| 4646 void arm_sin_cos_q31( | |
| 4647 q31_t theta, | |
| 4648 q31_t * pSinVal, | |
| 4649 q31_t * pCosVal); | |
| 4650 | |
| 4651 | |
| 4652 /** | |
| 4653 * @brief Floating-point complex conjugate. | |
| 4654 * @param[in] pSrc points to the input vector | |
| 4655 * @param[out] pDst points to the output vector | |
| 4656 * @param[in] numSamples number of complex samples in each vector | |
| 4657 */ | |
| 4658 void arm_cmplx_conj_f32( | |
| 4659 float32_t * pSrc, | |
| 4660 float32_t * pDst, | |
| 4661 uint32_t numSamples); | |
| 4662 | |
| 4663 /** | |
| 4664 * @brief Q31 complex conjugate. | |
| 4665 * @param[in] pSrc points to the input vector | |
| 4666 * @param[out] pDst points to the output vector | |
| 4667 * @param[in] numSamples number of complex samples in each vector | |
| 4668 */ | |
| 4669 void arm_cmplx_conj_q31( | |
| 4670 q31_t * pSrc, | |
| 4671 q31_t * pDst, | |
| 4672 uint32_t numSamples); | |
| 4673 | |
| 4674 | |
| 4675 /** | |
| 4676 * @brief Q15 complex conjugate. | |
| 4677 * @param[in] pSrc points to the input vector | |
| 4678 * @param[out] pDst points to the output vector | |
| 4679 * @param[in] numSamples number of complex samples in each vector | |
| 4680 */ | |
| 4681 void arm_cmplx_conj_q15( | |
| 4682 q15_t * pSrc, | |
| 4683 q15_t * pDst, | |
| 4684 uint32_t numSamples); | |
| 4685 | |
| 4686 | |
| 4687 /** | |
| 4688 * @brief Floating-point complex magnitude squared | |
| 4689 * @param[in] pSrc points to the complex input vector | |
| 4690 * @param[out] pDst points to the real output vector | |
| 4691 * @param[in] numSamples number of complex samples in the input vector | |
| 4692 */ | |
| 4693 void arm_cmplx_mag_squared_f32( | |
| 4694 float32_t * pSrc, | |
| 4695 float32_t * pDst, | |
| 4696 uint32_t numSamples); | |
| 4697 | |
| 4698 | |
| 4699 /** | |
| 4700 * @brief Q31 complex magnitude squared | |
| 4701 * @param[in] pSrc points to the complex input vector | |
| 4702 * @param[out] pDst points to the real output vector | |
| 4703 * @param[in] numSamples number of complex samples in the input vector | |
| 4704 */ | |
| 4705 void arm_cmplx_mag_squared_q31( | |
| 4706 q31_t * pSrc, | |
| 4707 q31_t * pDst, | |
| 4708 uint32_t numSamples); | |
| 4709 | |
| 4710 | |
| 4711 /** | |
| 4712 * @brief Q15 complex magnitude squared | |
| 4713 * @param[in] pSrc points to the complex input vector | |
| 4714 * @param[out] pDst points to the real output vector | |
| 4715 * @param[in] numSamples number of complex samples in the input vector | |
| 4716 */ | |
| 4717 void arm_cmplx_mag_squared_q15( | |
| 4718 q15_t * pSrc, | |
| 4719 q15_t * pDst, | |
| 4720 uint32_t numSamples); | |
| 4721 | |
| 4722 | |
| 4723 /** | |
| 4724 * @ingroup groupController | |
| 4725 */ | |
| 4726 | |
| 4727 /** | |
| 4728 * @defgroup PID PID Motor Control | |
| 4729 * | |
| 4730 * A Proportional Integral Derivative (PID) controller is a generic feedback control | |
| 4731 * loop mechanism widely used in industrial control systems. | |
| 4732 * A PID controller is the most commonly used type of feedback controller. | |
| 4733 * | |
| 4734 * This set of functions implements (PID) controllers | |
| 4735 * for Q15, Q31, and floating-point data types. The functions operate on a single sample | |
| 4736 * of data and each call to the function returns a single processed value. | |
| 4737 * <code>S</code> points to an instance of the PID control data structure. <code>in</code> | |
| 4738 * is the input sample value. The functions return the output value. | |
| 4739 * | |
| 4740 * \par Algorithm: | |
| 4741 * <pre> | |
| 4742 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] | |
| 4743 * A0 = Kp + Ki + Kd | |
| 4744 * A1 = (-Kp ) - (2 * Kd ) | |
| 4745 * A2 = Kd </pre> | |
| 4746 * | |
| 4747 * \par | |
| 4748 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant | |
| 4749 * | |
| 4750 * \par | |
| 4751 * \image html PID.gif "Proportional Integral Derivative Controller" | |
| 4752 * | |
| 4753 * \par | |
| 4754 * The PID controller calculates an "error" value as the difference between | |
| 4755 * the measured output and the reference input. | |
| 4756 * The controller attempts to minimize the error by adjusting the process control inputs. | |
| 4757 * The proportional value determines the reaction to the current error, | |
| 4758 * the integral value determines the reaction based on the sum of recent errors, | |
| 4759 * and the derivative value determines the reaction based on the rate at which the error has been changing. | |
| 4760 * | |
| 4761 * \par Instance Structure | |
| 4762 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. | |
| 4763 * A separate instance structure must be defined for each PID Controller. | |
| 4764 * There are separate instance structure declarations for each of the 3 supported data types. | |
| 4765 * | |
| 4766 * \par Reset Functions | |
| 4767 * There is also an associated reset function for each data type which clears the state array. | |
| 4768 * | |
| 4769 * \par Initialization Functions | |
| 4770 * There is also an associated initialization function for each data type. | |
| 4771 * The initialization function performs the following operations: | |
| 4772 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. | |
| 4773 * - Zeros out the values in the state buffer. | |
| 4774 * | |
| 4775 * \par | |
| 4776 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. | |
| 4777 * | |
| 4778 * \par Fixed-Point Behavior | |
| 4779 * Care must be taken when using the fixed-point versions of the PID Controller functions. | |
| 4780 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. | |
| 4781 * Refer to the function specific documentation below for usage guidelines. | |
| 4782 */ | |
| 4783 | |
| 4784 /** | |
| 4785 * @addtogroup PID | |
| 4786 * @{ | |
| 4787 */ | |
| 4788 | |
| 4789 /** | |
| 4790 * @brief Process function for the floating-point PID Control. | |
| 4791 * @param[in,out] S is an instance of the floating-point PID Control structure | |
| 4792 * @param[in] in input sample to process | |
| 4793 * @return out processed output sample. | |
| 4794 */ | |
| 4795 static __INLINE float32_t arm_pid_f32( | |
| 4796 arm_pid_instance_f32 * S, | |
| 4797 float32_t in) | |
| 4798 { | |
| 4799 float32_t out; | |
| 4800 | |
| 4801 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ | |
| 4802 out = (S->A0 * in) + | |
| 4803 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); | |
| 4804 | |
| 4805 /* Update state */ | |
| 4806 S->state[1] = S->state[0]; | |
| 4807 S->state[0] = in; | |
| 4808 S->state[2] = out; | |
| 4809 | |
| 4810 /* return to application */ | |
| 4811 return (out); | |
| 4812 | |
| 4813 } | |
| 4814 | |
| 4815 /** | |
| 4816 * @brief Process function for the Q31 PID Control. | |
| 4817 * @param[in,out] S points to an instance of the Q31 PID Control structure | |
| 4818 * @param[in] in input sample to process | |
| 4819 * @return out processed output sample. | |
| 4820 * | |
| 4821 * <b>Scaling and Overflow Behavior:</b> | |
| 4822 * \par | |
| 4823 * The function is implemented using an internal 64-bit accumulator. | |
| 4824 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. | |
| 4825 * Thus, if the accumulator result overflows it wraps around rather than clip. | |
| 4826 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. | |
| 4827 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. | |
| 4828 */ | |
| 4829 static __INLINE q31_t arm_pid_q31( | |
| 4830 arm_pid_instance_q31 * S, | |
| 4831 q31_t in) | |
| 4832 { | |
| 4833 q63_t acc; | |
| 4834 q31_t out; | |
| 4835 | |
| 4836 /* acc = A0 * x[n] */ | |
| 4837 acc = (q63_t) S->A0 * in; | |
| 4838 | |
| 4839 /* acc += A1 * x[n-1] */ | |
| 4840 acc += (q63_t) S->A1 * S->state[0]; | |
| 4841 | |
| 4842 /* acc += A2 * x[n-2] */ | |
| 4843 acc += (q63_t) S->A2 * S->state[1]; | |
| 4844 | |
| 4845 /* convert output to 1.31 format to add y[n-1] */ | |
| 4846 out = (q31_t) (acc >> 31u); | |
| 4847 | |
| 4848 /* out += y[n-1] */ | |
| 4849 out += S->state[2]; | |
| 4850 | |
| 4851 /* Update state */ | |
| 4852 S->state[1] = S->state[0]; | |
| 4853 S->state[0] = in; | |
| 4854 S->state[2] = out; | |
| 4855 | |
| 4856 /* return to application */ | |
| 4857 return (out); | |
| 4858 } | |
| 4859 | |
| 4860 | |
| 4861 /** | |
| 4862 * @brief Process function for the Q15 PID Control. | |
| 4863 * @param[in,out] S points to an instance of the Q15 PID Control structure | |
| 4864 * @param[in] in input sample to process | |
| 4865 * @return out processed output sample. | |
| 4866 * | |
| 4867 * <b>Scaling and Overflow Behavior:</b> | |
| 4868 * \par | |
| 4869 * The function is implemented using a 64-bit internal accumulator. | |
| 4870 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. | |
| 4871 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. | |
| 4872 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. | |
| 4873 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. | |
| 4874 * Lastly, the accumulator is saturated to yield a result in 1.15 format. | |
| 4875 */ | |
| 4876 static __INLINE q15_t arm_pid_q15( | |
| 4877 arm_pid_instance_q15 * S, | |
| 4878 q15_t in) | |
| 4879 { | |
| 4880 q63_t acc; | |
| 4881 q15_t out; | |
| 4882 | |
| 4883 #ifndef ARM_MATH_CM0_FAMILY | |
| 4884 __SIMD32_TYPE *vstate; | |
| 4885 | |
| 4886 /* Implementation of PID controller */ | |
| 4887 | |
| 4888 /* acc = A0 * x[n] */ | |
| 4889 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); | |
| 4890 | |
| 4891 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
| 4892 vstate = __SIMD32_CONST(S->state); | |
| 4893 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); | |
| 4894 #else | |
| 4895 /* acc = A0 * x[n] */ | |
| 4896 acc = ((q31_t) S->A0) * in; | |
| 4897 | |
| 4898 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
| 4899 acc += (q31_t) S->A1 * S->state[0]; | |
| 4900 acc += (q31_t) S->A2 * S->state[1]; | |
| 4901 #endif | |
| 4902 | |
| 4903 /* acc += y[n-1] */ | |
| 4904 acc += (q31_t) S->state[2] << 15; | |
| 4905 | |
| 4906 /* saturate the output */ | |
| 4907 out = (q15_t) (__SSAT((acc >> 15), 16)); | |
| 4908 | |
| 4909 /* Update state */ | |
| 4910 S->state[1] = S->state[0]; | |
| 4911 S->state[0] = in; | |
| 4912 S->state[2] = out; | |
| 4913 | |
| 4914 /* return to application */ | |
| 4915 return (out); | |
| 4916 } | |
| 4917 | |
| 4918 /** | |
| 4919 * @} end of PID group | |
| 4920 */ | |
| 4921 | |
| 4922 | |
| 4923 /** | |
| 4924 * @brief Floating-point matrix inverse. | |
| 4925 * @param[in] src points to the instance of the input floating-point matrix structure. | |
| 4926 * @param[out] dst points to the instance of the output floating-point matrix structure. | |
| 4927 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | |
| 4928 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | |
| 4929 */ | |
| 4930 arm_status arm_mat_inverse_f32( | |
| 4931 const arm_matrix_instance_f32 * src, | |
| 4932 arm_matrix_instance_f32 * dst); | |
| 4933 | |
| 4934 | |
| 4935 /** | |
| 4936 * @brief Floating-point matrix inverse. | |
| 4937 * @param[in] src points to the instance of the input floating-point matrix structure. | |
| 4938 * @param[out] dst points to the instance of the output floating-point matrix structure. | |
| 4939 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | |
| 4940 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | |
| 4941 */ | |
| 4942 arm_status arm_mat_inverse_f64( | |
| 4943 const arm_matrix_instance_f64 * src, | |
| 4944 arm_matrix_instance_f64 * dst); | |
| 4945 | |
| 4946 | |
| 4947 | |
| 4948 /** | |
| 4949 * @ingroup groupController | |
| 4950 */ | |
| 4951 | |
| 4952 /** | |
| 4953 * @defgroup clarke Vector Clarke Transform | |
| 4954 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. | |
| 4955 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents | |
| 4956 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. | |
| 4957 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below | |
| 4958 * \image html clarke.gif Stator current space vector and its components in (a,b). | |
| 4959 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> | |
| 4960 * can be calculated using only <code>Ia</code> and <code>Ib</code>. | |
| 4961 * | |
| 4962 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 4963 * The library provides separate functions for Q31 and floating-point data types. | |
| 4964 * \par Algorithm | |
| 4965 * \image html clarkeFormula.gif | |
| 4966 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and | |
| 4967 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. | |
| 4968 * \par Fixed-Point Behavior | |
| 4969 * Care must be taken when using the Q31 version of the Clarke transform. | |
| 4970 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 4971 * Refer to the function specific documentation below for usage guidelines. | |
| 4972 */ | |
| 4973 | |
| 4974 /** | |
| 4975 * @addtogroup clarke | |
| 4976 * @{ | |
| 4977 */ | |
| 4978 | |
| 4979 /** | |
| 4980 * | |
| 4981 * @brief Floating-point Clarke transform | |
| 4982 * @param[in] Ia input three-phase coordinate <code>a</code> | |
| 4983 * @param[in] Ib input three-phase coordinate <code>b</code> | |
| 4984 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
| 4985 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
| 4986 */ | |
| 4987 static __INLINE void arm_clarke_f32( | |
| 4988 float32_t Ia, | |
| 4989 float32_t Ib, | |
| 4990 float32_t * pIalpha, | |
| 4991 float32_t * pIbeta) | |
| 4992 { | |
| 4993 /* Calculate pIalpha using the equation, pIalpha = Ia */ | |
| 4994 *pIalpha = Ia; | |
| 4995 | |
| 4996 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ | |
| 4997 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); | |
| 4998 } | |
| 4999 | |
| 5000 | |
| 5001 /** | |
| 5002 * @brief Clarke transform for Q31 version | |
| 5003 * @param[in] Ia input three-phase coordinate <code>a</code> | |
| 5004 * @param[in] Ib input three-phase coordinate <code>b</code> | |
| 5005 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
| 5006 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
| 5007 * | |
| 5008 * <b>Scaling and Overflow Behavior:</b> | |
| 5009 * \par | |
| 5010 * The function is implemented using an internal 32-bit accumulator. | |
| 5011 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5012 * There is saturation on the addition, hence there is no risk of overflow. | |
| 5013 */ | |
| 5014 static __INLINE void arm_clarke_q31( | |
| 5015 q31_t Ia, | |
| 5016 q31_t Ib, | |
| 5017 q31_t * pIalpha, | |
| 5018 q31_t * pIbeta) | |
| 5019 { | |
| 5020 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5021 | |
| 5022 /* Calculating pIalpha from Ia by equation pIalpha = Ia */ | |
| 5023 *pIalpha = Ia; | |
| 5024 | |
| 5025 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ | |
| 5026 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); | |
| 5027 | |
| 5028 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ | |
| 5029 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); | |
| 5030 | |
| 5031 /* pIbeta is calculated by adding the intermediate products */ | |
| 5032 *pIbeta = __QADD(product1, product2); | |
| 5033 } | |
| 5034 | |
| 5035 /** | |
| 5036 * @} end of clarke group | |
| 5037 */ | |
| 5038 | |
| 5039 /** | |
| 5040 * @brief Converts the elements of the Q7 vector to Q31 vector. | |
| 5041 * @param[in] pSrc input pointer | |
| 5042 * @param[out] pDst output pointer | |
| 5043 * @param[in] blockSize number of samples to process | |
| 5044 */ | |
| 5045 void arm_q7_to_q31( | |
| 5046 q7_t * pSrc, | |
| 5047 q31_t * pDst, | |
| 5048 uint32_t blockSize); | |
| 5049 | |
| 5050 | |
| 5051 | |
| 5052 /** | |
| 5053 * @ingroup groupController | |
| 5054 */ | |
| 5055 | |
| 5056 /** | |
| 5057 * @defgroup inv_clarke Vector Inverse Clarke Transform | |
| 5058 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. | |
| 5059 * | |
| 5060 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 5061 * The library provides separate functions for Q31 and floating-point data types. | |
| 5062 * \par Algorithm | |
| 5063 * \image html clarkeInvFormula.gif | |
| 5064 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and | |
| 5065 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. | |
| 5066 * \par Fixed-Point Behavior | |
| 5067 * Care must be taken when using the Q31 version of the Clarke transform. | |
| 5068 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 5069 * Refer to the function specific documentation below for usage guidelines. | |
| 5070 */ | |
| 5071 | |
| 5072 /** | |
| 5073 * @addtogroup inv_clarke | |
| 5074 * @{ | |
| 5075 */ | |
| 5076 | |
| 5077 /** | |
| 5078 * @brief Floating-point Inverse Clarke transform | |
| 5079 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
| 5080 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
| 5081 * @param[out] pIa points to output three-phase coordinate <code>a</code> | |
| 5082 * @param[out] pIb points to output three-phase coordinate <code>b</code> | |
| 5083 */ | |
| 5084 static __INLINE void arm_inv_clarke_f32( | |
| 5085 float32_t Ialpha, | |
| 5086 float32_t Ibeta, | |
| 5087 float32_t * pIa, | |
| 5088 float32_t * pIb) | |
| 5089 { | |
| 5090 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
| 5091 *pIa = Ialpha; | |
| 5092 | |
| 5093 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ | |
| 5094 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; | |
| 5095 } | |
| 5096 | |
| 5097 | |
| 5098 /** | |
| 5099 * @brief Inverse Clarke transform for Q31 version | |
| 5100 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
| 5101 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
| 5102 * @param[out] pIa points to output three-phase coordinate <code>a</code> | |
| 5103 * @param[out] pIb points to output three-phase coordinate <code>b</code> | |
| 5104 * | |
| 5105 * <b>Scaling and Overflow Behavior:</b> | |
| 5106 * \par | |
| 5107 * The function is implemented using an internal 32-bit accumulator. | |
| 5108 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5109 * There is saturation on the subtraction, hence there is no risk of overflow. | |
| 5110 */ | |
| 5111 static __INLINE void arm_inv_clarke_q31( | |
| 5112 q31_t Ialpha, | |
| 5113 q31_t Ibeta, | |
| 5114 q31_t * pIa, | |
| 5115 q31_t * pIb) | |
| 5116 { | |
| 5117 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5118 | |
| 5119 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
| 5120 *pIa = Ialpha; | |
| 5121 | |
| 5122 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ | |
| 5123 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); | |
| 5124 | |
| 5125 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ | |
| 5126 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); | |
| 5127 | |
| 5128 /* pIb is calculated by subtracting the products */ | |
| 5129 *pIb = __QSUB(product2, product1); | |
| 5130 } | |
| 5131 | |
| 5132 /** | |
| 5133 * @} end of inv_clarke group | |
| 5134 */ | |
| 5135 | |
| 5136 /** | |
| 5137 * @brief Converts the elements of the Q7 vector to Q15 vector. | |
| 5138 * @param[in] pSrc input pointer | |
| 5139 * @param[out] pDst output pointer | |
| 5140 * @param[in] blockSize number of samples to process | |
| 5141 */ | |
| 5142 void arm_q7_to_q15( | |
| 5143 q7_t * pSrc, | |
| 5144 q15_t * pDst, | |
| 5145 uint32_t blockSize); | |
| 5146 | |
| 5147 | |
| 5148 | |
| 5149 /** | |
| 5150 * @ingroup groupController | |
| 5151 */ | |
| 5152 | |
| 5153 /** | |
| 5154 * @defgroup park Vector Park Transform | |
| 5155 * | |
| 5156 * Forward Park transform converts the input two-coordinate vector to flux and torque components. | |
| 5157 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents | |
| 5158 * from the stationary to the moving reference frame and control the spatial relationship between | |
| 5159 * the stator vector current and rotor flux vector. | |
| 5160 * If we consider the d axis aligned with the rotor flux, the diagram below shows the | |
| 5161 * current vector and the relationship from the two reference frames: | |
| 5162 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" | |
| 5163 * | |
| 5164 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 5165 * The library provides separate functions for Q31 and floating-point data types. | |
| 5166 * \par Algorithm | |
| 5167 * \image html parkFormula.gif | |
| 5168 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, | |
| 5169 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
| 5170 * cosine and sine values of theta (rotor flux position). | |
| 5171 * \par Fixed-Point Behavior | |
| 5172 * Care must be taken when using the Q31 version of the Park transform. | |
| 5173 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 5174 * Refer to the function specific documentation below for usage guidelines. | |
| 5175 */ | |
| 5176 | |
| 5177 /** | |
| 5178 * @addtogroup park | |
| 5179 * @{ | |
| 5180 */ | |
| 5181 | |
| 5182 /** | |
| 5183 * @brief Floating-point Park transform | |
| 5184 * @param[in] Ialpha input two-phase vector coordinate alpha | |
| 5185 * @param[in] Ibeta input two-phase vector coordinate beta | |
| 5186 * @param[out] pId points to output rotor reference frame d | |
| 5187 * @param[out] pIq points to output rotor reference frame q | |
| 5188 * @param[in] sinVal sine value of rotation angle theta | |
| 5189 * @param[in] cosVal cosine value of rotation angle theta | |
| 5190 * | |
| 5191 * The function implements the forward Park transform. | |
| 5192 * | |
| 5193 */ | |
| 5194 static __INLINE void arm_park_f32( | |
| 5195 float32_t Ialpha, | |
| 5196 float32_t Ibeta, | |
| 5197 float32_t * pId, | |
| 5198 float32_t * pIq, | |
| 5199 float32_t sinVal, | |
| 5200 float32_t cosVal) | |
| 5201 { | |
| 5202 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ | |
| 5203 *pId = Ialpha * cosVal + Ibeta * sinVal; | |
| 5204 | |
| 5205 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ | |
| 5206 *pIq = -Ialpha * sinVal + Ibeta * cosVal; | |
| 5207 } | |
| 5208 | |
| 5209 | |
| 5210 /** | |
| 5211 * @brief Park transform for Q31 version | |
| 5212 * @param[in] Ialpha input two-phase vector coordinate alpha | |
| 5213 * @param[in] Ibeta input two-phase vector coordinate beta | |
| 5214 * @param[out] pId points to output rotor reference frame d | |
| 5215 * @param[out] pIq points to output rotor reference frame q | |
| 5216 * @param[in] sinVal sine value of rotation angle theta | |
| 5217 * @param[in] cosVal cosine value of rotation angle theta | |
| 5218 * | |
| 5219 * <b>Scaling and Overflow Behavior:</b> | |
| 5220 * \par | |
| 5221 * The function is implemented using an internal 32-bit accumulator. | |
| 5222 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5223 * There is saturation on the addition and subtraction, hence there is no risk of overflow. | |
| 5224 */ | |
| 5225 static __INLINE void arm_park_q31( | |
| 5226 q31_t Ialpha, | |
| 5227 q31_t Ibeta, | |
| 5228 q31_t * pId, | |
| 5229 q31_t * pIq, | |
| 5230 q31_t sinVal, | |
| 5231 q31_t cosVal) | |
| 5232 { | |
| 5233 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5234 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
| 5235 | |
| 5236 /* Intermediate product is calculated by (Ialpha * cosVal) */ | |
| 5237 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); | |
| 5238 | |
| 5239 /* Intermediate product is calculated by (Ibeta * sinVal) */ | |
| 5240 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); | |
| 5241 | |
| 5242 | |
| 5243 /* Intermediate product is calculated by (Ialpha * sinVal) */ | |
| 5244 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); | |
| 5245 | |
| 5246 /* Intermediate product is calculated by (Ibeta * cosVal) */ | |
| 5247 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); | |
| 5248 | |
| 5249 /* Calculate pId by adding the two intermediate products 1 and 2 */ | |
| 5250 *pId = __QADD(product1, product2); | |
| 5251 | |
| 5252 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ | |
| 5253 *pIq = __QSUB(product4, product3); | |
| 5254 } | |
| 5255 | |
| 5256 /** | |
| 5257 * @} end of park group | |
| 5258 */ | |
| 5259 | |
| 5260 /** | |
| 5261 * @brief Converts the elements of the Q7 vector to floating-point vector. | |
| 5262 * @param[in] pSrc is input pointer | |
| 5263 * @param[out] pDst is output pointer | |
| 5264 * @param[in] blockSize is the number of samples to process | |
| 5265 */ | |
| 5266 void arm_q7_to_float( | |
| 5267 q7_t * pSrc, | |
| 5268 float32_t * pDst, | |
| 5269 uint32_t blockSize); | |
| 5270 | |
| 5271 | |
| 5272 /** | |
| 5273 * @ingroup groupController | |
| 5274 */ | |
| 5275 | |
| 5276 /** | |
| 5277 * @defgroup inv_park Vector Inverse Park transform | |
| 5278 * Inverse Park transform converts the input flux and torque components to two-coordinate vector. | |
| 5279 * | |
| 5280 * The function operates on a single sample of data and each call to the function returns the processed output. | |
| 5281 * The library provides separate functions for Q31 and floating-point data types. | |
| 5282 * \par Algorithm | |
| 5283 * \image html parkInvFormula.gif | |
| 5284 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, | |
| 5285 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
| 5286 * cosine and sine values of theta (rotor flux position). | |
| 5287 * \par Fixed-Point Behavior | |
| 5288 * Care must be taken when using the Q31 version of the Park transform. | |
| 5289 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
| 5290 * Refer to the function specific documentation below for usage guidelines. | |
| 5291 */ | |
| 5292 | |
| 5293 /** | |
| 5294 * @addtogroup inv_park | |
| 5295 * @{ | |
| 5296 */ | |
| 5297 | |
| 5298 /** | |
| 5299 * @brief Floating-point Inverse Park transform | |
| 5300 * @param[in] Id input coordinate of rotor reference frame d | |
| 5301 * @param[in] Iq input coordinate of rotor reference frame q | |
| 5302 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
| 5303 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
| 5304 * @param[in] sinVal sine value of rotation angle theta | |
| 5305 * @param[in] cosVal cosine value of rotation angle theta | |
| 5306 */ | |
| 5307 static __INLINE void arm_inv_park_f32( | |
| 5308 float32_t Id, | |
| 5309 float32_t Iq, | |
| 5310 float32_t * pIalpha, | |
| 5311 float32_t * pIbeta, | |
| 5312 float32_t sinVal, | |
| 5313 float32_t cosVal) | |
| 5314 { | |
| 5315 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ | |
| 5316 *pIalpha = Id * cosVal - Iq * sinVal; | |
| 5317 | |
| 5318 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ | |
| 5319 *pIbeta = Id * sinVal + Iq * cosVal; | |
| 5320 } | |
| 5321 | |
| 5322 | |
| 5323 /** | |
| 5324 * @brief Inverse Park transform for Q31 version | |
| 5325 * @param[in] Id input coordinate of rotor reference frame d | |
| 5326 * @param[in] Iq input coordinate of rotor reference frame q | |
| 5327 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
| 5328 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
| 5329 * @param[in] sinVal sine value of rotation angle theta | |
| 5330 * @param[in] cosVal cosine value of rotation angle theta | |
| 5331 * | |
| 5332 * <b>Scaling and Overflow Behavior:</b> | |
| 5333 * \par | |
| 5334 * The function is implemented using an internal 32-bit accumulator. | |
| 5335 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
| 5336 * There is saturation on the addition, hence there is no risk of overflow. | |
| 5337 */ | |
| 5338 static __INLINE void arm_inv_park_q31( | |
| 5339 q31_t Id, | |
| 5340 q31_t Iq, | |
| 5341 q31_t * pIalpha, | |
| 5342 q31_t * pIbeta, | |
| 5343 q31_t sinVal, | |
| 5344 q31_t cosVal) | |
| 5345 { | |
| 5346 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
| 5347 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
| 5348 | |
| 5349 /* Intermediate product is calculated by (Id * cosVal) */ | |
| 5350 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); | |
| 5351 | |
| 5352 /* Intermediate product is calculated by (Iq * sinVal) */ | |
| 5353 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); | |
| 5354 | |
| 5355 | |
| 5356 /* Intermediate product is calculated by (Id * sinVal) */ | |
| 5357 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); | |
| 5358 | |
| 5359 /* Intermediate product is calculated by (Iq * cosVal) */ | |
| 5360 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); | |
| 5361 | |
| 5362 /* Calculate pIalpha by using the two intermediate products 1 and 2 */ | |
| 5363 *pIalpha = __QSUB(product1, product2); | |
| 5364 | |
| 5365 /* Calculate pIbeta by using the two intermediate products 3 and 4 */ | |
| 5366 *pIbeta = __QADD(product4, product3); | |
| 5367 } | |
| 5368 | |
| 5369 /** | |
| 5370 * @} end of Inverse park group | |
| 5371 */ | |
| 5372 | |
| 5373 | |
| 5374 /** | |
| 5375 * @brief Converts the elements of the Q31 vector to floating-point vector. | |
| 5376 * @param[in] pSrc is input pointer | |
| 5377 * @param[out] pDst is output pointer | |
| 5378 * @param[in] blockSize is the number of samples to process | |
| 5379 */ | |
| 5380 void arm_q31_to_float( | |
| 5381 q31_t * pSrc, | |
| 5382 float32_t * pDst, | |
| 5383 uint32_t blockSize); | |
| 5384 | |
| 5385 /** | |
| 5386 * @ingroup groupInterpolation | |
| 5387 */ | |
| 5388 | |
| 5389 /** | |
| 5390 * @defgroup LinearInterpolate Linear Interpolation | |
| 5391 * | |
| 5392 * Linear interpolation is a method of curve fitting using linear polynomials. | |
| 5393 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line | |
| 5394 * | |
| 5395 * \par | |
| 5396 * \image html LinearInterp.gif "Linear interpolation" | |
| 5397 * | |
| 5398 * \par | |
| 5399 * A Linear Interpolate function calculates an output value(y), for the input(x) | |
| 5400 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) | |
| 5401 * | |
| 5402 * \par Algorithm: | |
| 5403 * <pre> | |
| 5404 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) | |
| 5405 * where x0, x1 are nearest values of input x | |
| 5406 * y0, y1 are nearest values to output y | |
| 5407 * </pre> | |
| 5408 * | |
| 5409 * \par | |
| 5410 * This set of functions implements Linear interpolation process | |
| 5411 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single | |
| 5412 * sample of data and each call to the function returns a single processed value. | |
| 5413 * <code>S</code> points to an instance of the Linear Interpolate function data structure. | |
| 5414 * <code>x</code> is the input sample value. The functions returns the output value. | |
| 5415 * | |
| 5416 * \par | |
| 5417 * if x is outside of the table boundary, Linear interpolation returns first value of the table | |
| 5418 * if x is below input range and returns last value of table if x is above range. | |
| 5419 */ | |
| 5420 | |
| 5421 /** | |
| 5422 * @addtogroup LinearInterpolate | |
| 5423 * @{ | |
| 5424 */ | |
| 5425 | |
| 5426 /** | |
| 5427 * @brief Process function for the floating-point Linear Interpolation Function. | |
| 5428 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure | |
| 5429 * @param[in] x input sample to process | |
| 5430 * @return y processed output sample. | |
| 5431 * | |
| 5432 */ | |
| 5433 static __INLINE float32_t arm_linear_interp_f32( | |
| 5434 arm_linear_interp_instance_f32 * S, | |
| 5435 float32_t x) | |
| 5436 { | |
| 5437 float32_t y; | |
| 5438 float32_t x0, x1; /* Nearest input values */ | |
| 5439 float32_t y0, y1; /* Nearest output values */ | |
| 5440 float32_t xSpacing = S->xSpacing; /* spacing between input values */ | |
| 5441 int32_t i; /* Index variable */ | |
| 5442 float32_t *pYData = S->pYData; /* pointer to output table */ | |
| 5443 | |
| 5444 /* Calculation of index */ | |
| 5445 i = (int32_t) ((x - S->x1) / xSpacing); | |
| 5446 | |
| 5447 if(i < 0) | |
| 5448 { | |
| 5449 /* Iniatilize output for below specified range as least output value of table */ | |
| 5450 y = pYData[0]; | |
| 5451 } | |
| 5452 else if((uint32_t)i >= S->nValues) | |
| 5453 { | |
| 5454 /* Iniatilize output for above specified range as last output value of table */ | |
| 5455 y = pYData[S->nValues - 1]; | |
| 5456 } | |
| 5457 else | |
| 5458 { | |
| 5459 /* Calculation of nearest input values */ | |
| 5460 x0 = S->x1 + i * xSpacing; | |
| 5461 x1 = S->x1 + (i + 1) * xSpacing; | |
| 5462 | |
| 5463 /* Read of nearest output values */ | |
| 5464 y0 = pYData[i]; | |
| 5465 y1 = pYData[i + 1]; | |
| 5466 | |
| 5467 /* Calculation of output */ | |
| 5468 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); | |
| 5469 | |
| 5470 } | |
| 5471 | |
| 5472 /* returns output value */ | |
| 5473 return (y); | |
| 5474 } | |
| 5475 | |
| 5476 | |
| 5477 /** | |
| 5478 * | |
| 5479 * @brief Process function for the Q31 Linear Interpolation Function. | |
| 5480 * @param[in] pYData pointer to Q31 Linear Interpolation table | |
| 5481 * @param[in] x input sample to process | |
| 5482 * @param[in] nValues number of table values | |
| 5483 * @return y processed output sample. | |
| 5484 * | |
| 5485 * \par | |
| 5486 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
| 5487 * This function can support maximum of table size 2^12. | |
| 5488 * | |
| 5489 */ | |
| 5490 static __INLINE q31_t arm_linear_interp_q31( | |
| 5491 q31_t * pYData, | |
| 5492 q31_t x, | |
| 5493 uint32_t nValues) | |
| 5494 { | |
| 5495 q31_t y; /* output */ | |
| 5496 q31_t y0, y1; /* Nearest output values */ | |
| 5497 q31_t fract; /* fractional part */ | |
| 5498 int32_t index; /* Index to read nearest output values */ | |
| 5499 | |
| 5500 /* Input is in 12.20 format */ | |
| 5501 /* 12 bits for the table index */ | |
| 5502 /* Index value calculation */ | |
| 5503 index = ((x & (q31_t)0xFFF00000) >> 20); | |
| 5504 | |
| 5505 if(index >= (int32_t)(nValues - 1)) | |
| 5506 { | |
| 5507 return (pYData[nValues - 1]); | |
| 5508 } | |
| 5509 else if(index < 0) | |
| 5510 { | |
| 5511 return (pYData[0]); | |
| 5512 } | |
| 5513 else | |
| 5514 { | |
| 5515 /* 20 bits for the fractional part */ | |
| 5516 /* shift left by 11 to keep fract in 1.31 format */ | |
| 5517 fract = (x & 0x000FFFFF) << 11; | |
| 5518 | |
| 5519 /* Read two nearest output values from the index in 1.31(q31) format */ | |
| 5520 y0 = pYData[index]; | |
| 5521 y1 = pYData[index + 1]; | |
| 5522 | |
| 5523 /* Calculation of y0 * (1-fract) and y is in 2.30 format */ | |
| 5524 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); | |
| 5525 | |
| 5526 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ | |
| 5527 y += ((q31_t) (((q63_t) y1 * fract) >> 32)); | |
| 5528 | |
| 5529 /* Convert y to 1.31 format */ | |
| 5530 return (y << 1u); | |
| 5531 } | |
| 5532 } | |
| 5533 | |
| 5534 | |
| 5535 /** | |
| 5536 * | |
| 5537 * @brief Process function for the Q15 Linear Interpolation Function. | |
| 5538 * @param[in] pYData pointer to Q15 Linear Interpolation table | |
| 5539 * @param[in] x input sample to process | |
| 5540 * @param[in] nValues number of table values | |
| 5541 * @return y processed output sample. | |
| 5542 * | |
| 5543 * \par | |
| 5544 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
| 5545 * This function can support maximum of table size 2^12. | |
| 5546 * | |
| 5547 */ | |
| 5548 static __INLINE q15_t arm_linear_interp_q15( | |
| 5549 q15_t * pYData, | |
| 5550 q31_t x, | |
| 5551 uint32_t nValues) | |
| 5552 { | |
| 5553 q63_t y; /* output */ | |
| 5554 q15_t y0, y1; /* Nearest output values */ | |
| 5555 q31_t fract; /* fractional part */ | |
| 5556 int32_t index; /* Index to read nearest output values */ | |
| 5557 | |
| 5558 /* Input is in 12.20 format */ | |
| 5559 /* 12 bits for the table index */ | |
| 5560 /* Index value calculation */ | |
| 5561 index = ((x & (int32_t)0xFFF00000) >> 20); | |
| 5562 | |
| 5563 if(index >= (int32_t)(nValues - 1)) | |
| 5564 { | |
| 5565 return (pYData[nValues - 1]); | |
| 5566 } | |
| 5567 else if(index < 0) | |
| 5568 { | |
| 5569 return (pYData[0]); | |
| 5570 } | |
| 5571 else | |
| 5572 { | |
| 5573 /* 20 bits for the fractional part */ | |
| 5574 /* fract is in 12.20 format */ | |
| 5575 fract = (x & 0x000FFFFF); | |
| 5576 | |
| 5577 /* Read two nearest output values from the index */ | |
| 5578 y0 = pYData[index]; | |
| 5579 y1 = pYData[index + 1]; | |
| 5580 | |
| 5581 /* Calculation of y0 * (1-fract) and y is in 13.35 format */ | |
| 5582 y = ((q63_t) y0 * (0xFFFFF - fract)); | |
| 5583 | |
| 5584 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ | |
| 5585 y += ((q63_t) y1 * (fract)); | |
| 5586 | |
| 5587 /* convert y to 1.15 format */ | |
| 5588 return (q15_t) (y >> 20); | |
| 5589 } | |
| 5590 } | |
| 5591 | |
| 5592 | |
| 5593 /** | |
| 5594 * | |
| 5595 * @brief Process function for the Q7 Linear Interpolation Function. | |
| 5596 * @param[in] pYData pointer to Q7 Linear Interpolation table | |
| 5597 * @param[in] x input sample to process | |
| 5598 * @param[in] nValues number of table values | |
| 5599 * @return y processed output sample. | |
| 5600 * | |
| 5601 * \par | |
| 5602 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
| 5603 * This function can support maximum of table size 2^12. | |
| 5604 */ | |
| 5605 static __INLINE q7_t arm_linear_interp_q7( | |
| 5606 q7_t * pYData, | |
| 5607 q31_t x, | |
| 5608 uint32_t nValues) | |
| 5609 { | |
| 5610 q31_t y; /* output */ | |
| 5611 q7_t y0, y1; /* Nearest output values */ | |
| 5612 q31_t fract; /* fractional part */ | |
| 5613 uint32_t index; /* Index to read nearest output values */ | |
| 5614 | |
| 5615 /* Input is in 12.20 format */ | |
| 5616 /* 12 bits for the table index */ | |
| 5617 /* Index value calculation */ | |
| 5618 if (x < 0) | |
| 5619 { | |
| 5620 return (pYData[0]); | |
| 5621 } | |
| 5622 index = (x >> 20) & 0xfff; | |
| 5623 | |
| 5624 if(index >= (nValues - 1)) | |
| 5625 { | |
| 5626 return (pYData[nValues - 1]); | |
| 5627 } | |
| 5628 else | |
| 5629 { | |
| 5630 /* 20 bits for the fractional part */ | |
| 5631 /* fract is in 12.20 format */ | |
| 5632 fract = (x & 0x000FFFFF); | |
| 5633 | |
| 5634 /* Read two nearest output values from the index and are in 1.7(q7) format */ | |
| 5635 y0 = pYData[index]; | |
| 5636 y1 = pYData[index + 1]; | |
| 5637 | |
| 5638 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ | |
| 5639 y = ((y0 * (0xFFFFF - fract))); | |
| 5640 | |
| 5641 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ | |
| 5642 y += (y1 * fract); | |
| 5643 | |
| 5644 /* convert y to 1.7(q7) format */ | |
| 5645 return (q7_t) (y >> 20); | |
| 5646 } | |
| 5647 } | |
| 5648 | |
| 5649 /** | |
| 5650 * @} end of LinearInterpolate group | |
| 5651 */ | |
| 5652 | |
| 5653 /** | |
| 5654 * @brief Fast approximation to the trigonometric sine function for floating-point data. | |
| 5655 * @param[in] x input value in radians. | |
| 5656 * @return sin(x). | |
| 5657 */ | |
| 5658 float32_t arm_sin_f32( | |
| 5659 float32_t x); | |
| 5660 | |
| 5661 | |
| 5662 /** | |
| 5663 * @brief Fast approximation to the trigonometric sine function for Q31 data. | |
| 5664 * @param[in] x Scaled input value in radians. | |
| 5665 * @return sin(x). | |
| 5666 */ | |
| 5667 q31_t arm_sin_q31( | |
| 5668 q31_t x); | |
| 5669 | |
| 5670 | |
| 5671 /** | |
| 5672 * @brief Fast approximation to the trigonometric sine function for Q15 data. | |
| 5673 * @param[in] x Scaled input value in radians. | |
| 5674 * @return sin(x). | |
| 5675 */ | |
| 5676 q15_t arm_sin_q15( | |
| 5677 q15_t x); | |
| 5678 | |
| 5679 | |
| 5680 /** | |
| 5681 * @brief Fast approximation to the trigonometric cosine function for floating-point data. | |
| 5682 * @param[in] x input value in radians. | |
| 5683 * @return cos(x). | |
| 5684 */ | |
| 5685 float32_t arm_cos_f32( | |
| 5686 float32_t x); | |
| 5687 | |
| 5688 | |
| 5689 /** | |
| 5690 * @brief Fast approximation to the trigonometric cosine function for Q31 data. | |
| 5691 * @param[in] x Scaled input value in radians. | |
| 5692 * @return cos(x). | |
| 5693 */ | |
| 5694 q31_t arm_cos_q31( | |
| 5695 q31_t x); | |
| 5696 | |
| 5697 | |
| 5698 /** | |
| 5699 * @brief Fast approximation to the trigonometric cosine function for Q15 data. | |
| 5700 * @param[in] x Scaled input value in radians. | |
| 5701 * @return cos(x). | |
| 5702 */ | |
| 5703 q15_t arm_cos_q15( | |
| 5704 q15_t x); | |
| 5705 | |
| 5706 | |
| 5707 /** | |
| 5708 * @ingroup groupFastMath | |
| 5709 */ | |
| 5710 | |
| 5711 | |
| 5712 /** | |
| 5713 * @defgroup SQRT Square Root | |
| 5714 * | |
| 5715 * Computes the square root of a number. | |
| 5716 * There are separate functions for Q15, Q31, and floating-point data types. | |
| 5717 * The square root function is computed using the Newton-Raphson algorithm. | |
| 5718 * This is an iterative algorithm of the form: | |
| 5719 * <pre> | |
| 5720 * x1 = x0 - f(x0)/f'(x0) | |
| 5721 * </pre> | |
| 5722 * where <code>x1</code> is the current estimate, | |
| 5723 * <code>x0</code> is the previous estimate, and | |
| 5724 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. | |
| 5725 * For the square root function, the algorithm reduces to: | |
| 5726 * <pre> | |
| 5727 * x0 = in/2 [initial guess] | |
| 5728 * x1 = 1/2 * ( x0 + in / x0) [each iteration] | |
| 5729 * </pre> | |
| 5730 */ | |
| 5731 | |
| 5732 | |
| 5733 /** | |
| 5734 * @addtogroup SQRT | |
| 5735 * @{ | |
| 5736 */ | |
| 5737 | |
| 5738 /** | |
| 5739 * @brief Floating-point square root function. | |
| 5740 * @param[in] in input value. | |
| 5741 * @param[out] pOut square root of input value. | |
| 5742 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
| 5743 * <code>in</code> is negative value and returns zero output for negative values. | |
| 5744 */ | |
| 5745 static __INLINE arm_status arm_sqrt_f32( | |
| 5746 float32_t in, | |
| 5747 float32_t * pOut) | |
| 5748 { | |
| 5749 if(in >= 0.0f) | |
| 5750 { | |
| 5751 | |
| 5752 #if (__FPU_USED == 1) && defined ( __CC_ARM ) | |
| 5753 *pOut = __sqrtf(in); | |
| 5754 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) | |
| 5755 *pOut = __builtin_sqrtf(in); | |
| 5756 #elif (__FPU_USED == 1) && defined(__GNUC__) | |
| 5757 *pOut = __builtin_sqrtf(in); | |
| 5758 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) | |
| 5759 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); | |
| 5760 #else | |
| 5761 *pOut = sqrtf(in); | |
| 5762 #endif | |
| 5763 | |
| 5764 return (ARM_MATH_SUCCESS); | |
| 5765 } | |
| 5766 else | |
| 5767 { | |
| 5768 *pOut = 0.0f; | |
| 5769 return (ARM_MATH_ARGUMENT_ERROR); | |
| 5770 } | |
| 5771 } | |
| 5772 | |
| 5773 | |
| 5774 /** | |
| 5775 * @brief Q31 square root function. | |
| 5776 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. | |
| 5777 * @param[out] pOut square root of input value. | |
| 5778 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
| 5779 * <code>in</code> is negative value and returns zero output for negative values. | |
| 5780 */ | |
| 5781 arm_status arm_sqrt_q31( | |
| 5782 q31_t in, | |
| 5783 q31_t * pOut); | |
| 5784 | |
| 5785 | |
| 5786 /** | |
| 5787 * @brief Q15 square root function. | |
| 5788 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. | |
| 5789 * @param[out] pOut square root of input value. | |
| 5790 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
| 5791 * <code>in</code> is negative value and returns zero output for negative values. | |
| 5792 */ | |
| 5793 arm_status arm_sqrt_q15( | |
| 5794 q15_t in, | |
| 5795 q15_t * pOut); | |
| 5796 | |
| 5797 /** | |
| 5798 * @} end of SQRT group | |
| 5799 */ | |
| 5800 | |
| 5801 | |
| 5802 /** | |
| 5803 * @brief floating-point Circular write function. | |
| 5804 */ | |
| 5805 static __INLINE void arm_circularWrite_f32( | |
| 5806 int32_t * circBuffer, | |
| 5807 int32_t L, | |
| 5808 uint16_t * writeOffset, | |
| 5809 int32_t bufferInc, | |
| 5810 const int32_t * src, | |
| 5811 int32_t srcInc, | |
| 5812 uint32_t blockSize) | |
| 5813 { | |
| 5814 uint32_t i = 0u; | |
| 5815 int32_t wOffset; | |
| 5816 | |
| 5817 /* Copy the value of Index pointer that points | |
| 5818 * to the current location where the input samples to be copied */ | |
| 5819 wOffset = *writeOffset; | |
| 5820 | |
| 5821 /* Loop over the blockSize */ | |
| 5822 i = blockSize; | |
| 5823 | |
| 5824 while(i > 0u) | |
| 5825 { | |
| 5826 /* copy the input sample to the circular buffer */ | |
| 5827 circBuffer[wOffset] = *src; | |
| 5828 | |
| 5829 /* Update the input pointer */ | |
| 5830 src += srcInc; | |
| 5831 | |
| 5832 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5833 wOffset += bufferInc; | |
| 5834 if(wOffset >= L) | |
| 5835 wOffset -= L; | |
| 5836 | |
| 5837 /* Decrement the loop counter */ | |
| 5838 i--; | |
| 5839 } | |
| 5840 | |
| 5841 /* Update the index pointer */ | |
| 5842 *writeOffset = (uint16_t)wOffset; | |
| 5843 } | |
| 5844 | |
| 5845 | |
| 5846 | |
| 5847 /** | |
| 5848 * @brief floating-point Circular Read function. | |
| 5849 */ | |
| 5850 static __INLINE void arm_circularRead_f32( | |
| 5851 int32_t * circBuffer, | |
| 5852 int32_t L, | |
| 5853 int32_t * readOffset, | |
| 5854 int32_t bufferInc, | |
| 5855 int32_t * dst, | |
| 5856 int32_t * dst_base, | |
| 5857 int32_t dst_length, | |
| 5858 int32_t dstInc, | |
| 5859 uint32_t blockSize) | |
| 5860 { | |
| 5861 uint32_t i = 0u; | |
| 5862 int32_t rOffset, dst_end; | |
| 5863 | |
| 5864 /* Copy the value of Index pointer that points | |
| 5865 * to the current location from where the input samples to be read */ | |
| 5866 rOffset = *readOffset; | |
| 5867 dst_end = (int32_t) (dst_base + dst_length); | |
| 5868 | |
| 5869 /* Loop over the blockSize */ | |
| 5870 i = blockSize; | |
| 5871 | |
| 5872 while(i > 0u) | |
| 5873 { | |
| 5874 /* copy the sample from the circular buffer to the destination buffer */ | |
| 5875 *dst = circBuffer[rOffset]; | |
| 5876 | |
| 5877 /* Update the input pointer */ | |
| 5878 dst += dstInc; | |
| 5879 | |
| 5880 if(dst == (int32_t *) dst_end) | |
| 5881 { | |
| 5882 dst = dst_base; | |
| 5883 } | |
| 5884 | |
| 5885 /* Circularly update rOffset. Watch out for positive and negative value */ | |
| 5886 rOffset += bufferInc; | |
| 5887 | |
| 5888 if(rOffset >= L) | |
| 5889 { | |
| 5890 rOffset -= L; | |
| 5891 } | |
| 5892 | |
| 5893 /* Decrement the loop counter */ | |
| 5894 i--; | |
| 5895 } | |
| 5896 | |
| 5897 /* Update the index pointer */ | |
| 5898 *readOffset = rOffset; | |
| 5899 } | |
| 5900 | |
| 5901 | |
| 5902 /** | |
| 5903 * @brief Q15 Circular write function. | |
| 5904 */ | |
| 5905 static __INLINE void arm_circularWrite_q15( | |
| 5906 q15_t * circBuffer, | |
| 5907 int32_t L, | |
| 5908 uint16_t * writeOffset, | |
| 5909 int32_t bufferInc, | |
| 5910 const q15_t * src, | |
| 5911 int32_t srcInc, | |
| 5912 uint32_t blockSize) | |
| 5913 { | |
| 5914 uint32_t i = 0u; | |
| 5915 int32_t wOffset; | |
| 5916 | |
| 5917 /* Copy the value of Index pointer that points | |
| 5918 * to the current location where the input samples to be copied */ | |
| 5919 wOffset = *writeOffset; | |
| 5920 | |
| 5921 /* Loop over the blockSize */ | |
| 5922 i = blockSize; | |
| 5923 | |
| 5924 while(i > 0u) | |
| 5925 { | |
| 5926 /* copy the input sample to the circular buffer */ | |
| 5927 circBuffer[wOffset] = *src; | |
| 5928 | |
| 5929 /* Update the input pointer */ | |
| 5930 src += srcInc; | |
| 5931 | |
| 5932 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5933 wOffset += bufferInc; | |
| 5934 if(wOffset >= L) | |
| 5935 wOffset -= L; | |
| 5936 | |
| 5937 /* Decrement the loop counter */ | |
| 5938 i--; | |
| 5939 } | |
| 5940 | |
| 5941 /* Update the index pointer */ | |
| 5942 *writeOffset = (uint16_t)wOffset; | |
| 5943 } | |
| 5944 | |
| 5945 | |
| 5946 /** | |
| 5947 * @brief Q15 Circular Read function. | |
| 5948 */ | |
| 5949 static __INLINE void arm_circularRead_q15( | |
| 5950 q15_t * circBuffer, | |
| 5951 int32_t L, | |
| 5952 int32_t * readOffset, | |
| 5953 int32_t bufferInc, | |
| 5954 q15_t * dst, | |
| 5955 q15_t * dst_base, | |
| 5956 int32_t dst_length, | |
| 5957 int32_t dstInc, | |
| 5958 uint32_t blockSize) | |
| 5959 { | |
| 5960 uint32_t i = 0; | |
| 5961 int32_t rOffset, dst_end; | |
| 5962 | |
| 5963 /* Copy the value of Index pointer that points | |
| 5964 * to the current location from where the input samples to be read */ | |
| 5965 rOffset = *readOffset; | |
| 5966 | |
| 5967 dst_end = (int32_t) (dst_base + dst_length); | |
| 5968 | |
| 5969 /* Loop over the blockSize */ | |
| 5970 i = blockSize; | |
| 5971 | |
| 5972 while(i > 0u) | |
| 5973 { | |
| 5974 /* copy the sample from the circular buffer to the destination buffer */ | |
| 5975 *dst = circBuffer[rOffset]; | |
| 5976 | |
| 5977 /* Update the input pointer */ | |
| 5978 dst += dstInc; | |
| 5979 | |
| 5980 if(dst == (q15_t *) dst_end) | |
| 5981 { | |
| 5982 dst = dst_base; | |
| 5983 } | |
| 5984 | |
| 5985 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 5986 rOffset += bufferInc; | |
| 5987 | |
| 5988 if(rOffset >= L) | |
| 5989 { | |
| 5990 rOffset -= L; | |
| 5991 } | |
| 5992 | |
| 5993 /* Decrement the loop counter */ | |
| 5994 i--; | |
| 5995 } | |
| 5996 | |
| 5997 /* Update the index pointer */ | |
| 5998 *readOffset = rOffset; | |
| 5999 } | |
| 6000 | |
| 6001 | |
| 6002 /** | |
| 6003 * @brief Q7 Circular write function. | |
| 6004 */ | |
| 6005 static __INLINE void arm_circularWrite_q7( | |
| 6006 q7_t * circBuffer, | |
| 6007 int32_t L, | |
| 6008 uint16_t * writeOffset, | |
| 6009 int32_t bufferInc, | |
| 6010 const q7_t * src, | |
| 6011 int32_t srcInc, | |
| 6012 uint32_t blockSize) | |
| 6013 { | |
| 6014 uint32_t i = 0u; | |
| 6015 int32_t wOffset; | |
| 6016 | |
| 6017 /* Copy the value of Index pointer that points | |
| 6018 * to the current location where the input samples to be copied */ | |
| 6019 wOffset = *writeOffset; | |
| 6020 | |
| 6021 /* Loop over the blockSize */ | |
| 6022 i = blockSize; | |
| 6023 | |
| 6024 while(i > 0u) | |
| 6025 { | |
| 6026 /* copy the input sample to the circular buffer */ | |
| 6027 circBuffer[wOffset] = *src; | |
| 6028 | |
| 6029 /* Update the input pointer */ | |
| 6030 src += srcInc; | |
| 6031 | |
| 6032 /* Circularly update wOffset. Watch out for positive and negative value */ | |
| 6033 wOffset += bufferInc; | |
| 6034 if(wOffset >= L) | |
| 6035 wOffset -= L; | |
| 6036 | |
| 6037 /* Decrement the loop counter */ | |
| 6038 i--; | |
| 6039 } | |
| 6040 | |
| 6041 /* Update the index pointer */ | |
| 6042 *writeOffset = (uint16_t)wOffset; | |
| 6043 } | |
| 6044 | |
| 6045 | |
| 6046 /** | |
| 6047 * @brief Q7 Circular Read function. | |
| 6048 */ | |
| 6049 static __INLINE void arm_circularRead_q7( | |
| 6050 q7_t * circBuffer, | |
| 6051 int32_t L, | |
| 6052 int32_t * readOffset, | |
| 6053 int32_t bufferInc, | |
| 6054 q7_t * dst, | |
| 6055 q7_t * dst_base, | |
| 6056 int32_t dst_length, | |
| 6057 int32_t dstInc, | |
| 6058 uint32_t blockSize) | |
| 6059 { | |
| 6060 uint32_t i = 0; | |
| 6061 int32_t rOffset, dst_end; | |
| 6062 | |
| 6063 /* Copy the value of Index pointer that points | |
| 6064 * to the current location from where the input samples to be read */ | |
| 6065 rOffset = *readOffset; | |
| 6066 | |
| 6067 dst_end = (int32_t) (dst_base + dst_length); | |
| 6068 | |
| 6069 /* Loop over the blockSize */ | |
| 6070 i = blockSize; | |
| 6071 | |
| 6072 while(i > 0u) | |
| 6073 { | |
| 6074 /* copy the sample from the circular buffer to the destination buffer */ | |
| 6075 *dst = circBuffer[rOffset]; | |
| 6076 | |
| 6077 /* Update the input pointer */ | |
| 6078 dst += dstInc; | |
| 6079 | |
| 6080 if(dst == (q7_t *) dst_end) | |
| 6081 { | |
| 6082 dst = dst_base; | |
| 6083 } | |
| 6084 | |
| 6085 /* Circularly update rOffset. Watch out for positive and negative value */ | |
| 6086 rOffset += bufferInc; | |
| 6087 | |
| 6088 if(rOffset >= L) | |
| 6089 { | |
| 6090 rOffset -= L; | |
| 6091 } | |
| 6092 | |
| 6093 /* Decrement the loop counter */ | |
| 6094 i--; | |
| 6095 } | |
| 6096 | |
| 6097 /* Update the index pointer */ | |
| 6098 *readOffset = rOffset; | |
| 6099 } | |
| 6100 | |
| 6101 | |
| 6102 /** | |
| 6103 * @brief Sum of the squares of the elements of a Q31 vector. | |
| 6104 * @param[in] pSrc is input pointer | |
| 6105 * @param[in] blockSize is the number of samples to process | |
| 6106 * @param[out] pResult is output value. | |
| 6107 */ | |
| 6108 void arm_power_q31( | |
| 6109 q31_t * pSrc, | |
| 6110 uint32_t blockSize, | |
| 6111 q63_t * pResult); | |
| 6112 | |
| 6113 | |
| 6114 /** | |
| 6115 * @brief Sum of the squares of the elements of a floating-point vector. | |
| 6116 * @param[in] pSrc is input pointer | |
| 6117 * @param[in] blockSize is the number of samples to process | |
| 6118 * @param[out] pResult is output value. | |
| 6119 */ | |
| 6120 void arm_power_f32( | |
| 6121 float32_t * pSrc, | |
| 6122 uint32_t blockSize, | |
| 6123 float32_t * pResult); | |
| 6124 | |
| 6125 | |
| 6126 /** | |
| 6127 * @brief Sum of the squares of the elements of a Q15 vector. | |
| 6128 * @param[in] pSrc is input pointer | |
| 6129 * @param[in] blockSize is the number of samples to process | |
| 6130 * @param[out] pResult is output value. | |
| 6131 */ | |
| 6132 void arm_power_q15( | |
| 6133 q15_t * pSrc, | |
| 6134 uint32_t blockSize, | |
| 6135 q63_t * pResult); | |
| 6136 | |
| 6137 | |
| 6138 /** | |
| 6139 * @brief Sum of the squares of the elements of a Q7 vector. | |
| 6140 * @param[in] pSrc is input pointer | |
| 6141 * @param[in] blockSize is the number of samples to process | |
| 6142 * @param[out] pResult is output value. | |
| 6143 */ | |
| 6144 void arm_power_q7( | |
| 6145 q7_t * pSrc, | |
| 6146 uint32_t blockSize, | |
| 6147 q31_t * pResult); | |
| 6148 | |
| 6149 | |
| 6150 /** | |
| 6151 * @brief Mean value of a Q7 vector. | |
| 6152 * @param[in] pSrc is input pointer | |
| 6153 * @param[in] blockSize is the number of samples to process | |
| 6154 * @param[out] pResult is output value. | |
| 6155 */ | |
| 6156 void arm_mean_q7( | |
| 6157 q7_t * pSrc, | |
| 6158 uint32_t blockSize, | |
| 6159 q7_t * pResult); | |
| 6160 | |
| 6161 | |
| 6162 /** | |
| 6163 * @brief Mean value of a Q15 vector. | |
| 6164 * @param[in] pSrc is input pointer | |
| 6165 * @param[in] blockSize is the number of samples to process | |
| 6166 * @param[out] pResult is output value. | |
| 6167 */ | |
| 6168 void arm_mean_q15( | |
| 6169 q15_t * pSrc, | |
| 6170 uint32_t blockSize, | |
| 6171 q15_t * pResult); | |
| 6172 | |
| 6173 | |
| 6174 /** | |
| 6175 * @brief Mean value of a Q31 vector. | |
| 6176 * @param[in] pSrc is input pointer | |
| 6177 * @param[in] blockSize is the number of samples to process | |
| 6178 * @param[out] pResult is output value. | |
| 6179 */ | |
| 6180 void arm_mean_q31( | |
| 6181 q31_t * pSrc, | |
| 6182 uint32_t blockSize, | |
| 6183 q31_t * pResult); | |
| 6184 | |
| 6185 | |
| 6186 /** | |
| 6187 * @brief Mean value of a floating-point vector. | |
| 6188 * @param[in] pSrc is input pointer | |
| 6189 * @param[in] blockSize is the number of samples to process | |
| 6190 * @param[out] pResult is output value. | |
| 6191 */ | |
| 6192 void arm_mean_f32( | |
| 6193 float32_t * pSrc, | |
| 6194 uint32_t blockSize, | |
| 6195 float32_t * pResult); | |
| 6196 | |
| 6197 | |
| 6198 /** | |
| 6199 * @brief Variance of the elements of a floating-point vector. | |
| 6200 * @param[in] pSrc is input pointer | |
| 6201 * @param[in] blockSize is the number of samples to process | |
| 6202 * @param[out] pResult is output value. | |
| 6203 */ | |
| 6204 void arm_var_f32( | |
| 6205 float32_t * pSrc, | |
| 6206 uint32_t blockSize, | |
| 6207 float32_t * pResult); | |
| 6208 | |
| 6209 | |
| 6210 /** | |
| 6211 * @brief Variance of the elements of a Q31 vector. | |
| 6212 * @param[in] pSrc is input pointer | |
| 6213 * @param[in] blockSize is the number of samples to process | |
| 6214 * @param[out] pResult is output value. | |
| 6215 */ | |
| 6216 void arm_var_q31( | |
| 6217 q31_t * pSrc, | |
| 6218 uint32_t blockSize, | |
| 6219 q31_t * pResult); | |
| 6220 | |
| 6221 | |
| 6222 /** | |
| 6223 * @brief Variance of the elements of a Q15 vector. | |
| 6224 * @param[in] pSrc is input pointer | |
| 6225 * @param[in] blockSize is the number of samples to process | |
| 6226 * @param[out] pResult is output value. | |
| 6227 */ | |
| 6228 void arm_var_q15( | |
| 6229 q15_t * pSrc, | |
| 6230 uint32_t blockSize, | |
| 6231 q15_t * pResult); | |
| 6232 | |
| 6233 | |
| 6234 /** | |
| 6235 * @brief Root Mean Square of the elements of a floating-point vector. | |
| 6236 * @param[in] pSrc is input pointer | |
| 6237 * @param[in] blockSize is the number of samples to process | |
| 6238 * @param[out] pResult is output value. | |
| 6239 */ | |
| 6240 void arm_rms_f32( | |
| 6241 float32_t * pSrc, | |
| 6242 uint32_t blockSize, | |
| 6243 float32_t * pResult); | |
| 6244 | |
| 6245 | |
| 6246 /** | |
| 6247 * @brief Root Mean Square of the elements of a Q31 vector. | |
| 6248 * @param[in] pSrc is input pointer | |
| 6249 * @param[in] blockSize is the number of samples to process | |
| 6250 * @param[out] pResult is output value. | |
| 6251 */ | |
| 6252 void arm_rms_q31( | |
| 6253 q31_t * pSrc, | |
| 6254 uint32_t blockSize, | |
| 6255 q31_t * pResult); | |
| 6256 | |
| 6257 | |
| 6258 /** | |
| 6259 * @brief Root Mean Square of the elements of a Q15 vector. | |
| 6260 * @param[in] pSrc is input pointer | |
| 6261 * @param[in] blockSize is the number of samples to process | |
| 6262 * @param[out] pResult is output value. | |
| 6263 */ | |
| 6264 void arm_rms_q15( | |
| 6265 q15_t * pSrc, | |
| 6266 uint32_t blockSize, | |
| 6267 q15_t * pResult); | |
| 6268 | |
| 6269 | |
| 6270 /** | |
| 6271 * @brief Standard deviation of the elements of a floating-point vector. | |
| 6272 * @param[in] pSrc is input pointer | |
| 6273 * @param[in] blockSize is the number of samples to process | |
| 6274 * @param[out] pResult is output value. | |
| 6275 */ | |
| 6276 void arm_std_f32( | |
| 6277 float32_t * pSrc, | |
| 6278 uint32_t blockSize, | |
| 6279 float32_t * pResult); | |
| 6280 | |
| 6281 | |
| 6282 /** | |
| 6283 * @brief Standard deviation of the elements of a Q31 vector. | |
| 6284 * @param[in] pSrc is input pointer | |
| 6285 * @param[in] blockSize is the number of samples to process | |
| 6286 * @param[out] pResult is output value. | |
| 6287 */ | |
| 6288 void arm_std_q31( | |
| 6289 q31_t * pSrc, | |
| 6290 uint32_t blockSize, | |
| 6291 q31_t * pResult); | |
| 6292 | |
| 6293 | |
| 6294 /** | |
| 6295 * @brief Standard deviation of the elements of a Q15 vector. | |
| 6296 * @param[in] pSrc is input pointer | |
| 6297 * @param[in] blockSize is the number of samples to process | |
| 6298 * @param[out] pResult is output value. | |
| 6299 */ | |
| 6300 void arm_std_q15( | |
| 6301 q15_t * pSrc, | |
| 6302 uint32_t blockSize, | |
| 6303 q15_t * pResult); | |
| 6304 | |
| 6305 | |
| 6306 /** | |
| 6307 * @brief Floating-point complex magnitude | |
| 6308 * @param[in] pSrc points to the complex input vector | |
| 6309 * @param[out] pDst points to the real output vector | |
| 6310 * @param[in] numSamples number of complex samples in the input vector | |
| 6311 */ | |
| 6312 void arm_cmplx_mag_f32( | |
| 6313 float32_t * pSrc, | |
| 6314 float32_t * pDst, | |
| 6315 uint32_t numSamples); | |
| 6316 | |
| 6317 | |
| 6318 /** | |
| 6319 * @brief Q31 complex magnitude | |
| 6320 * @param[in] pSrc points to the complex input vector | |
| 6321 * @param[out] pDst points to the real output vector | |
| 6322 * @param[in] numSamples number of complex samples in the input vector | |
| 6323 */ | |
| 6324 void arm_cmplx_mag_q31( | |
| 6325 q31_t * pSrc, | |
| 6326 q31_t * pDst, | |
| 6327 uint32_t numSamples); | |
| 6328 | |
| 6329 | |
| 6330 /** | |
| 6331 * @brief Q15 complex magnitude | |
| 6332 * @param[in] pSrc points to the complex input vector | |
| 6333 * @param[out] pDst points to the real output vector | |
| 6334 * @param[in] numSamples number of complex samples in the input vector | |
| 6335 */ | |
| 6336 void arm_cmplx_mag_q15( | |
| 6337 q15_t * pSrc, | |
| 6338 q15_t * pDst, | |
| 6339 uint32_t numSamples); | |
| 6340 | |
| 6341 | |
| 6342 /** | |
| 6343 * @brief Q15 complex dot product | |
| 6344 * @param[in] pSrcA points to the first input vector | |
| 6345 * @param[in] pSrcB points to the second input vector | |
| 6346 * @param[in] numSamples number of complex samples in each vector | |
| 6347 * @param[out] realResult real part of the result returned here | |
| 6348 * @param[out] imagResult imaginary part of the result returned here | |
| 6349 */ | |
| 6350 void arm_cmplx_dot_prod_q15( | |
| 6351 q15_t * pSrcA, | |
| 6352 q15_t * pSrcB, | |
| 6353 uint32_t numSamples, | |
| 6354 q31_t * realResult, | |
| 6355 q31_t * imagResult); | |
| 6356 | |
| 6357 | |
| 6358 /** | |
| 6359 * @brief Q31 complex dot product | |
| 6360 * @param[in] pSrcA points to the first input vector | |
| 6361 * @param[in] pSrcB points to the second input vector | |
| 6362 * @param[in] numSamples number of complex samples in each vector | |
| 6363 * @param[out] realResult real part of the result returned here | |
| 6364 * @param[out] imagResult imaginary part of the result returned here | |
| 6365 */ | |
| 6366 void arm_cmplx_dot_prod_q31( | |
| 6367 q31_t * pSrcA, | |
| 6368 q31_t * pSrcB, | |
| 6369 uint32_t numSamples, | |
| 6370 q63_t * realResult, | |
| 6371 q63_t * imagResult); | |
| 6372 | |
| 6373 | |
| 6374 /** | |
| 6375 * @brief Floating-point complex dot product | |
| 6376 * @param[in] pSrcA points to the first input vector | |
| 6377 * @param[in] pSrcB points to the second input vector | |
| 6378 * @param[in] numSamples number of complex samples in each vector | |
| 6379 * @param[out] realResult real part of the result returned here | |
| 6380 * @param[out] imagResult imaginary part of the result returned here | |
| 6381 */ | |
| 6382 void arm_cmplx_dot_prod_f32( | |
| 6383 float32_t * pSrcA, | |
| 6384 float32_t * pSrcB, | |
| 6385 uint32_t numSamples, | |
| 6386 float32_t * realResult, | |
| 6387 float32_t * imagResult); | |
| 6388 | |
| 6389 | |
| 6390 /** | |
| 6391 * @brief Q15 complex-by-real multiplication | |
| 6392 * @param[in] pSrcCmplx points to the complex input vector | |
| 6393 * @param[in] pSrcReal points to the real input vector | |
| 6394 * @param[out] pCmplxDst points to the complex output vector | |
| 6395 * @param[in] numSamples number of samples in each vector | |
| 6396 */ | |
| 6397 void arm_cmplx_mult_real_q15( | |
| 6398 q15_t * pSrcCmplx, | |
| 6399 q15_t * pSrcReal, | |
| 6400 q15_t * pCmplxDst, | |
| 6401 uint32_t numSamples); | |
| 6402 | |
| 6403 | |
| 6404 /** | |
| 6405 * @brief Q31 complex-by-real multiplication | |
| 6406 * @param[in] pSrcCmplx points to the complex input vector | |
| 6407 * @param[in] pSrcReal points to the real input vector | |
| 6408 * @param[out] pCmplxDst points to the complex output vector | |
| 6409 * @param[in] numSamples number of samples in each vector | |
| 6410 */ | |
| 6411 void arm_cmplx_mult_real_q31( | |
| 6412 q31_t * pSrcCmplx, | |
| 6413 q31_t * pSrcReal, | |
| 6414 q31_t * pCmplxDst, | |
| 6415 uint32_t numSamples); | |
| 6416 | |
| 6417 | |
| 6418 /** | |
| 6419 * @brief Floating-point complex-by-real multiplication | |
| 6420 * @param[in] pSrcCmplx points to the complex input vector | |
| 6421 * @param[in] pSrcReal points to the real input vector | |
| 6422 * @param[out] pCmplxDst points to the complex output vector | |
| 6423 * @param[in] numSamples number of samples in each vector | |
| 6424 */ | |
| 6425 void arm_cmplx_mult_real_f32( | |
| 6426 float32_t * pSrcCmplx, | |
| 6427 float32_t * pSrcReal, | |
| 6428 float32_t * pCmplxDst, | |
| 6429 uint32_t numSamples); | |
| 6430 | |
| 6431 | |
| 6432 /** | |
| 6433 * @brief Minimum value of a Q7 vector. | |
| 6434 * @param[in] pSrc is input pointer | |
| 6435 * @param[in] blockSize is the number of samples to process | |
| 6436 * @param[out] result is output pointer | |
| 6437 * @param[in] index is the array index of the minimum value in the input buffer. | |
| 6438 */ | |
| 6439 void arm_min_q7( | |
| 6440 q7_t * pSrc, | |
| 6441 uint32_t blockSize, | |
| 6442 q7_t * result, | |
| 6443 uint32_t * index); | |
| 6444 | |
| 6445 | |
| 6446 /** | |
| 6447 * @brief Minimum value of a Q15 vector. | |
| 6448 * @param[in] pSrc is input pointer | |
| 6449 * @param[in] blockSize is the number of samples to process | |
| 6450 * @param[out] pResult is output pointer | |
| 6451 * @param[in] pIndex is the array index of the minimum value in the input buffer. | |
| 6452 */ | |
| 6453 void arm_min_q15( | |
| 6454 q15_t * pSrc, | |
| 6455 uint32_t blockSize, | |
| 6456 q15_t * pResult, | |
| 6457 uint32_t * pIndex); | |
| 6458 | |
| 6459 | |
| 6460 /** | |
| 6461 * @brief Minimum value of a Q31 vector. | |
| 6462 * @param[in] pSrc is input pointer | |
| 6463 * @param[in] blockSize is the number of samples to process | |
| 6464 * @param[out] pResult is output pointer | |
| 6465 * @param[out] pIndex is the array index of the minimum value in the input buffer. | |
| 6466 */ | |
| 6467 void arm_min_q31( | |
| 6468 q31_t * pSrc, | |
| 6469 uint32_t blockSize, | |
| 6470 q31_t * pResult, | |
| 6471 uint32_t * pIndex); | |
| 6472 | |
| 6473 | |
| 6474 /** | |
| 6475 * @brief Minimum value of a floating-point vector. | |
| 6476 * @param[in] pSrc is input pointer | |
| 6477 * @param[in] blockSize is the number of samples to process | |
| 6478 * @param[out] pResult is output pointer | |
| 6479 * @param[out] pIndex is the array index of the minimum value in the input buffer. | |
| 6480 */ | |
| 6481 void arm_min_f32( | |
| 6482 float32_t * pSrc, | |
| 6483 uint32_t blockSize, | |
| 6484 float32_t * pResult, | |
| 6485 uint32_t * pIndex); | |
| 6486 | |
| 6487 | |
| 6488 /** | |
| 6489 * @brief Maximum value of a Q7 vector. | |
| 6490 * @param[in] pSrc points to the input buffer | |
| 6491 * @param[in] blockSize length of the input vector | |
| 6492 * @param[out] pResult maximum value returned here | |
| 6493 * @param[out] pIndex index of maximum value returned here | |
| 6494 */ | |
| 6495 void arm_max_q7( | |
| 6496 q7_t * pSrc, | |
| 6497 uint32_t blockSize, | |
| 6498 q7_t * pResult, | |
| 6499 uint32_t * pIndex); | |
| 6500 | |
| 6501 | |
| 6502 /** | |
| 6503 * @brief Maximum value of a Q15 vector. | |
| 6504 * @param[in] pSrc points to the input buffer | |
| 6505 * @param[in] blockSize length of the input vector | |
| 6506 * @param[out] pResult maximum value returned here | |
| 6507 * @param[out] pIndex index of maximum value returned here | |
| 6508 */ | |
| 6509 void arm_max_q15( | |
| 6510 q15_t * pSrc, | |
| 6511 uint32_t blockSize, | |
| 6512 q15_t * pResult, | |
| 6513 uint32_t * pIndex); | |
| 6514 | |
| 6515 | |
| 6516 /** | |
| 6517 * @brief Maximum value of a Q31 vector. | |
| 6518 * @param[in] pSrc points to the input buffer | |
| 6519 * @param[in] blockSize length of the input vector | |
| 6520 * @param[out] pResult maximum value returned here | |
| 6521 * @param[out] pIndex index of maximum value returned here | |
| 6522 */ | |
| 6523 void arm_max_q31( | |
| 6524 q31_t * pSrc, | |
| 6525 uint32_t blockSize, | |
| 6526 q31_t * pResult, | |
| 6527 uint32_t * pIndex); | |
| 6528 | |
| 6529 | |
| 6530 /** | |
| 6531 * @brief Maximum value of a floating-point vector. | |
| 6532 * @param[in] pSrc points to the input buffer | |
| 6533 * @param[in] blockSize length of the input vector | |
| 6534 * @param[out] pResult maximum value returned here | |
| 6535 * @param[out] pIndex index of maximum value returned here | |
| 6536 */ | |
| 6537 void arm_max_f32( | |
| 6538 float32_t * pSrc, | |
| 6539 uint32_t blockSize, | |
| 6540 float32_t * pResult, | |
| 6541 uint32_t * pIndex); | |
| 6542 | |
| 6543 | |
| 6544 /** | |
| 6545 * @brief Q15 complex-by-complex multiplication | |
| 6546 * @param[in] pSrcA points to the first input vector | |
| 6547 * @param[in] pSrcB points to the second input vector | |
| 6548 * @param[out] pDst points to the output vector | |
| 6549 * @param[in] numSamples number of complex samples in each vector | |
| 6550 */ | |
| 6551 void arm_cmplx_mult_cmplx_q15( | |
| 6552 q15_t * pSrcA, | |
| 6553 q15_t * pSrcB, | |
| 6554 q15_t * pDst, | |
| 6555 uint32_t numSamples); | |
| 6556 | |
| 6557 | |
| 6558 /** | |
| 6559 * @brief Q31 complex-by-complex multiplication | |
| 6560 * @param[in] pSrcA points to the first input vector | |
| 6561 * @param[in] pSrcB points to the second input vector | |
| 6562 * @param[out] pDst points to the output vector | |
| 6563 * @param[in] numSamples number of complex samples in each vector | |
| 6564 */ | |
| 6565 void arm_cmplx_mult_cmplx_q31( | |
| 6566 q31_t * pSrcA, | |
| 6567 q31_t * pSrcB, | |
| 6568 q31_t * pDst, | |
| 6569 uint32_t numSamples); | |
| 6570 | |
| 6571 | |
| 6572 /** | |
| 6573 * @brief Floating-point complex-by-complex multiplication | |
| 6574 * @param[in] pSrcA points to the first input vector | |
| 6575 * @param[in] pSrcB points to the second input vector | |
| 6576 * @param[out] pDst points to the output vector | |
| 6577 * @param[in] numSamples number of complex samples in each vector | |
| 6578 */ | |
| 6579 void arm_cmplx_mult_cmplx_f32( | |
| 6580 float32_t * pSrcA, | |
| 6581 float32_t * pSrcB, | |
| 6582 float32_t * pDst, | |
| 6583 uint32_t numSamples); | |
| 6584 | |
| 6585 | |
| 6586 /** | |
| 6587 * @brief Converts the elements of the floating-point vector to Q31 vector. | |
| 6588 * @param[in] pSrc points to the floating-point input vector | |
| 6589 * @param[out] pDst points to the Q31 output vector | |
| 6590 * @param[in] blockSize length of the input vector | |
| 6591 */ | |
| 6592 void arm_float_to_q31( | |
| 6593 float32_t * pSrc, | |
| 6594 q31_t * pDst, | |
| 6595 uint32_t blockSize); | |
| 6596 | |
| 6597 | |
| 6598 /** | |
| 6599 * @brief Converts the elements of the floating-point vector to Q15 vector. | |
| 6600 * @param[in] pSrc points to the floating-point input vector | |
| 6601 * @param[out] pDst points to the Q15 output vector | |
| 6602 * @param[in] blockSize length of the input vector | |
| 6603 */ | |
| 6604 void arm_float_to_q15( | |
| 6605 float32_t * pSrc, | |
| 6606 q15_t * pDst, | |
| 6607 uint32_t blockSize); | |
| 6608 | |
| 6609 | |
| 6610 /** | |
| 6611 * @brief Converts the elements of the floating-point vector to Q7 vector. | |
| 6612 * @param[in] pSrc points to the floating-point input vector | |
| 6613 * @param[out] pDst points to the Q7 output vector | |
| 6614 * @param[in] blockSize length of the input vector | |
| 6615 */ | |
| 6616 void arm_float_to_q7( | |
| 6617 float32_t * pSrc, | |
| 6618 q7_t * pDst, | |
| 6619 uint32_t blockSize); | |
| 6620 | |
| 6621 | |
| 6622 /** | |
| 6623 * @brief Converts the elements of the Q31 vector to Q15 vector. | |
| 6624 * @param[in] pSrc is input pointer | |
| 6625 * @param[out] pDst is output pointer | |
| 6626 * @param[in] blockSize is the number of samples to process | |
| 6627 */ | |
| 6628 void arm_q31_to_q15( | |
| 6629 q31_t * pSrc, | |
| 6630 q15_t * pDst, | |
| 6631 uint32_t blockSize); | |
| 6632 | |
| 6633 | |
| 6634 /** | |
| 6635 * @brief Converts the elements of the Q31 vector to Q7 vector. | |
| 6636 * @param[in] pSrc is input pointer | |
| 6637 * @param[out] pDst is output pointer | |
| 6638 * @param[in] blockSize is the number of samples to process | |
| 6639 */ | |
| 6640 void arm_q31_to_q7( | |
| 6641 q31_t * pSrc, | |
| 6642 q7_t * pDst, | |
| 6643 uint32_t blockSize); | |
| 6644 | |
| 6645 | |
| 6646 /** | |
| 6647 * @brief Converts the elements of the Q15 vector to floating-point vector. | |
| 6648 * @param[in] pSrc is input pointer | |
| 6649 * @param[out] pDst is output pointer | |
| 6650 * @param[in] blockSize is the number of samples to process | |
| 6651 */ | |
| 6652 void arm_q15_to_float( | |
| 6653 q15_t * pSrc, | |
| 6654 float32_t * pDst, | |
| 6655 uint32_t blockSize); | |
| 6656 | |
| 6657 | |
| 6658 /** | |
| 6659 * @brief Converts the elements of the Q15 vector to Q31 vector. | |
| 6660 * @param[in] pSrc is input pointer | |
| 6661 * @param[out] pDst is output pointer | |
| 6662 * @param[in] blockSize is the number of samples to process | |
| 6663 */ | |
| 6664 void arm_q15_to_q31( | |
| 6665 q15_t * pSrc, | |
| 6666 q31_t * pDst, | |
| 6667 uint32_t blockSize); | |
| 6668 | |
| 6669 | |
| 6670 /** | |
| 6671 * @brief Converts the elements of the Q15 vector to Q7 vector. | |
| 6672 * @param[in] pSrc is input pointer | |
| 6673 * @param[out] pDst is output pointer | |
| 6674 * @param[in] blockSize is the number of samples to process | |
| 6675 */ | |
| 6676 void arm_q15_to_q7( | |
| 6677 q15_t * pSrc, | |
| 6678 q7_t * pDst, | |
| 6679 uint32_t blockSize); | |
| 6680 | |
| 6681 | |
| 6682 /** | |
| 6683 * @ingroup groupInterpolation | |
| 6684 */ | |
| 6685 | |
| 6686 /** | |
| 6687 * @defgroup BilinearInterpolate Bilinear Interpolation | |
| 6688 * | |
| 6689 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. | |
| 6690 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process | |
| 6691 * determines values between the grid points. | |
| 6692 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. | |
| 6693 * Bilinear interpolation is often used in image processing to rescale images. | |
| 6694 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. | |
| 6695 * | |
| 6696 * <b>Algorithm</b> | |
| 6697 * \par | |
| 6698 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. | |
| 6699 * For floating-point, the instance structure is defined as: | |
| 6700 * <pre> | |
| 6701 * typedef struct | |
| 6702 * { | |
| 6703 * uint16_t numRows; | |
| 6704 * uint16_t numCols; | |
| 6705 * float32_t *pData; | |
| 6706 * } arm_bilinear_interp_instance_f32; | |
| 6707 * </pre> | |
| 6708 * | |
| 6709 * \par | |
| 6710 * where <code>numRows</code> specifies the number of rows in the table; | |
| 6711 * <code>numCols</code> specifies the number of columns in the table; | |
| 6712 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. | |
| 6713 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. | |
| 6714 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. | |
| 6715 * | |
| 6716 * \par | |
| 6717 * Let <code>(x, y)</code> specify the desired interpolation point. Then define: | |
| 6718 * <pre> | |
| 6719 * XF = floor(x) | |
| 6720 * YF = floor(y) | |
| 6721 * </pre> | |
| 6722 * \par | |
| 6723 * The interpolated output point is computed as: | |
| 6724 * <pre> | |
| 6725 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) | |
| 6726 * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) | |
| 6727 * + f(XF, YF+1) * (1-(x-XF))*(y-YF) | |
| 6728 * + f(XF+1, YF+1) * (x-XF)*(y-YF) | |
| 6729 * </pre> | |
| 6730 * Note that the coordinates (x, y) contain integer and fractional components. | |
| 6731 * The integer components specify which portion of the table to use while the | |
| 6732 * fractional components control the interpolation processor. | |
| 6733 * | |
| 6734 * \par | |
| 6735 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. | |
| 6736 */ | |
| 6737 | |
| 6738 /** | |
| 6739 * @addtogroup BilinearInterpolate | |
| 6740 * @{ | |
| 6741 */ | |
| 6742 | |
| 6743 | |
| 6744 /** | |
| 6745 * | |
| 6746 * @brief Floating-point bilinear interpolation. | |
| 6747 * @param[in,out] S points to an instance of the interpolation structure. | |
| 6748 * @param[in] X interpolation coordinate. | |
| 6749 * @param[in] Y interpolation coordinate. | |
| 6750 * @return out interpolated value. | |
| 6751 */ | |
| 6752 static __INLINE float32_t arm_bilinear_interp_f32( | |
| 6753 const arm_bilinear_interp_instance_f32 * S, | |
| 6754 float32_t X, | |
| 6755 float32_t Y) | |
| 6756 { | |
| 6757 float32_t out; | |
| 6758 float32_t f00, f01, f10, f11; | |
| 6759 float32_t *pData = S->pData; | |
| 6760 int32_t xIndex, yIndex, index; | |
| 6761 float32_t xdiff, ydiff; | |
| 6762 float32_t b1, b2, b3, b4; | |
| 6763 | |
| 6764 xIndex = (int32_t) X; | |
| 6765 yIndex = (int32_t) Y; | |
| 6766 | |
| 6767 /* Care taken for table outside boundary */ | |
| 6768 /* Returns zero output when values are outside table boundary */ | |
| 6769 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) | |
| 6770 { | |
| 6771 return (0); | |
| 6772 } | |
| 6773 | |
| 6774 /* Calculation of index for two nearest points in X-direction */ | |
| 6775 index = (xIndex - 1) + (yIndex - 1) * S->numCols; | |
| 6776 | |
| 6777 | |
| 6778 /* Read two nearest points in X-direction */ | |
| 6779 f00 = pData[index]; | |
| 6780 f01 = pData[index + 1]; | |
| 6781 | |
| 6782 /* Calculation of index for two nearest points in Y-direction */ | |
| 6783 index = (xIndex - 1) + (yIndex) * S->numCols; | |
| 6784 | |
| 6785 | |
| 6786 /* Read two nearest points in Y-direction */ | |
| 6787 f10 = pData[index]; | |
| 6788 f11 = pData[index + 1]; | |
| 6789 | |
| 6790 /* Calculation of intermediate values */ | |
| 6791 b1 = f00; | |
| 6792 b2 = f01 - f00; | |
| 6793 b3 = f10 - f00; | |
| 6794 b4 = f00 - f01 - f10 + f11; | |
| 6795 | |
| 6796 /* Calculation of fractional part in X */ | |
| 6797 xdiff = X - xIndex; | |
| 6798 | |
| 6799 /* Calculation of fractional part in Y */ | |
| 6800 ydiff = Y - yIndex; | |
| 6801 | |
| 6802 /* Calculation of bi-linear interpolated output */ | |
| 6803 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; | |
| 6804 | |
| 6805 /* return to application */ | |
| 6806 return (out); | |
| 6807 } | |
| 6808 | |
| 6809 | |
| 6810 /** | |
| 6811 * | |
| 6812 * @brief Q31 bilinear interpolation. | |
| 6813 * @param[in,out] S points to an instance of the interpolation structure. | |
| 6814 * @param[in] X interpolation coordinate in 12.20 format. | |
| 6815 * @param[in] Y interpolation coordinate in 12.20 format. | |
| 6816 * @return out interpolated value. | |
| 6817 */ | |
| 6818 static __INLINE q31_t arm_bilinear_interp_q31( | |
| 6819 arm_bilinear_interp_instance_q31 * S, | |
| 6820 q31_t X, | |
| 6821 q31_t Y) | |
| 6822 { | |
| 6823 q31_t out; /* Temporary output */ | |
| 6824 q31_t acc = 0; /* output */ | |
| 6825 q31_t xfract, yfract; /* X, Y fractional parts */ | |
| 6826 q31_t x1, x2, y1, y2; /* Nearest output values */ | |
| 6827 int32_t rI, cI; /* Row and column indices */ | |
| 6828 q31_t *pYData = S->pData; /* pointer to output table values */ | |
| 6829 uint32_t nCols = S->numCols; /* num of rows */ | |
| 6830 | |
| 6831 /* Input is in 12.20 format */ | |
| 6832 /* 12 bits for the table index */ | |
| 6833 /* Index value calculation */ | |
| 6834 rI = ((X & (q31_t)0xFFF00000) >> 20); | |
| 6835 | |
| 6836 /* Input is in 12.20 format */ | |
| 6837 /* 12 bits for the table index */ | |
| 6838 /* Index value calculation */ | |
| 6839 cI = ((Y & (q31_t)0xFFF00000) >> 20); | |
| 6840 | |
| 6841 /* Care taken for table outside boundary */ | |
| 6842 /* Returns zero output when values are outside table boundary */ | |
| 6843 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | |
| 6844 { | |
| 6845 return (0); | |
| 6846 } | |
| 6847 | |
| 6848 /* 20 bits for the fractional part */ | |
| 6849 /* shift left xfract by 11 to keep 1.31 format */ | |
| 6850 xfract = (X & 0x000FFFFF) << 11u; | |
| 6851 | |
| 6852 /* Read two nearest output values from the index */ | |
| 6853 x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; | |
| 6854 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; | |
| 6855 | |
| 6856 /* 20 bits for the fractional part */ | |
| 6857 /* shift left yfract by 11 to keep 1.31 format */ | |
| 6858 yfract = (Y & 0x000FFFFF) << 11u; | |
| 6859 | |
| 6860 /* Read two nearest output values from the index */ | |
| 6861 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; | |
| 6862 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; | |
| 6863 | |
| 6864 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ | |
| 6865 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); | |
| 6866 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); | |
| 6867 | |
| 6868 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ | |
| 6869 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); | |
| 6870 acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); | |
| 6871 | |
| 6872 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
| 6873 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); | |
| 6874 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
| 6875 | |
| 6876 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
| 6877 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); | |
| 6878 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
| 6879 | |
| 6880 /* Convert acc to 1.31(q31) format */ | |
| 6881 return ((q31_t)(acc << 2)); | |
| 6882 } | |
| 6883 | |
| 6884 | |
| 6885 /** | |
| 6886 * @brief Q15 bilinear interpolation. | |
| 6887 * @param[in,out] S points to an instance of the interpolation structure. | |
| 6888 * @param[in] X interpolation coordinate in 12.20 format. | |
| 6889 * @param[in] Y interpolation coordinate in 12.20 format. | |
| 6890 * @return out interpolated value. | |
| 6891 */ | |
| 6892 static __INLINE q15_t arm_bilinear_interp_q15( | |
| 6893 arm_bilinear_interp_instance_q15 * S, | |
| 6894 q31_t X, | |
| 6895 q31_t Y) | |
| 6896 { | |
| 6897 q63_t acc = 0; /* output */ | |
| 6898 q31_t out; /* Temporary output */ | |
| 6899 q15_t x1, x2, y1, y2; /* Nearest output values */ | |
| 6900 q31_t xfract, yfract; /* X, Y fractional parts */ | |
| 6901 int32_t rI, cI; /* Row and column indices */ | |
| 6902 q15_t *pYData = S->pData; /* pointer to output table values */ | |
| 6903 uint32_t nCols = S->numCols; /* num of rows */ | |
| 6904 | |
| 6905 /* Input is in 12.20 format */ | |
| 6906 /* 12 bits for the table index */ | |
| 6907 /* Index value calculation */ | |
| 6908 rI = ((X & (q31_t)0xFFF00000) >> 20); | |
| 6909 | |
| 6910 /* Input is in 12.20 format */ | |
| 6911 /* 12 bits for the table index */ | |
| 6912 /* Index value calculation */ | |
| 6913 cI = ((Y & (q31_t)0xFFF00000) >> 20); | |
| 6914 | |
| 6915 /* Care taken for table outside boundary */ | |
| 6916 /* Returns zero output when values are outside table boundary */ | |
| 6917 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | |
| 6918 { | |
| 6919 return (0); | |
| 6920 } | |
| 6921 | |
| 6922 /* 20 bits for the fractional part */ | |
| 6923 /* xfract should be in 12.20 format */ | |
| 6924 xfract = (X & 0x000FFFFF); | |
| 6925 | |
| 6926 /* Read two nearest output values from the index */ | |
| 6927 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; | |
| 6928 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; | |
| 6929 | |
| 6930 /* 20 bits for the fractional part */ | |
| 6931 /* yfract should be in 12.20 format */ | |
| 6932 yfract = (Y & 0x000FFFFF); | |
| 6933 | |
| 6934 /* Read two nearest output values from the index */ | |
| 6935 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; | |
| 6936 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; | |
| 6937 | |
| 6938 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ | |
| 6939 | |
| 6940 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ | |
| 6941 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ | |
| 6942 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); | |
| 6943 acc = ((q63_t) out * (0xFFFFF - yfract)); | |
| 6944 | |
| 6945 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ | |
| 6946 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); | |
| 6947 acc += ((q63_t) out * (xfract)); | |
| 6948 | |
| 6949 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ | |
| 6950 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); | |
| 6951 acc += ((q63_t) out * (yfract)); | |
| 6952 | |
| 6953 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ | |
| 6954 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); | |
| 6955 acc += ((q63_t) out * (yfract)); | |
| 6956 | |
| 6957 /* acc is in 13.51 format and down shift acc by 36 times */ | |
| 6958 /* Convert out to 1.15 format */ | |
| 6959 return ((q15_t)(acc >> 36)); | |
| 6960 } | |
| 6961 | |
| 6962 | |
| 6963 /** | |
| 6964 * @brief Q7 bilinear interpolation. | |
| 6965 * @param[in,out] S points to an instance of the interpolation structure. | |
| 6966 * @param[in] X interpolation coordinate in 12.20 format. | |
| 6967 * @param[in] Y interpolation coordinate in 12.20 format. | |
| 6968 * @return out interpolated value. | |
| 6969 */ | |
| 6970 static __INLINE q7_t arm_bilinear_interp_q7( | |
| 6971 arm_bilinear_interp_instance_q7 * S, | |
| 6972 q31_t X, | |
| 6973 q31_t Y) | |
| 6974 { | |
| 6975 q63_t acc = 0; /* output */ | |
| 6976 q31_t out; /* Temporary output */ | |
| 6977 q31_t xfract, yfract; /* X, Y fractional parts */ | |
| 6978 q7_t x1, x2, y1, y2; /* Nearest output values */ | |
| 6979 int32_t rI, cI; /* Row and column indices */ | |
| 6980 q7_t *pYData = S->pData; /* pointer to output table values */ | |
| 6981 uint32_t nCols = S->numCols; /* num of rows */ | |
| 6982 | |
| 6983 /* Input is in 12.20 format */ | |
| 6984 /* 12 bits for the table index */ | |
| 6985 /* Index value calculation */ | |
| 6986 rI = ((X & (q31_t)0xFFF00000) >> 20); | |
| 6987 | |
| 6988 /* Input is in 12.20 format */ | |
| 6989 /* 12 bits for the table index */ | |
| 6990 /* Index value calculation */ | |
| 6991 cI = ((Y & (q31_t)0xFFF00000) >> 20); | |
| 6992 | |
| 6993 /* Care taken for table outside boundary */ | |
| 6994 /* Returns zero output when values are outside table boundary */ | |
| 6995 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | |
| 6996 { | |
| 6997 return (0); | |
| 6998 } | |
| 6999 | |
| 7000 /* 20 bits for the fractional part */ | |
| 7001 /* xfract should be in 12.20 format */ | |
| 7002 xfract = (X & (q31_t)0x000FFFFF); | |
| 7003 | |
| 7004 /* Read two nearest output values from the index */ | |
| 7005 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; | |
| 7006 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; | |
| 7007 | |
| 7008 /* 20 bits for the fractional part */ | |
| 7009 /* yfract should be in 12.20 format */ | |
| 7010 yfract = (Y & (q31_t)0x000FFFFF); | |
| 7011 | |
| 7012 /* Read two nearest output values from the index */ | |
| 7013 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; | |
| 7014 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; | |
| 7015 | |
| 7016 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ | |
| 7017 out = ((x1 * (0xFFFFF - xfract))); | |
| 7018 acc = (((q63_t) out * (0xFFFFF - yfract))); | |
| 7019 | |
| 7020 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ | |
| 7021 out = ((x2 * (0xFFFFF - yfract))); | |
| 7022 acc += (((q63_t) out * (xfract))); | |
| 7023 | |
| 7024 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ | |
| 7025 out = ((y1 * (0xFFFFF - xfract))); | |
| 7026 acc += (((q63_t) out * (yfract))); | |
| 7027 | |
| 7028 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ | |
| 7029 out = ((y2 * (yfract))); | |
| 7030 acc += (((q63_t) out * (xfract))); | |
| 7031 | |
| 7032 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ | |
| 7033 return ((q7_t)(acc >> 40)); | |
| 7034 } | |
| 7035 | |
| 7036 /** | |
| 7037 * @} end of BilinearInterpolate group | |
| 7038 */ | |
| 7039 | |
| 7040 | |
| 7041 /* SMMLAR */ | |
| 7042 #define multAcc_32x32_keep32_R(a, x, y) \ | |
| 7043 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) | |
| 7044 | |
| 7045 /* SMMLSR */ | |
| 7046 #define multSub_32x32_keep32_R(a, x, y) \ | |
| 7047 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) | |
| 7048 | |
| 7049 /* SMMULR */ | |
| 7050 #define mult_32x32_keep32_R(a, x, y) \ | |
| 7051 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) | |
| 7052 | |
| 7053 /* SMMLA */ | |
| 7054 #define multAcc_32x32_keep32(a, x, y) \ | |
| 7055 a += (q31_t) (((q63_t) x * y) >> 32) | |
| 7056 | |
| 7057 /* SMMLS */ | |
| 7058 #define multSub_32x32_keep32(a, x, y) \ | |
| 7059 a -= (q31_t) (((q63_t) x * y) >> 32) | |
| 7060 | |
| 7061 /* SMMUL */ | |
| 7062 #define mult_32x32_keep32(a, x, y) \ | |
| 7063 a = (q31_t) (((q63_t) x * y ) >> 32) | |
| 7064 | |
| 7065 | |
| 7066 #if defined ( __CC_ARM ) | |
| 7067 /* Enter low optimization region - place directly above function definition */ | |
| 7068 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
| 7069 #define LOW_OPTIMIZATION_ENTER \ | |
| 7070 _Pragma ("push") \ | |
| 7071 _Pragma ("O1") | |
| 7072 #else | |
| 7073 #define LOW_OPTIMIZATION_ENTER | |
| 7074 #endif | |
| 7075 | |
| 7076 /* Exit low optimization region - place directly after end of function definition */ | |
| 7077 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
| 7078 #define LOW_OPTIMIZATION_EXIT \ | |
| 7079 _Pragma ("pop") | |
| 7080 #else | |
| 7081 #define LOW_OPTIMIZATION_EXIT | |
| 7082 #endif | |
| 7083 | |
| 7084 /* Enter low optimization region - place directly above function definition */ | |
| 7085 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
| 7086 | |
| 7087 /* Exit low optimization region - place directly after end of function definition */ | |
| 7088 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
| 7089 | |
| 7090 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) | |
| 7091 #define LOW_OPTIMIZATION_ENTER | |
| 7092 #define LOW_OPTIMIZATION_EXIT | |
| 7093 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
| 7094 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
| 7095 | |
| 7096 #elif defined(__GNUC__) | |
| 7097 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) | |
| 7098 #define LOW_OPTIMIZATION_EXIT | |
| 7099 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
| 7100 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
| 7101 | |
| 7102 #elif defined(__ICCARM__) | |
| 7103 /* Enter low optimization region - place directly above function definition */ | |
| 7104 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
| 7105 #define LOW_OPTIMIZATION_ENTER \ | |
| 7106 _Pragma ("optimize=low") | |
| 7107 #else | |
| 7108 #define LOW_OPTIMIZATION_ENTER | |
| 7109 #endif | |
| 7110 | |
| 7111 /* Exit low optimization region - place directly after end of function definition */ | |
| 7112 #define LOW_OPTIMIZATION_EXIT | |
| 7113 | |
| 7114 /* Enter low optimization region - place directly above function definition */ | |
| 7115 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
| 7116 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ | |
| 7117 _Pragma ("optimize=low") | |
| 7118 #else | |
| 7119 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
| 7120 #endif | |
| 7121 | |
| 7122 /* Exit low optimization region - place directly after end of function definition */ | |
| 7123 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
| 7124 | |
| 7125 #elif defined(__CSMC__) | |
| 7126 #define LOW_OPTIMIZATION_ENTER | |
| 7127 #define LOW_OPTIMIZATION_EXIT | |
| 7128 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
| 7129 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
| 7130 | |
| 7131 #elif defined(__TASKING__) | |
| 7132 #define LOW_OPTIMIZATION_ENTER | |
| 7133 #define LOW_OPTIMIZATION_EXIT | |
| 7134 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
| 7135 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
| 7136 | |
| 7137 #endif | |
| 7138 | |
| 7139 | |
| 7140 #ifdef __cplusplus | |
| 7141 } | |
| 7142 #endif | |
| 7143 | |
| 7144 | |
| 7145 #if defined ( __GNUC__ ) | |
| 7146 #pragma GCC diagnostic pop | |
| 7147 #endif | |
| 7148 | |
| 7149 #endif /* _ARM_MATH_H */ | |
| 7150 | |
| 7151 /** | |
| 7152 * | |
| 7153 * End of file. | |
| 7154 */ |
