Mercurial > pub > halpp
comparison l476rg/Drivers/CMSIS/Include/arm_math.h @ 0:32a3b1785697
a rough draft of Hardware Abstraction Layer for C++
STM32L476RG drivers
author | cin |
---|---|
date | Thu, 12 Jan 2017 02:45:43 +0300 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:32a3b1785697 |
---|---|
1 /* ---------------------------------------------------------------------- | |
2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved. | |
3 * | |
4 * $Date: 20. October 2015 | |
5 * $Revision: V1.4.5 b | |
6 * | |
7 * Project: CMSIS DSP Library | |
8 * Title: arm_math.h | |
9 * | |
10 * Description: Public header file for CMSIS DSP Library | |
11 * | |
12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 | |
13 * | |
14 * Redistribution and use in source and binary forms, with or without | |
15 * modification, are permitted provided that the following conditions | |
16 * are met: | |
17 * - Redistributions of source code must retain the above copyright | |
18 * notice, this list of conditions and the following disclaimer. | |
19 * - Redistributions in binary form must reproduce the above copyright | |
20 * notice, this list of conditions and the following disclaimer in | |
21 * the documentation and/or other materials provided with the | |
22 * distribution. | |
23 * - Neither the name of ARM LIMITED nor the names of its contributors | |
24 * may be used to endorse or promote products derived from this | |
25 * software without specific prior written permission. | |
26 * | |
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | |
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | |
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
38 * POSSIBILITY OF SUCH DAMAGE. | |
39 * -------------------------------------------------------------------- */ | |
40 | |
41 /** | |
42 \mainpage CMSIS DSP Software Library | |
43 * | |
44 * Introduction | |
45 * ------------ | |
46 * | |
47 * This user manual describes the CMSIS DSP software library, | |
48 * a suite of common signal processing functions for use on Cortex-M processor based devices. | |
49 * | |
50 * The library is divided into a number of functions each covering a specific category: | |
51 * - Basic math functions | |
52 * - Fast math functions | |
53 * - Complex math functions | |
54 * - Filters | |
55 * - Matrix functions | |
56 * - Transforms | |
57 * - Motor control functions | |
58 * - Statistical functions | |
59 * - Support functions | |
60 * - Interpolation functions | |
61 * | |
62 * The library has separate functions for operating on 8-bit integers, 16-bit integers, | |
63 * 32-bit integer and 32-bit floating-point values. | |
64 * | |
65 * Using the Library | |
66 * ------------ | |
67 * | |
68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. | |
69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) | |
70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) | |
71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) | |
72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) | |
73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) | |
74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) | |
75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) | |
76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) | |
77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) | |
78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) | |
79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) | |
80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) | |
81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) | |
82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) | |
83 * | |
84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. | |
85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single | |
86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. | |
87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or | |
88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. | |
89 * | |
90 * Examples | |
91 * -------- | |
92 * | |
93 * The library ships with a number of examples which demonstrate how to use the library functions. | |
94 * | |
95 * Toolchain Support | |
96 * ------------ | |
97 * | |
98 * The library has been developed and tested with MDK-ARM version 5.14.0.0 | |
99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. | |
100 * | |
101 * Building the Library | |
102 * ------------ | |
103 * | |
104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. | |
105 * - arm_cortexM_math.uvprojx | |
106 * | |
107 * | |
108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. | |
109 * | |
110 * Pre-processor Macros | |
111 * ------------ | |
112 * | |
113 * Each library project have differant pre-processor macros. | |
114 * | |
115 * - UNALIGNED_SUPPORT_DISABLE: | |
116 * | |
117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access | |
118 * | |
119 * - ARM_MATH_BIG_ENDIAN: | |
120 * | |
121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. | |
122 * | |
123 * - ARM_MATH_MATRIX_CHECK: | |
124 * | |
125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices | |
126 * | |
127 * - ARM_MATH_ROUNDING: | |
128 * | |
129 * Define macro ARM_MATH_ROUNDING for rounding on support functions | |
130 * | |
131 * - ARM_MATH_CMx: | |
132 * | |
133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target | |
134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and | |
135 * ARM_MATH_CM7 for building the library on cortex-M7. | |
136 * | |
137 * - __FPU_PRESENT: | |
138 * | |
139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries | |
140 * | |
141 * <hr> | |
142 * CMSIS-DSP in ARM::CMSIS Pack | |
143 * ----------------------------- | |
144 * | |
145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: | |
146 * |File/Folder |Content | | |
147 * |------------------------------|------------------------------------------------------------------------| | |
148 * |\b CMSIS\\Documentation\\DSP | This documentation | | |
149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | | |
150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | | |
151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | | |
152 * | |
153 * <hr> | |
154 * Revision History of CMSIS-DSP | |
155 * ------------ | |
156 * Please refer to \ref ChangeLog_pg. | |
157 * | |
158 * Copyright Notice | |
159 * ------------ | |
160 * | |
161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved. | |
162 */ | |
163 | |
164 | |
165 /** | |
166 * @defgroup groupMath Basic Math Functions | |
167 */ | |
168 | |
169 /** | |
170 * @defgroup groupFastMath Fast Math Functions | |
171 * This set of functions provides a fast approximation to sine, cosine, and square root. | |
172 * As compared to most of the other functions in the CMSIS math library, the fast math functions | |
173 * operate on individual values and not arrays. | |
174 * There are separate functions for Q15, Q31, and floating-point data. | |
175 * | |
176 */ | |
177 | |
178 /** | |
179 * @defgroup groupCmplxMath Complex Math Functions | |
180 * This set of functions operates on complex data vectors. | |
181 * The data in the complex arrays is stored in an interleaved fashion | |
182 * (real, imag, real, imag, ...). | |
183 * In the API functions, the number of samples in a complex array refers | |
184 * to the number of complex values; the array contains twice this number of | |
185 * real values. | |
186 */ | |
187 | |
188 /** | |
189 * @defgroup groupFilters Filtering Functions | |
190 */ | |
191 | |
192 /** | |
193 * @defgroup groupMatrix Matrix Functions | |
194 * | |
195 * This set of functions provides basic matrix math operations. | |
196 * The functions operate on matrix data structures. For example, | |
197 * the type | |
198 * definition for the floating-point matrix structure is shown | |
199 * below: | |
200 * <pre> | |
201 * typedef struct | |
202 * { | |
203 * uint16_t numRows; // number of rows of the matrix. | |
204 * uint16_t numCols; // number of columns of the matrix. | |
205 * float32_t *pData; // points to the data of the matrix. | |
206 * } arm_matrix_instance_f32; | |
207 * </pre> | |
208 * There are similar definitions for Q15 and Q31 data types. | |
209 * | |
210 * The structure specifies the size of the matrix and then points to | |
211 * an array of data. The array is of size <code>numRows X numCols</code> | |
212 * and the values are arranged in row order. That is, the | |
213 * matrix element (i, j) is stored at: | |
214 * <pre> | |
215 * pData[i*numCols + j] | |
216 * </pre> | |
217 * | |
218 * \par Init Functions | |
219 * There is an associated initialization function for each type of matrix | |
220 * data structure. | |
221 * The initialization function sets the values of the internal structure fields. | |
222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> | |
223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. | |
224 * | |
225 * \par | |
226 * Use of the initialization function is optional. However, if initialization function is used | |
227 * then the instance structure cannot be placed into a const data section. | |
228 * To place the instance structure in a const data | |
229 * section, manually initialize the data structure. For example: | |
230 * <pre> | |
231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> | |
232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> | |
233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> | |
234 * </pre> | |
235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> | |
236 * specifies the number of columns, and <code>pData</code> points to the | |
237 * data array. | |
238 * | |
239 * \par Size Checking | |
240 * By default all of the matrix functions perform size checking on the input and | |
241 * output matrices. For example, the matrix addition function verifies that the | |
242 * two input matrices and the output matrix all have the same number of rows and | |
243 * columns. If the size check fails the functions return: | |
244 * <pre> | |
245 * ARM_MATH_SIZE_MISMATCH | |
246 * </pre> | |
247 * Otherwise the functions return | |
248 * <pre> | |
249 * ARM_MATH_SUCCESS | |
250 * </pre> | |
251 * There is some overhead associated with this matrix size checking. | |
252 * The matrix size checking is enabled via the \#define | |
253 * <pre> | |
254 * ARM_MATH_MATRIX_CHECK | |
255 * </pre> | |
256 * within the library project settings. By default this macro is defined | |
257 * and size checking is enabled. By changing the project settings and | |
258 * undefining this macro size checking is eliminated and the functions | |
259 * run a bit faster. With size checking disabled the functions always | |
260 * return <code>ARM_MATH_SUCCESS</code>. | |
261 */ | |
262 | |
263 /** | |
264 * @defgroup groupTransforms Transform Functions | |
265 */ | |
266 | |
267 /** | |
268 * @defgroup groupController Controller Functions | |
269 */ | |
270 | |
271 /** | |
272 * @defgroup groupStats Statistics Functions | |
273 */ | |
274 /** | |
275 * @defgroup groupSupport Support Functions | |
276 */ | |
277 | |
278 /** | |
279 * @defgroup groupInterpolation Interpolation Functions | |
280 * These functions perform 1- and 2-dimensional interpolation of data. | |
281 * Linear interpolation is used for 1-dimensional data and | |
282 * bilinear interpolation is used for 2-dimensional data. | |
283 */ | |
284 | |
285 /** | |
286 * @defgroup groupExamples Examples | |
287 */ | |
288 #ifndef _ARM_MATH_H | |
289 #define _ARM_MATH_H | |
290 | |
291 /* ignore some GCC warnings */ | |
292 #if defined ( __GNUC__ ) | |
293 #pragma GCC diagnostic push | |
294 #pragma GCC diagnostic ignored "-Wsign-conversion" | |
295 #pragma GCC diagnostic ignored "-Wconversion" | |
296 #pragma GCC diagnostic ignored "-Wunused-parameter" | |
297 #endif | |
298 | |
299 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ | |
300 | |
301 #if defined(ARM_MATH_CM7) | |
302 #include "core_cm7.h" | |
303 #elif defined (ARM_MATH_CM4) | |
304 #include "core_cm4.h" | |
305 #elif defined (ARM_MATH_CM3) | |
306 #include "core_cm3.h" | |
307 #elif defined (ARM_MATH_CM0) | |
308 #include "core_cm0.h" | |
309 #define ARM_MATH_CM0_FAMILY | |
310 #elif defined (ARM_MATH_CM0PLUS) | |
311 #include "core_cm0plus.h" | |
312 #define ARM_MATH_CM0_FAMILY | |
313 #else | |
314 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" | |
315 #endif | |
316 | |
317 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ | |
318 #include "string.h" | |
319 #include "math.h" | |
320 #ifdef __cplusplus | |
321 extern "C" | |
322 { | |
323 #endif | |
324 | |
325 | |
326 /** | |
327 * @brief Macros required for reciprocal calculation in Normalized LMS | |
328 */ | |
329 | |
330 #define DELTA_Q31 (0x100) | |
331 #define DELTA_Q15 0x5 | |
332 #define INDEX_MASK 0x0000003F | |
333 #ifndef PI | |
334 #define PI 3.14159265358979f | |
335 #endif | |
336 | |
337 /** | |
338 * @brief Macros required for SINE and COSINE Fast math approximations | |
339 */ | |
340 | |
341 #define FAST_MATH_TABLE_SIZE 512 | |
342 #define FAST_MATH_Q31_SHIFT (32 - 10) | |
343 #define FAST_MATH_Q15_SHIFT (16 - 10) | |
344 #define CONTROLLER_Q31_SHIFT (32 - 9) | |
345 #define TABLE_SIZE 256 | |
346 #define TABLE_SPACING_Q31 0x400000 | |
347 #define TABLE_SPACING_Q15 0x80 | |
348 | |
349 /** | |
350 * @brief Macros required for SINE and COSINE Controller functions | |
351 */ | |
352 /* 1.31(q31) Fixed value of 2/360 */ | |
353 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ | |
354 #define INPUT_SPACING 0xB60B61 | |
355 | |
356 /** | |
357 * @brief Macro for Unaligned Support | |
358 */ | |
359 #ifndef UNALIGNED_SUPPORT_DISABLE | |
360 #define ALIGN4 | |
361 #else | |
362 #if defined (__GNUC__) | |
363 #define ALIGN4 __attribute__((aligned(4))) | |
364 #else | |
365 #define ALIGN4 __align(4) | |
366 #endif | |
367 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ | |
368 | |
369 /** | |
370 * @brief Error status returned by some functions in the library. | |
371 */ | |
372 | |
373 typedef enum | |
374 { | |
375 ARM_MATH_SUCCESS = 0, /**< No error */ | |
376 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ | |
377 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ | |
378 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ | |
379 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ | |
380 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ | |
381 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ | |
382 } arm_status; | |
383 | |
384 /** | |
385 * @brief 8-bit fractional data type in 1.7 format. | |
386 */ | |
387 typedef int8_t q7_t; | |
388 | |
389 /** | |
390 * @brief 16-bit fractional data type in 1.15 format. | |
391 */ | |
392 typedef int16_t q15_t; | |
393 | |
394 /** | |
395 * @brief 32-bit fractional data type in 1.31 format. | |
396 */ | |
397 typedef int32_t q31_t; | |
398 | |
399 /** | |
400 * @brief 64-bit fractional data type in 1.63 format. | |
401 */ | |
402 typedef int64_t q63_t; | |
403 | |
404 /** | |
405 * @brief 32-bit floating-point type definition. | |
406 */ | |
407 typedef float float32_t; | |
408 | |
409 /** | |
410 * @brief 64-bit floating-point type definition. | |
411 */ | |
412 typedef double float64_t; | |
413 | |
414 /** | |
415 * @brief definition to read/write two 16 bit values. | |
416 */ | |
417 #if defined __CC_ARM | |
418 #define __SIMD32_TYPE int32_t __packed | |
419 #define CMSIS_UNUSED __attribute__((unused)) | |
420 | |
421 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) | |
422 #define __SIMD32_TYPE int32_t | |
423 #define CMSIS_UNUSED __attribute__((unused)) | |
424 | |
425 #elif defined __GNUC__ | |
426 #define __SIMD32_TYPE int32_t | |
427 #define CMSIS_UNUSED __attribute__((unused)) | |
428 | |
429 #elif defined __ICCARM__ | |
430 #define __SIMD32_TYPE int32_t __packed | |
431 #define CMSIS_UNUSED | |
432 | |
433 #elif defined __CSMC__ | |
434 #define __SIMD32_TYPE int32_t | |
435 #define CMSIS_UNUSED | |
436 | |
437 #elif defined __TASKING__ | |
438 #define __SIMD32_TYPE __unaligned int32_t | |
439 #define CMSIS_UNUSED | |
440 | |
441 #else | |
442 #error Unknown compiler | |
443 #endif | |
444 | |
445 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) | |
446 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) | |
447 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) | |
448 #define __SIMD64(addr) (*(int64_t **) & (addr)) | |
449 | |
450 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) | |
451 /** | |
452 * @brief definition to pack two 16 bit values. | |
453 */ | |
454 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ | |
455 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) | |
456 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ | |
457 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) | |
458 | |
459 #endif | |
460 | |
461 | |
462 /** | |
463 * @brief definition to pack four 8 bit values. | |
464 */ | |
465 #ifndef ARM_MATH_BIG_ENDIAN | |
466 | |
467 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ | |
468 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ | |
469 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ | |
470 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) | |
471 #else | |
472 | |
473 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ | |
474 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ | |
475 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ | |
476 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) | |
477 | |
478 #endif | |
479 | |
480 | |
481 /** | |
482 * @brief Clips Q63 to Q31 values. | |
483 */ | |
484 static __INLINE q31_t clip_q63_to_q31( | |
485 q63_t x) | |
486 { | |
487 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
488 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; | |
489 } | |
490 | |
491 /** | |
492 * @brief Clips Q63 to Q15 values. | |
493 */ | |
494 static __INLINE q15_t clip_q63_to_q15( | |
495 q63_t x) | |
496 { | |
497 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? | |
498 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); | |
499 } | |
500 | |
501 /** | |
502 * @brief Clips Q31 to Q7 values. | |
503 */ | |
504 static __INLINE q7_t clip_q31_to_q7( | |
505 q31_t x) | |
506 { | |
507 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? | |
508 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; | |
509 } | |
510 | |
511 /** | |
512 * @brief Clips Q31 to Q15 values. | |
513 */ | |
514 static __INLINE q15_t clip_q31_to_q15( | |
515 q31_t x) | |
516 { | |
517 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? | |
518 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; | |
519 } | |
520 | |
521 /** | |
522 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. | |
523 */ | |
524 | |
525 static __INLINE q63_t mult32x64( | |
526 q63_t x, | |
527 q31_t y) | |
528 { | |
529 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + | |
530 (((q63_t) (x >> 32) * y))); | |
531 } | |
532 | |
533 /* | |
534 #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) | |
535 #define __CLZ __clz | |
536 #endif | |
537 */ | |
538 /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ | |
539 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) | |
540 static __INLINE uint32_t __CLZ( | |
541 q31_t data); | |
542 | |
543 static __INLINE uint32_t __CLZ( | |
544 q31_t data) | |
545 { | |
546 uint32_t count = 0; | |
547 uint32_t mask = 0x80000000; | |
548 | |
549 while((data & mask) == 0) | |
550 { | |
551 count += 1u; | |
552 mask = mask >> 1u; | |
553 } | |
554 | |
555 return (count); | |
556 } | |
557 #endif | |
558 | |
559 /** | |
560 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. | |
561 */ | |
562 | |
563 static __INLINE uint32_t arm_recip_q31( | |
564 q31_t in, | |
565 q31_t * dst, | |
566 q31_t * pRecipTable) | |
567 { | |
568 q31_t out; | |
569 uint32_t tempVal; | |
570 uint32_t index, i; | |
571 uint32_t signBits; | |
572 | |
573 if(in > 0) | |
574 { | |
575 signBits = ((uint32_t) (__CLZ( in) - 1)); | |
576 } | |
577 else | |
578 { | |
579 signBits = ((uint32_t) (__CLZ(-in) - 1)); | |
580 } | |
581 | |
582 /* Convert input sample to 1.31 format */ | |
583 in = (in << signBits); | |
584 | |
585 /* calculation of index for initial approximated Val */ | |
586 index = (uint32_t)(in >> 24); | |
587 index = (index & INDEX_MASK); | |
588 | |
589 /* 1.31 with exp 1 */ | |
590 out = pRecipTable[index]; | |
591 | |
592 /* calculation of reciprocal value */ | |
593 /* running approximation for two iterations */ | |
594 for (i = 0u; i < 2u; i++) | |
595 { | |
596 tempVal = (uint32_t) (((q63_t) in * out) >> 31); | |
597 tempVal = 0x7FFFFFFFu - tempVal; | |
598 /* 1.31 with exp 1 */ | |
599 /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ | |
600 out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); | |
601 } | |
602 | |
603 /* write output */ | |
604 *dst = out; | |
605 | |
606 /* return num of signbits of out = 1/in value */ | |
607 return (signBits + 1u); | |
608 } | |
609 | |
610 | |
611 /** | |
612 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. | |
613 */ | |
614 static __INLINE uint32_t arm_recip_q15( | |
615 q15_t in, | |
616 q15_t * dst, | |
617 q15_t * pRecipTable) | |
618 { | |
619 q15_t out = 0; | |
620 uint32_t tempVal = 0; | |
621 uint32_t index = 0, i = 0; | |
622 uint32_t signBits = 0; | |
623 | |
624 if(in > 0) | |
625 { | |
626 signBits = ((uint32_t)(__CLZ( in) - 17)); | |
627 } | |
628 else | |
629 { | |
630 signBits = ((uint32_t)(__CLZ(-in) - 17)); | |
631 } | |
632 | |
633 /* Convert input sample to 1.15 format */ | |
634 in = (in << signBits); | |
635 | |
636 /* calculation of index for initial approximated Val */ | |
637 index = (uint32_t)(in >> 8); | |
638 index = (index & INDEX_MASK); | |
639 | |
640 /* 1.15 with exp 1 */ | |
641 out = pRecipTable[index]; | |
642 | |
643 /* calculation of reciprocal value */ | |
644 /* running approximation for two iterations */ | |
645 for (i = 0u; i < 2u; i++) | |
646 { | |
647 tempVal = (uint32_t) (((q31_t) in * out) >> 15); | |
648 tempVal = 0x7FFFu - tempVal; | |
649 /* 1.15 with exp 1 */ | |
650 out = (q15_t) (((q31_t) out * tempVal) >> 14); | |
651 /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ | |
652 } | |
653 | |
654 /* write output */ | |
655 *dst = out; | |
656 | |
657 /* return num of signbits of out = 1/in value */ | |
658 return (signBits + 1); | |
659 } | |
660 | |
661 | |
662 /* | |
663 * @brief C custom defined intrinisic function for only M0 processors | |
664 */ | |
665 #if defined(ARM_MATH_CM0_FAMILY) | |
666 static __INLINE q31_t __SSAT( | |
667 q31_t x, | |
668 uint32_t y) | |
669 { | |
670 int32_t posMax, negMin; | |
671 uint32_t i; | |
672 | |
673 posMax = 1; | |
674 for (i = 0; i < (y - 1); i++) | |
675 { | |
676 posMax = posMax * 2; | |
677 } | |
678 | |
679 if(x > 0) | |
680 { | |
681 posMax = (posMax - 1); | |
682 | |
683 if(x > posMax) | |
684 { | |
685 x = posMax; | |
686 } | |
687 } | |
688 else | |
689 { | |
690 negMin = -posMax; | |
691 | |
692 if(x < negMin) | |
693 { | |
694 x = negMin; | |
695 } | |
696 } | |
697 return (x); | |
698 } | |
699 #endif /* end of ARM_MATH_CM0_FAMILY */ | |
700 | |
701 | |
702 /* | |
703 * @brief C custom defined intrinsic function for M3 and M0 processors | |
704 */ | |
705 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) | |
706 | |
707 /* | |
708 * @brief C custom defined QADD8 for M3 and M0 processors | |
709 */ | |
710 static __INLINE uint32_t __QADD8( | |
711 uint32_t x, | |
712 uint32_t y) | |
713 { | |
714 q31_t r, s, t, u; | |
715 | |
716 r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; | |
717 s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; | |
718 t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; | |
719 u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; | |
720 | |
721 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); | |
722 } | |
723 | |
724 | |
725 /* | |
726 * @brief C custom defined QSUB8 for M3 and M0 processors | |
727 */ | |
728 static __INLINE uint32_t __QSUB8( | |
729 uint32_t x, | |
730 uint32_t y) | |
731 { | |
732 q31_t r, s, t, u; | |
733 | |
734 r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; | |
735 s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; | |
736 t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; | |
737 u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; | |
738 | |
739 return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); | |
740 } | |
741 | |
742 | |
743 /* | |
744 * @brief C custom defined QADD16 for M3 and M0 processors | |
745 */ | |
746 static __INLINE uint32_t __QADD16( | |
747 uint32_t x, | |
748 uint32_t y) | |
749 { | |
750 /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ | |
751 q31_t r = 0, s = 0; | |
752 | |
753 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
754 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
755 | |
756 return ((uint32_t)((s << 16) | (r ))); | |
757 } | |
758 | |
759 | |
760 /* | |
761 * @brief C custom defined SHADD16 for M3 and M0 processors | |
762 */ | |
763 static __INLINE uint32_t __SHADD16( | |
764 uint32_t x, | |
765 uint32_t y) | |
766 { | |
767 q31_t r, s; | |
768 | |
769 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
770 s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
771 | |
772 return ((uint32_t)((s << 16) | (r ))); | |
773 } | |
774 | |
775 | |
776 /* | |
777 * @brief C custom defined QSUB16 for M3 and M0 processors | |
778 */ | |
779 static __INLINE uint32_t __QSUB16( | |
780 uint32_t x, | |
781 uint32_t y) | |
782 { | |
783 q31_t r, s; | |
784 | |
785 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
786 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
787 | |
788 return ((uint32_t)((s << 16) | (r ))); | |
789 } | |
790 | |
791 | |
792 /* | |
793 * @brief C custom defined SHSUB16 for M3 and M0 processors | |
794 */ | |
795 static __INLINE uint32_t __SHSUB16( | |
796 uint32_t x, | |
797 uint32_t y) | |
798 { | |
799 q31_t r, s; | |
800 | |
801 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
802 s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
803 | |
804 return ((uint32_t)((s << 16) | (r ))); | |
805 } | |
806 | |
807 | |
808 /* | |
809 * @brief C custom defined QASX for M3 and M0 processors | |
810 */ | |
811 static __INLINE uint32_t __QASX( | |
812 uint32_t x, | |
813 uint32_t y) | |
814 { | |
815 q31_t r, s; | |
816 | |
817 r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
818 s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
819 | |
820 return ((uint32_t)((s << 16) | (r ))); | |
821 } | |
822 | |
823 | |
824 /* | |
825 * @brief C custom defined SHASX for M3 and M0 processors | |
826 */ | |
827 static __INLINE uint32_t __SHASX( | |
828 uint32_t x, | |
829 uint32_t y) | |
830 { | |
831 q31_t r, s; | |
832 | |
833 r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
834 s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
835 | |
836 return ((uint32_t)((s << 16) | (r ))); | |
837 } | |
838 | |
839 | |
840 /* | |
841 * @brief C custom defined QSAX for M3 and M0 processors | |
842 */ | |
843 static __INLINE uint32_t __QSAX( | |
844 uint32_t x, | |
845 uint32_t y) | |
846 { | |
847 q31_t r, s; | |
848 | |
849 r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; | |
850 s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; | |
851 | |
852 return ((uint32_t)((s << 16) | (r ))); | |
853 } | |
854 | |
855 | |
856 /* | |
857 * @brief C custom defined SHSAX for M3 and M0 processors | |
858 */ | |
859 static __INLINE uint32_t __SHSAX( | |
860 uint32_t x, | |
861 uint32_t y) | |
862 { | |
863 q31_t r, s; | |
864 | |
865 r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
866 s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; | |
867 | |
868 return ((uint32_t)((s << 16) | (r ))); | |
869 } | |
870 | |
871 | |
872 /* | |
873 * @brief C custom defined SMUSDX for M3 and M0 processors | |
874 */ | |
875 static __INLINE uint32_t __SMUSDX( | |
876 uint32_t x, | |
877 uint32_t y) | |
878 { | |
879 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - | |
880 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); | |
881 } | |
882 | |
883 /* | |
884 * @brief C custom defined SMUADX for M3 and M0 processors | |
885 */ | |
886 static __INLINE uint32_t __SMUADX( | |
887 uint32_t x, | |
888 uint32_t y) | |
889 { | |
890 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + | |
891 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); | |
892 } | |
893 | |
894 | |
895 /* | |
896 * @brief C custom defined QADD for M3 and M0 processors | |
897 */ | |
898 static __INLINE int32_t __QADD( | |
899 int32_t x, | |
900 int32_t y) | |
901 { | |
902 return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); | |
903 } | |
904 | |
905 | |
906 /* | |
907 * @brief C custom defined QSUB for M3 and M0 processors | |
908 */ | |
909 static __INLINE int32_t __QSUB( | |
910 int32_t x, | |
911 int32_t y) | |
912 { | |
913 return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); | |
914 } | |
915 | |
916 | |
917 /* | |
918 * @brief C custom defined SMLAD for M3 and M0 processors | |
919 */ | |
920 static __INLINE uint32_t __SMLAD( | |
921 uint32_t x, | |
922 uint32_t y, | |
923 uint32_t sum) | |
924 { | |
925 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + | |
926 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + | |
927 ( ((q31_t)sum ) ) )); | |
928 } | |
929 | |
930 | |
931 /* | |
932 * @brief C custom defined SMLADX for M3 and M0 processors | |
933 */ | |
934 static __INLINE uint32_t __SMLADX( | |
935 uint32_t x, | |
936 uint32_t y, | |
937 uint32_t sum) | |
938 { | |
939 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + | |
940 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + | |
941 ( ((q31_t)sum ) ) )); | |
942 } | |
943 | |
944 | |
945 /* | |
946 * @brief C custom defined SMLSDX for M3 and M0 processors | |
947 */ | |
948 static __INLINE uint32_t __SMLSDX( | |
949 uint32_t x, | |
950 uint32_t y, | |
951 uint32_t sum) | |
952 { | |
953 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - | |
954 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + | |
955 ( ((q31_t)sum ) ) )); | |
956 } | |
957 | |
958 | |
959 /* | |
960 * @brief C custom defined SMLALD for M3 and M0 processors | |
961 */ | |
962 static __INLINE uint64_t __SMLALD( | |
963 uint32_t x, | |
964 uint32_t y, | |
965 uint64_t sum) | |
966 { | |
967 /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ | |
968 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + | |
969 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + | |
970 ( ((q63_t)sum ) ) )); | |
971 } | |
972 | |
973 | |
974 /* | |
975 * @brief C custom defined SMLALDX for M3 and M0 processors | |
976 */ | |
977 static __INLINE uint64_t __SMLALDX( | |
978 uint32_t x, | |
979 uint32_t y, | |
980 uint64_t sum) | |
981 { | |
982 /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ | |
983 return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + | |
984 ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + | |
985 ( ((q63_t)sum ) ) )); | |
986 } | |
987 | |
988 | |
989 /* | |
990 * @brief C custom defined SMUAD for M3 and M0 processors | |
991 */ | |
992 static __INLINE uint32_t __SMUAD( | |
993 uint32_t x, | |
994 uint32_t y) | |
995 { | |
996 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + | |
997 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); | |
998 } | |
999 | |
1000 | |
1001 /* | |
1002 * @brief C custom defined SMUSD for M3 and M0 processors | |
1003 */ | |
1004 static __INLINE uint32_t __SMUSD( | |
1005 uint32_t x, | |
1006 uint32_t y) | |
1007 { | |
1008 return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - | |
1009 ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); | |
1010 } | |
1011 | |
1012 | |
1013 /* | |
1014 * @brief C custom defined SXTB16 for M3 and M0 processors | |
1015 */ | |
1016 static __INLINE uint32_t __SXTB16( | |
1017 uint32_t x) | |
1018 { | |
1019 return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | | |
1020 ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); | |
1021 } | |
1022 | |
1023 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ | |
1024 | |
1025 | |
1026 /** | |
1027 * @brief Instance structure for the Q7 FIR filter. | |
1028 */ | |
1029 typedef struct | |
1030 { | |
1031 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
1032 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
1033 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
1034 } arm_fir_instance_q7; | |
1035 | |
1036 /** | |
1037 * @brief Instance structure for the Q15 FIR filter. | |
1038 */ | |
1039 typedef struct | |
1040 { | |
1041 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
1042 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
1043 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
1044 } arm_fir_instance_q15; | |
1045 | |
1046 /** | |
1047 * @brief Instance structure for the Q31 FIR filter. | |
1048 */ | |
1049 typedef struct | |
1050 { | |
1051 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
1052 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
1053 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
1054 } arm_fir_instance_q31; | |
1055 | |
1056 /** | |
1057 * @brief Instance structure for the floating-point FIR filter. | |
1058 */ | |
1059 typedef struct | |
1060 { | |
1061 uint16_t numTaps; /**< number of filter coefficients in the filter. */ | |
1062 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
1063 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
1064 } arm_fir_instance_f32; | |
1065 | |
1066 | |
1067 /** | |
1068 * @brief Processing function for the Q7 FIR filter. | |
1069 * @param[in] S points to an instance of the Q7 FIR filter structure. | |
1070 * @param[in] pSrc points to the block of input data. | |
1071 * @param[out] pDst points to the block of output data. | |
1072 * @param[in] blockSize number of samples to process. | |
1073 */ | |
1074 void arm_fir_q7( | |
1075 const arm_fir_instance_q7 * S, | |
1076 q7_t * pSrc, | |
1077 q7_t * pDst, | |
1078 uint32_t blockSize); | |
1079 | |
1080 | |
1081 /** | |
1082 * @brief Initialization function for the Q7 FIR filter. | |
1083 * @param[in,out] S points to an instance of the Q7 FIR structure. | |
1084 * @param[in] numTaps Number of filter coefficients in the filter. | |
1085 * @param[in] pCoeffs points to the filter coefficients. | |
1086 * @param[in] pState points to the state buffer. | |
1087 * @param[in] blockSize number of samples that are processed. | |
1088 */ | |
1089 void arm_fir_init_q7( | |
1090 arm_fir_instance_q7 * S, | |
1091 uint16_t numTaps, | |
1092 q7_t * pCoeffs, | |
1093 q7_t * pState, | |
1094 uint32_t blockSize); | |
1095 | |
1096 | |
1097 /** | |
1098 * @brief Processing function for the Q15 FIR filter. | |
1099 * @param[in] S points to an instance of the Q15 FIR structure. | |
1100 * @param[in] pSrc points to the block of input data. | |
1101 * @param[out] pDst points to the block of output data. | |
1102 * @param[in] blockSize number of samples to process. | |
1103 */ | |
1104 void arm_fir_q15( | |
1105 const arm_fir_instance_q15 * S, | |
1106 q15_t * pSrc, | |
1107 q15_t * pDst, | |
1108 uint32_t blockSize); | |
1109 | |
1110 | |
1111 /** | |
1112 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. | |
1113 * @param[in] S points to an instance of the Q15 FIR filter structure. | |
1114 * @param[in] pSrc points to the block of input data. | |
1115 * @param[out] pDst points to the block of output data. | |
1116 * @param[in] blockSize number of samples to process. | |
1117 */ | |
1118 void arm_fir_fast_q15( | |
1119 const arm_fir_instance_q15 * S, | |
1120 q15_t * pSrc, | |
1121 q15_t * pDst, | |
1122 uint32_t blockSize); | |
1123 | |
1124 | |
1125 /** | |
1126 * @brief Initialization function for the Q15 FIR filter. | |
1127 * @param[in,out] S points to an instance of the Q15 FIR filter structure. | |
1128 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. | |
1129 * @param[in] pCoeffs points to the filter coefficients. | |
1130 * @param[in] pState points to the state buffer. | |
1131 * @param[in] blockSize number of samples that are processed at a time. | |
1132 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if | |
1133 * <code>numTaps</code> is not a supported value. | |
1134 */ | |
1135 arm_status arm_fir_init_q15( | |
1136 arm_fir_instance_q15 * S, | |
1137 uint16_t numTaps, | |
1138 q15_t * pCoeffs, | |
1139 q15_t * pState, | |
1140 uint32_t blockSize); | |
1141 | |
1142 | |
1143 /** | |
1144 * @brief Processing function for the Q31 FIR filter. | |
1145 * @param[in] S points to an instance of the Q31 FIR filter structure. | |
1146 * @param[in] pSrc points to the block of input data. | |
1147 * @param[out] pDst points to the block of output data. | |
1148 * @param[in] blockSize number of samples to process. | |
1149 */ | |
1150 void arm_fir_q31( | |
1151 const arm_fir_instance_q31 * S, | |
1152 q31_t * pSrc, | |
1153 q31_t * pDst, | |
1154 uint32_t blockSize); | |
1155 | |
1156 | |
1157 /** | |
1158 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. | |
1159 * @param[in] S points to an instance of the Q31 FIR structure. | |
1160 * @param[in] pSrc points to the block of input data. | |
1161 * @param[out] pDst points to the block of output data. | |
1162 * @param[in] blockSize number of samples to process. | |
1163 */ | |
1164 void arm_fir_fast_q31( | |
1165 const arm_fir_instance_q31 * S, | |
1166 q31_t * pSrc, | |
1167 q31_t * pDst, | |
1168 uint32_t blockSize); | |
1169 | |
1170 | |
1171 /** | |
1172 * @brief Initialization function for the Q31 FIR filter. | |
1173 * @param[in,out] S points to an instance of the Q31 FIR structure. | |
1174 * @param[in] numTaps Number of filter coefficients in the filter. | |
1175 * @param[in] pCoeffs points to the filter coefficients. | |
1176 * @param[in] pState points to the state buffer. | |
1177 * @param[in] blockSize number of samples that are processed at a time. | |
1178 */ | |
1179 void arm_fir_init_q31( | |
1180 arm_fir_instance_q31 * S, | |
1181 uint16_t numTaps, | |
1182 q31_t * pCoeffs, | |
1183 q31_t * pState, | |
1184 uint32_t blockSize); | |
1185 | |
1186 | |
1187 /** | |
1188 * @brief Processing function for the floating-point FIR filter. | |
1189 * @param[in] S points to an instance of the floating-point FIR structure. | |
1190 * @param[in] pSrc points to the block of input data. | |
1191 * @param[out] pDst points to the block of output data. | |
1192 * @param[in] blockSize number of samples to process. | |
1193 */ | |
1194 void arm_fir_f32( | |
1195 const arm_fir_instance_f32 * S, | |
1196 float32_t * pSrc, | |
1197 float32_t * pDst, | |
1198 uint32_t blockSize); | |
1199 | |
1200 | |
1201 /** | |
1202 * @brief Initialization function for the floating-point FIR filter. | |
1203 * @param[in,out] S points to an instance of the floating-point FIR filter structure. | |
1204 * @param[in] numTaps Number of filter coefficients in the filter. | |
1205 * @param[in] pCoeffs points to the filter coefficients. | |
1206 * @param[in] pState points to the state buffer. | |
1207 * @param[in] blockSize number of samples that are processed at a time. | |
1208 */ | |
1209 void arm_fir_init_f32( | |
1210 arm_fir_instance_f32 * S, | |
1211 uint16_t numTaps, | |
1212 float32_t * pCoeffs, | |
1213 float32_t * pState, | |
1214 uint32_t blockSize); | |
1215 | |
1216 | |
1217 /** | |
1218 * @brief Instance structure for the Q15 Biquad cascade filter. | |
1219 */ | |
1220 typedef struct | |
1221 { | |
1222 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
1223 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
1224 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
1225 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
1226 } arm_biquad_casd_df1_inst_q15; | |
1227 | |
1228 /** | |
1229 * @brief Instance structure for the Q31 Biquad cascade filter. | |
1230 */ | |
1231 typedef struct | |
1232 { | |
1233 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
1234 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
1235 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
1236 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ | |
1237 } arm_biquad_casd_df1_inst_q31; | |
1238 | |
1239 /** | |
1240 * @brief Instance structure for the floating-point Biquad cascade filter. | |
1241 */ | |
1242 typedef struct | |
1243 { | |
1244 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
1245 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ | |
1246 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ | |
1247 } arm_biquad_casd_df1_inst_f32; | |
1248 | |
1249 | |
1250 /** | |
1251 * @brief Processing function for the Q15 Biquad cascade filter. | |
1252 * @param[in] S points to an instance of the Q15 Biquad cascade structure. | |
1253 * @param[in] pSrc points to the block of input data. | |
1254 * @param[out] pDst points to the block of output data. | |
1255 * @param[in] blockSize number of samples to process. | |
1256 */ | |
1257 void arm_biquad_cascade_df1_q15( | |
1258 const arm_biquad_casd_df1_inst_q15 * S, | |
1259 q15_t * pSrc, | |
1260 q15_t * pDst, | |
1261 uint32_t blockSize); | |
1262 | |
1263 | |
1264 /** | |
1265 * @brief Initialization function for the Q15 Biquad cascade filter. | |
1266 * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. | |
1267 * @param[in] numStages number of 2nd order stages in the filter. | |
1268 * @param[in] pCoeffs points to the filter coefficients. | |
1269 * @param[in] pState points to the state buffer. | |
1270 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
1271 */ | |
1272 void arm_biquad_cascade_df1_init_q15( | |
1273 arm_biquad_casd_df1_inst_q15 * S, | |
1274 uint8_t numStages, | |
1275 q15_t * pCoeffs, | |
1276 q15_t * pState, | |
1277 int8_t postShift); | |
1278 | |
1279 | |
1280 /** | |
1281 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
1282 * @param[in] S points to an instance of the Q15 Biquad cascade structure. | |
1283 * @param[in] pSrc points to the block of input data. | |
1284 * @param[out] pDst points to the block of output data. | |
1285 * @param[in] blockSize number of samples to process. | |
1286 */ | |
1287 void arm_biquad_cascade_df1_fast_q15( | |
1288 const arm_biquad_casd_df1_inst_q15 * S, | |
1289 q15_t * pSrc, | |
1290 q15_t * pDst, | |
1291 uint32_t blockSize); | |
1292 | |
1293 | |
1294 /** | |
1295 * @brief Processing function for the Q31 Biquad cascade filter | |
1296 * @param[in] S points to an instance of the Q31 Biquad cascade structure. | |
1297 * @param[in] pSrc points to the block of input data. | |
1298 * @param[out] pDst points to the block of output data. | |
1299 * @param[in] blockSize number of samples to process. | |
1300 */ | |
1301 void arm_biquad_cascade_df1_q31( | |
1302 const arm_biquad_casd_df1_inst_q31 * S, | |
1303 q31_t * pSrc, | |
1304 q31_t * pDst, | |
1305 uint32_t blockSize); | |
1306 | |
1307 | |
1308 /** | |
1309 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. | |
1310 * @param[in] S points to an instance of the Q31 Biquad cascade structure. | |
1311 * @param[in] pSrc points to the block of input data. | |
1312 * @param[out] pDst points to the block of output data. | |
1313 * @param[in] blockSize number of samples to process. | |
1314 */ | |
1315 void arm_biquad_cascade_df1_fast_q31( | |
1316 const arm_biquad_casd_df1_inst_q31 * S, | |
1317 q31_t * pSrc, | |
1318 q31_t * pDst, | |
1319 uint32_t blockSize); | |
1320 | |
1321 | |
1322 /** | |
1323 * @brief Initialization function for the Q31 Biquad cascade filter. | |
1324 * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. | |
1325 * @param[in] numStages number of 2nd order stages in the filter. | |
1326 * @param[in] pCoeffs points to the filter coefficients. | |
1327 * @param[in] pState points to the state buffer. | |
1328 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format | |
1329 */ | |
1330 void arm_biquad_cascade_df1_init_q31( | |
1331 arm_biquad_casd_df1_inst_q31 * S, | |
1332 uint8_t numStages, | |
1333 q31_t * pCoeffs, | |
1334 q31_t * pState, | |
1335 int8_t postShift); | |
1336 | |
1337 | |
1338 /** | |
1339 * @brief Processing function for the floating-point Biquad cascade filter. | |
1340 * @param[in] S points to an instance of the floating-point Biquad cascade structure. | |
1341 * @param[in] pSrc points to the block of input data. | |
1342 * @param[out] pDst points to the block of output data. | |
1343 * @param[in] blockSize number of samples to process. | |
1344 */ | |
1345 void arm_biquad_cascade_df1_f32( | |
1346 const arm_biquad_casd_df1_inst_f32 * S, | |
1347 float32_t * pSrc, | |
1348 float32_t * pDst, | |
1349 uint32_t blockSize); | |
1350 | |
1351 | |
1352 /** | |
1353 * @brief Initialization function for the floating-point Biquad cascade filter. | |
1354 * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. | |
1355 * @param[in] numStages number of 2nd order stages in the filter. | |
1356 * @param[in] pCoeffs points to the filter coefficients. | |
1357 * @param[in] pState points to the state buffer. | |
1358 */ | |
1359 void arm_biquad_cascade_df1_init_f32( | |
1360 arm_biquad_casd_df1_inst_f32 * S, | |
1361 uint8_t numStages, | |
1362 float32_t * pCoeffs, | |
1363 float32_t * pState); | |
1364 | |
1365 | |
1366 /** | |
1367 * @brief Instance structure for the floating-point matrix structure. | |
1368 */ | |
1369 typedef struct | |
1370 { | |
1371 uint16_t numRows; /**< number of rows of the matrix. */ | |
1372 uint16_t numCols; /**< number of columns of the matrix. */ | |
1373 float32_t *pData; /**< points to the data of the matrix. */ | |
1374 } arm_matrix_instance_f32; | |
1375 | |
1376 | |
1377 /** | |
1378 * @brief Instance structure for the floating-point matrix structure. | |
1379 */ | |
1380 typedef struct | |
1381 { | |
1382 uint16_t numRows; /**< number of rows of the matrix. */ | |
1383 uint16_t numCols; /**< number of columns of the matrix. */ | |
1384 float64_t *pData; /**< points to the data of the matrix. */ | |
1385 } arm_matrix_instance_f64; | |
1386 | |
1387 /** | |
1388 * @brief Instance structure for the Q15 matrix structure. | |
1389 */ | |
1390 typedef struct | |
1391 { | |
1392 uint16_t numRows; /**< number of rows of the matrix. */ | |
1393 uint16_t numCols; /**< number of columns of the matrix. */ | |
1394 q15_t *pData; /**< points to the data of the matrix. */ | |
1395 } arm_matrix_instance_q15; | |
1396 | |
1397 /** | |
1398 * @brief Instance structure for the Q31 matrix structure. | |
1399 */ | |
1400 typedef struct | |
1401 { | |
1402 uint16_t numRows; /**< number of rows of the matrix. */ | |
1403 uint16_t numCols; /**< number of columns of the matrix. */ | |
1404 q31_t *pData; /**< points to the data of the matrix. */ | |
1405 } arm_matrix_instance_q31; | |
1406 | |
1407 | |
1408 /** | |
1409 * @brief Floating-point matrix addition. | |
1410 * @param[in] pSrcA points to the first input matrix structure | |
1411 * @param[in] pSrcB points to the second input matrix structure | |
1412 * @param[out] pDst points to output matrix structure | |
1413 * @return The function returns either | |
1414 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1415 */ | |
1416 arm_status arm_mat_add_f32( | |
1417 const arm_matrix_instance_f32 * pSrcA, | |
1418 const arm_matrix_instance_f32 * pSrcB, | |
1419 arm_matrix_instance_f32 * pDst); | |
1420 | |
1421 | |
1422 /** | |
1423 * @brief Q15 matrix addition. | |
1424 * @param[in] pSrcA points to the first input matrix structure | |
1425 * @param[in] pSrcB points to the second input matrix structure | |
1426 * @param[out] pDst points to output matrix structure | |
1427 * @return The function returns either | |
1428 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1429 */ | |
1430 arm_status arm_mat_add_q15( | |
1431 const arm_matrix_instance_q15 * pSrcA, | |
1432 const arm_matrix_instance_q15 * pSrcB, | |
1433 arm_matrix_instance_q15 * pDst); | |
1434 | |
1435 | |
1436 /** | |
1437 * @brief Q31 matrix addition. | |
1438 * @param[in] pSrcA points to the first input matrix structure | |
1439 * @param[in] pSrcB points to the second input matrix structure | |
1440 * @param[out] pDst points to output matrix structure | |
1441 * @return The function returns either | |
1442 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1443 */ | |
1444 arm_status arm_mat_add_q31( | |
1445 const arm_matrix_instance_q31 * pSrcA, | |
1446 const arm_matrix_instance_q31 * pSrcB, | |
1447 arm_matrix_instance_q31 * pDst); | |
1448 | |
1449 | |
1450 /** | |
1451 * @brief Floating-point, complex, matrix multiplication. | |
1452 * @param[in] pSrcA points to the first input matrix structure | |
1453 * @param[in] pSrcB points to the second input matrix structure | |
1454 * @param[out] pDst points to output matrix structure | |
1455 * @return The function returns either | |
1456 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1457 */ | |
1458 arm_status arm_mat_cmplx_mult_f32( | |
1459 const arm_matrix_instance_f32 * pSrcA, | |
1460 const arm_matrix_instance_f32 * pSrcB, | |
1461 arm_matrix_instance_f32 * pDst); | |
1462 | |
1463 | |
1464 /** | |
1465 * @brief Q15, complex, matrix multiplication. | |
1466 * @param[in] pSrcA points to the first input matrix structure | |
1467 * @param[in] pSrcB points to the second input matrix structure | |
1468 * @param[out] pDst points to output matrix structure | |
1469 * @return The function returns either | |
1470 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1471 */ | |
1472 arm_status arm_mat_cmplx_mult_q15( | |
1473 const arm_matrix_instance_q15 * pSrcA, | |
1474 const arm_matrix_instance_q15 * pSrcB, | |
1475 arm_matrix_instance_q15 * pDst, | |
1476 q15_t * pScratch); | |
1477 | |
1478 | |
1479 /** | |
1480 * @brief Q31, complex, matrix multiplication. | |
1481 * @param[in] pSrcA points to the first input matrix structure | |
1482 * @param[in] pSrcB points to the second input matrix structure | |
1483 * @param[out] pDst points to output matrix structure | |
1484 * @return The function returns either | |
1485 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1486 */ | |
1487 arm_status arm_mat_cmplx_mult_q31( | |
1488 const arm_matrix_instance_q31 * pSrcA, | |
1489 const arm_matrix_instance_q31 * pSrcB, | |
1490 arm_matrix_instance_q31 * pDst); | |
1491 | |
1492 | |
1493 /** | |
1494 * @brief Floating-point matrix transpose. | |
1495 * @param[in] pSrc points to the input matrix | |
1496 * @param[out] pDst points to the output matrix | |
1497 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
1498 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1499 */ | |
1500 arm_status arm_mat_trans_f32( | |
1501 const arm_matrix_instance_f32 * pSrc, | |
1502 arm_matrix_instance_f32 * pDst); | |
1503 | |
1504 | |
1505 /** | |
1506 * @brief Q15 matrix transpose. | |
1507 * @param[in] pSrc points to the input matrix | |
1508 * @param[out] pDst points to the output matrix | |
1509 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
1510 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1511 */ | |
1512 arm_status arm_mat_trans_q15( | |
1513 const arm_matrix_instance_q15 * pSrc, | |
1514 arm_matrix_instance_q15 * pDst); | |
1515 | |
1516 | |
1517 /** | |
1518 * @brief Q31 matrix transpose. | |
1519 * @param[in] pSrc points to the input matrix | |
1520 * @param[out] pDst points to the output matrix | |
1521 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> | |
1522 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1523 */ | |
1524 arm_status arm_mat_trans_q31( | |
1525 const arm_matrix_instance_q31 * pSrc, | |
1526 arm_matrix_instance_q31 * pDst); | |
1527 | |
1528 | |
1529 /** | |
1530 * @brief Floating-point matrix multiplication | |
1531 * @param[in] pSrcA points to the first input matrix structure | |
1532 * @param[in] pSrcB points to the second input matrix structure | |
1533 * @param[out] pDst points to output matrix structure | |
1534 * @return The function returns either | |
1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1536 */ | |
1537 arm_status arm_mat_mult_f32( | |
1538 const arm_matrix_instance_f32 * pSrcA, | |
1539 const arm_matrix_instance_f32 * pSrcB, | |
1540 arm_matrix_instance_f32 * pDst); | |
1541 | |
1542 | |
1543 /** | |
1544 * @brief Q15 matrix multiplication | |
1545 * @param[in] pSrcA points to the first input matrix structure | |
1546 * @param[in] pSrcB points to the second input matrix structure | |
1547 * @param[out] pDst points to output matrix structure | |
1548 * @param[in] pState points to the array for storing intermediate results | |
1549 * @return The function returns either | |
1550 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1551 */ | |
1552 arm_status arm_mat_mult_q15( | |
1553 const arm_matrix_instance_q15 * pSrcA, | |
1554 const arm_matrix_instance_q15 * pSrcB, | |
1555 arm_matrix_instance_q15 * pDst, | |
1556 q15_t * pState); | |
1557 | |
1558 | |
1559 /** | |
1560 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
1561 * @param[in] pSrcA points to the first input matrix structure | |
1562 * @param[in] pSrcB points to the second input matrix structure | |
1563 * @param[out] pDst points to output matrix structure | |
1564 * @param[in] pState points to the array for storing intermediate results | |
1565 * @return The function returns either | |
1566 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1567 */ | |
1568 arm_status arm_mat_mult_fast_q15( | |
1569 const arm_matrix_instance_q15 * pSrcA, | |
1570 const arm_matrix_instance_q15 * pSrcB, | |
1571 arm_matrix_instance_q15 * pDst, | |
1572 q15_t * pState); | |
1573 | |
1574 | |
1575 /** | |
1576 * @brief Q31 matrix multiplication | |
1577 * @param[in] pSrcA points to the first input matrix structure | |
1578 * @param[in] pSrcB points to the second input matrix structure | |
1579 * @param[out] pDst points to output matrix structure | |
1580 * @return The function returns either | |
1581 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1582 */ | |
1583 arm_status arm_mat_mult_q31( | |
1584 const arm_matrix_instance_q31 * pSrcA, | |
1585 const arm_matrix_instance_q31 * pSrcB, | |
1586 arm_matrix_instance_q31 * pDst); | |
1587 | |
1588 | |
1589 /** | |
1590 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 | |
1591 * @param[in] pSrcA points to the first input matrix structure | |
1592 * @param[in] pSrcB points to the second input matrix structure | |
1593 * @param[out] pDst points to output matrix structure | |
1594 * @return The function returns either | |
1595 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1596 */ | |
1597 arm_status arm_mat_mult_fast_q31( | |
1598 const arm_matrix_instance_q31 * pSrcA, | |
1599 const arm_matrix_instance_q31 * pSrcB, | |
1600 arm_matrix_instance_q31 * pDst); | |
1601 | |
1602 | |
1603 /** | |
1604 * @brief Floating-point matrix subtraction | |
1605 * @param[in] pSrcA points to the first input matrix structure | |
1606 * @param[in] pSrcB points to the second input matrix structure | |
1607 * @param[out] pDst points to output matrix structure | |
1608 * @return The function returns either | |
1609 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1610 */ | |
1611 arm_status arm_mat_sub_f32( | |
1612 const arm_matrix_instance_f32 * pSrcA, | |
1613 const arm_matrix_instance_f32 * pSrcB, | |
1614 arm_matrix_instance_f32 * pDst); | |
1615 | |
1616 | |
1617 /** | |
1618 * @brief Q15 matrix subtraction | |
1619 * @param[in] pSrcA points to the first input matrix structure | |
1620 * @param[in] pSrcB points to the second input matrix structure | |
1621 * @param[out] pDst points to output matrix structure | |
1622 * @return The function returns either | |
1623 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1624 */ | |
1625 arm_status arm_mat_sub_q15( | |
1626 const arm_matrix_instance_q15 * pSrcA, | |
1627 const arm_matrix_instance_q15 * pSrcB, | |
1628 arm_matrix_instance_q15 * pDst); | |
1629 | |
1630 | |
1631 /** | |
1632 * @brief Q31 matrix subtraction | |
1633 * @param[in] pSrcA points to the first input matrix structure | |
1634 * @param[in] pSrcB points to the second input matrix structure | |
1635 * @param[out] pDst points to output matrix structure | |
1636 * @return The function returns either | |
1637 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1638 */ | |
1639 arm_status arm_mat_sub_q31( | |
1640 const arm_matrix_instance_q31 * pSrcA, | |
1641 const arm_matrix_instance_q31 * pSrcB, | |
1642 arm_matrix_instance_q31 * pDst); | |
1643 | |
1644 | |
1645 /** | |
1646 * @brief Floating-point matrix scaling. | |
1647 * @param[in] pSrc points to the input matrix | |
1648 * @param[in] scale scale factor | |
1649 * @param[out] pDst points to the output matrix | |
1650 * @return The function returns either | |
1651 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1652 */ | |
1653 arm_status arm_mat_scale_f32( | |
1654 const arm_matrix_instance_f32 * pSrc, | |
1655 float32_t scale, | |
1656 arm_matrix_instance_f32 * pDst); | |
1657 | |
1658 | |
1659 /** | |
1660 * @brief Q15 matrix scaling. | |
1661 * @param[in] pSrc points to input matrix | |
1662 * @param[in] scaleFract fractional portion of the scale factor | |
1663 * @param[in] shift number of bits to shift the result by | |
1664 * @param[out] pDst points to output matrix | |
1665 * @return The function returns either | |
1666 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1667 */ | |
1668 arm_status arm_mat_scale_q15( | |
1669 const arm_matrix_instance_q15 * pSrc, | |
1670 q15_t scaleFract, | |
1671 int32_t shift, | |
1672 arm_matrix_instance_q15 * pDst); | |
1673 | |
1674 | |
1675 /** | |
1676 * @brief Q31 matrix scaling. | |
1677 * @param[in] pSrc points to input matrix | |
1678 * @param[in] scaleFract fractional portion of the scale factor | |
1679 * @param[in] shift number of bits to shift the result by | |
1680 * @param[out] pDst points to output matrix structure | |
1681 * @return The function returns either | |
1682 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. | |
1683 */ | |
1684 arm_status arm_mat_scale_q31( | |
1685 const arm_matrix_instance_q31 * pSrc, | |
1686 q31_t scaleFract, | |
1687 int32_t shift, | |
1688 arm_matrix_instance_q31 * pDst); | |
1689 | |
1690 | |
1691 /** | |
1692 * @brief Q31 matrix initialization. | |
1693 * @param[in,out] S points to an instance of the floating-point matrix structure. | |
1694 * @param[in] nRows number of rows in the matrix. | |
1695 * @param[in] nColumns number of columns in the matrix. | |
1696 * @param[in] pData points to the matrix data array. | |
1697 */ | |
1698 void arm_mat_init_q31( | |
1699 arm_matrix_instance_q31 * S, | |
1700 uint16_t nRows, | |
1701 uint16_t nColumns, | |
1702 q31_t * pData); | |
1703 | |
1704 | |
1705 /** | |
1706 * @brief Q15 matrix initialization. | |
1707 * @param[in,out] S points to an instance of the floating-point matrix structure. | |
1708 * @param[in] nRows number of rows in the matrix. | |
1709 * @param[in] nColumns number of columns in the matrix. | |
1710 * @param[in] pData points to the matrix data array. | |
1711 */ | |
1712 void arm_mat_init_q15( | |
1713 arm_matrix_instance_q15 * S, | |
1714 uint16_t nRows, | |
1715 uint16_t nColumns, | |
1716 q15_t * pData); | |
1717 | |
1718 | |
1719 /** | |
1720 * @brief Floating-point matrix initialization. | |
1721 * @param[in,out] S points to an instance of the floating-point matrix structure. | |
1722 * @param[in] nRows number of rows in the matrix. | |
1723 * @param[in] nColumns number of columns in the matrix. | |
1724 * @param[in] pData points to the matrix data array. | |
1725 */ | |
1726 void arm_mat_init_f32( | |
1727 arm_matrix_instance_f32 * S, | |
1728 uint16_t nRows, | |
1729 uint16_t nColumns, | |
1730 float32_t * pData); | |
1731 | |
1732 | |
1733 | |
1734 /** | |
1735 * @brief Instance structure for the Q15 PID Control. | |
1736 */ | |
1737 typedef struct | |
1738 { | |
1739 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
1740 #ifdef ARM_MATH_CM0_FAMILY | |
1741 q15_t A1; | |
1742 q15_t A2; | |
1743 #else | |
1744 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ | |
1745 #endif | |
1746 q15_t state[3]; /**< The state array of length 3. */ | |
1747 q15_t Kp; /**< The proportional gain. */ | |
1748 q15_t Ki; /**< The integral gain. */ | |
1749 q15_t Kd; /**< The derivative gain. */ | |
1750 } arm_pid_instance_q15; | |
1751 | |
1752 /** | |
1753 * @brief Instance structure for the Q31 PID Control. | |
1754 */ | |
1755 typedef struct | |
1756 { | |
1757 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
1758 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
1759 q31_t A2; /**< The derived gain, A2 = Kd . */ | |
1760 q31_t state[3]; /**< The state array of length 3. */ | |
1761 q31_t Kp; /**< The proportional gain. */ | |
1762 q31_t Ki; /**< The integral gain. */ | |
1763 q31_t Kd; /**< The derivative gain. */ | |
1764 } arm_pid_instance_q31; | |
1765 | |
1766 /** | |
1767 * @brief Instance structure for the floating-point PID Control. | |
1768 */ | |
1769 typedef struct | |
1770 { | |
1771 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ | |
1772 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ | |
1773 float32_t A2; /**< The derived gain, A2 = Kd . */ | |
1774 float32_t state[3]; /**< The state array of length 3. */ | |
1775 float32_t Kp; /**< The proportional gain. */ | |
1776 float32_t Ki; /**< The integral gain. */ | |
1777 float32_t Kd; /**< The derivative gain. */ | |
1778 } arm_pid_instance_f32; | |
1779 | |
1780 | |
1781 | |
1782 /** | |
1783 * @brief Initialization function for the floating-point PID Control. | |
1784 * @param[in,out] S points to an instance of the PID structure. | |
1785 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
1786 */ | |
1787 void arm_pid_init_f32( | |
1788 arm_pid_instance_f32 * S, | |
1789 int32_t resetStateFlag); | |
1790 | |
1791 | |
1792 /** | |
1793 * @brief Reset function for the floating-point PID Control. | |
1794 * @param[in,out] S is an instance of the floating-point PID Control structure | |
1795 */ | |
1796 void arm_pid_reset_f32( | |
1797 arm_pid_instance_f32 * S); | |
1798 | |
1799 | |
1800 /** | |
1801 * @brief Initialization function for the Q31 PID Control. | |
1802 * @param[in,out] S points to an instance of the Q15 PID structure. | |
1803 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
1804 */ | |
1805 void arm_pid_init_q31( | |
1806 arm_pid_instance_q31 * S, | |
1807 int32_t resetStateFlag); | |
1808 | |
1809 | |
1810 /** | |
1811 * @brief Reset function for the Q31 PID Control. | |
1812 * @param[in,out] S points to an instance of the Q31 PID Control structure | |
1813 */ | |
1814 | |
1815 void arm_pid_reset_q31( | |
1816 arm_pid_instance_q31 * S); | |
1817 | |
1818 | |
1819 /** | |
1820 * @brief Initialization function for the Q15 PID Control. | |
1821 * @param[in,out] S points to an instance of the Q15 PID structure. | |
1822 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. | |
1823 */ | |
1824 void arm_pid_init_q15( | |
1825 arm_pid_instance_q15 * S, | |
1826 int32_t resetStateFlag); | |
1827 | |
1828 | |
1829 /** | |
1830 * @brief Reset function for the Q15 PID Control. | |
1831 * @param[in,out] S points to an instance of the q15 PID Control structure | |
1832 */ | |
1833 void arm_pid_reset_q15( | |
1834 arm_pid_instance_q15 * S); | |
1835 | |
1836 | |
1837 /** | |
1838 * @brief Instance structure for the floating-point Linear Interpolate function. | |
1839 */ | |
1840 typedef struct | |
1841 { | |
1842 uint32_t nValues; /**< nValues */ | |
1843 float32_t x1; /**< x1 */ | |
1844 float32_t xSpacing; /**< xSpacing */ | |
1845 float32_t *pYData; /**< pointer to the table of Y values */ | |
1846 } arm_linear_interp_instance_f32; | |
1847 | |
1848 /** | |
1849 * @brief Instance structure for the floating-point bilinear interpolation function. | |
1850 */ | |
1851 typedef struct | |
1852 { | |
1853 uint16_t numRows; /**< number of rows in the data table. */ | |
1854 uint16_t numCols; /**< number of columns in the data table. */ | |
1855 float32_t *pData; /**< points to the data table. */ | |
1856 } arm_bilinear_interp_instance_f32; | |
1857 | |
1858 /** | |
1859 * @brief Instance structure for the Q31 bilinear interpolation function. | |
1860 */ | |
1861 typedef struct | |
1862 { | |
1863 uint16_t numRows; /**< number of rows in the data table. */ | |
1864 uint16_t numCols; /**< number of columns in the data table. */ | |
1865 q31_t *pData; /**< points to the data table. */ | |
1866 } arm_bilinear_interp_instance_q31; | |
1867 | |
1868 /** | |
1869 * @brief Instance structure for the Q15 bilinear interpolation function. | |
1870 */ | |
1871 typedef struct | |
1872 { | |
1873 uint16_t numRows; /**< number of rows in the data table. */ | |
1874 uint16_t numCols; /**< number of columns in the data table. */ | |
1875 q15_t *pData; /**< points to the data table. */ | |
1876 } arm_bilinear_interp_instance_q15; | |
1877 | |
1878 /** | |
1879 * @brief Instance structure for the Q15 bilinear interpolation function. | |
1880 */ | |
1881 typedef struct | |
1882 { | |
1883 uint16_t numRows; /**< number of rows in the data table. */ | |
1884 uint16_t numCols; /**< number of columns in the data table. */ | |
1885 q7_t *pData; /**< points to the data table. */ | |
1886 } arm_bilinear_interp_instance_q7; | |
1887 | |
1888 | |
1889 /** | |
1890 * @brief Q7 vector multiplication. | |
1891 * @param[in] pSrcA points to the first input vector | |
1892 * @param[in] pSrcB points to the second input vector | |
1893 * @param[out] pDst points to the output vector | |
1894 * @param[in] blockSize number of samples in each vector | |
1895 */ | |
1896 void arm_mult_q7( | |
1897 q7_t * pSrcA, | |
1898 q7_t * pSrcB, | |
1899 q7_t * pDst, | |
1900 uint32_t blockSize); | |
1901 | |
1902 | |
1903 /** | |
1904 * @brief Q15 vector multiplication. | |
1905 * @param[in] pSrcA points to the first input vector | |
1906 * @param[in] pSrcB points to the second input vector | |
1907 * @param[out] pDst points to the output vector | |
1908 * @param[in] blockSize number of samples in each vector | |
1909 */ | |
1910 void arm_mult_q15( | |
1911 q15_t * pSrcA, | |
1912 q15_t * pSrcB, | |
1913 q15_t * pDst, | |
1914 uint32_t blockSize); | |
1915 | |
1916 | |
1917 /** | |
1918 * @brief Q31 vector multiplication. | |
1919 * @param[in] pSrcA points to the first input vector | |
1920 * @param[in] pSrcB points to the second input vector | |
1921 * @param[out] pDst points to the output vector | |
1922 * @param[in] blockSize number of samples in each vector | |
1923 */ | |
1924 void arm_mult_q31( | |
1925 q31_t * pSrcA, | |
1926 q31_t * pSrcB, | |
1927 q31_t * pDst, | |
1928 uint32_t blockSize); | |
1929 | |
1930 | |
1931 /** | |
1932 * @brief Floating-point vector multiplication. | |
1933 * @param[in] pSrcA points to the first input vector | |
1934 * @param[in] pSrcB points to the second input vector | |
1935 * @param[out] pDst points to the output vector | |
1936 * @param[in] blockSize number of samples in each vector | |
1937 */ | |
1938 void arm_mult_f32( | |
1939 float32_t * pSrcA, | |
1940 float32_t * pSrcB, | |
1941 float32_t * pDst, | |
1942 uint32_t blockSize); | |
1943 | |
1944 | |
1945 /** | |
1946 * @brief Instance structure for the Q15 CFFT/CIFFT function. | |
1947 */ | |
1948 typedef struct | |
1949 { | |
1950 uint16_t fftLen; /**< length of the FFT. */ | |
1951 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
1952 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
1953 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ | |
1954 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
1955 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
1956 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
1957 } arm_cfft_radix2_instance_q15; | |
1958 | |
1959 /* Deprecated */ | |
1960 arm_status arm_cfft_radix2_init_q15( | |
1961 arm_cfft_radix2_instance_q15 * S, | |
1962 uint16_t fftLen, | |
1963 uint8_t ifftFlag, | |
1964 uint8_t bitReverseFlag); | |
1965 | |
1966 /* Deprecated */ | |
1967 void arm_cfft_radix2_q15( | |
1968 const arm_cfft_radix2_instance_q15 * S, | |
1969 q15_t * pSrc); | |
1970 | |
1971 | |
1972 /** | |
1973 * @brief Instance structure for the Q15 CFFT/CIFFT function. | |
1974 */ | |
1975 typedef struct | |
1976 { | |
1977 uint16_t fftLen; /**< length of the FFT. */ | |
1978 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
1979 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
1980 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
1981 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
1982 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
1983 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
1984 } arm_cfft_radix4_instance_q15; | |
1985 | |
1986 /* Deprecated */ | |
1987 arm_status arm_cfft_radix4_init_q15( | |
1988 arm_cfft_radix4_instance_q15 * S, | |
1989 uint16_t fftLen, | |
1990 uint8_t ifftFlag, | |
1991 uint8_t bitReverseFlag); | |
1992 | |
1993 /* Deprecated */ | |
1994 void arm_cfft_radix4_q15( | |
1995 const arm_cfft_radix4_instance_q15 * S, | |
1996 q15_t * pSrc); | |
1997 | |
1998 /** | |
1999 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. | |
2000 */ | |
2001 typedef struct | |
2002 { | |
2003 uint16_t fftLen; /**< length of the FFT. */ | |
2004 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
2005 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
2006 q31_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
2007 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2008 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2009 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
2010 } arm_cfft_radix2_instance_q31; | |
2011 | |
2012 /* Deprecated */ | |
2013 arm_status arm_cfft_radix2_init_q31( | |
2014 arm_cfft_radix2_instance_q31 * S, | |
2015 uint16_t fftLen, | |
2016 uint8_t ifftFlag, | |
2017 uint8_t bitReverseFlag); | |
2018 | |
2019 /* Deprecated */ | |
2020 void arm_cfft_radix2_q31( | |
2021 const arm_cfft_radix2_instance_q31 * S, | |
2022 q31_t * pSrc); | |
2023 | |
2024 /** | |
2025 * @brief Instance structure for the Q31 CFFT/CIFFT function. | |
2026 */ | |
2027 typedef struct | |
2028 { | |
2029 uint16_t fftLen; /**< length of the FFT. */ | |
2030 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
2031 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
2032 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2033 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2034 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2035 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
2036 } arm_cfft_radix4_instance_q31; | |
2037 | |
2038 /* Deprecated */ | |
2039 void arm_cfft_radix4_q31( | |
2040 const arm_cfft_radix4_instance_q31 * S, | |
2041 q31_t * pSrc); | |
2042 | |
2043 /* Deprecated */ | |
2044 arm_status arm_cfft_radix4_init_q31( | |
2045 arm_cfft_radix4_instance_q31 * S, | |
2046 uint16_t fftLen, | |
2047 uint8_t ifftFlag, | |
2048 uint8_t bitReverseFlag); | |
2049 | |
2050 /** | |
2051 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
2052 */ | |
2053 typedef struct | |
2054 { | |
2055 uint16_t fftLen; /**< length of the FFT. */ | |
2056 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
2057 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
2058 float32_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
2059 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2060 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2061 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
2062 float32_t onebyfftLen; /**< value of 1/fftLen. */ | |
2063 } arm_cfft_radix2_instance_f32; | |
2064 | |
2065 /* Deprecated */ | |
2066 arm_status arm_cfft_radix2_init_f32( | |
2067 arm_cfft_radix2_instance_f32 * S, | |
2068 uint16_t fftLen, | |
2069 uint8_t ifftFlag, | |
2070 uint8_t bitReverseFlag); | |
2071 | |
2072 /* Deprecated */ | |
2073 void arm_cfft_radix2_f32( | |
2074 const arm_cfft_radix2_instance_f32 * S, | |
2075 float32_t * pSrc); | |
2076 | |
2077 /** | |
2078 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
2079 */ | |
2080 typedef struct | |
2081 { | |
2082 uint16_t fftLen; /**< length of the FFT. */ | |
2083 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ | |
2084 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ | |
2085 float32_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
2086 uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2087 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2088 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ | |
2089 float32_t onebyfftLen; /**< value of 1/fftLen. */ | |
2090 } arm_cfft_radix4_instance_f32; | |
2091 | |
2092 /* Deprecated */ | |
2093 arm_status arm_cfft_radix4_init_f32( | |
2094 arm_cfft_radix4_instance_f32 * S, | |
2095 uint16_t fftLen, | |
2096 uint8_t ifftFlag, | |
2097 uint8_t bitReverseFlag); | |
2098 | |
2099 /* Deprecated */ | |
2100 void arm_cfft_radix4_f32( | |
2101 const arm_cfft_radix4_instance_f32 * S, | |
2102 float32_t * pSrc); | |
2103 | |
2104 /** | |
2105 * @brief Instance structure for the fixed-point CFFT/CIFFT function. | |
2106 */ | |
2107 typedef struct | |
2108 { | |
2109 uint16_t fftLen; /**< length of the FFT. */ | |
2110 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
2111 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2112 uint16_t bitRevLength; /**< bit reversal table length. */ | |
2113 } arm_cfft_instance_q15; | |
2114 | |
2115 void arm_cfft_q15( | |
2116 const arm_cfft_instance_q15 * S, | |
2117 q15_t * p1, | |
2118 uint8_t ifftFlag, | |
2119 uint8_t bitReverseFlag); | |
2120 | |
2121 /** | |
2122 * @brief Instance structure for the fixed-point CFFT/CIFFT function. | |
2123 */ | |
2124 typedef struct | |
2125 { | |
2126 uint16_t fftLen; /**< length of the FFT. */ | |
2127 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
2128 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2129 uint16_t bitRevLength; /**< bit reversal table length. */ | |
2130 } arm_cfft_instance_q31; | |
2131 | |
2132 void arm_cfft_q31( | |
2133 const arm_cfft_instance_q31 * S, | |
2134 q31_t * p1, | |
2135 uint8_t ifftFlag, | |
2136 uint8_t bitReverseFlag); | |
2137 | |
2138 /** | |
2139 * @brief Instance structure for the floating-point CFFT/CIFFT function. | |
2140 */ | |
2141 typedef struct | |
2142 { | |
2143 uint16_t fftLen; /**< length of the FFT. */ | |
2144 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ | |
2145 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ | |
2146 uint16_t bitRevLength; /**< bit reversal table length. */ | |
2147 } arm_cfft_instance_f32; | |
2148 | |
2149 void arm_cfft_f32( | |
2150 const arm_cfft_instance_f32 * S, | |
2151 float32_t * p1, | |
2152 uint8_t ifftFlag, | |
2153 uint8_t bitReverseFlag); | |
2154 | |
2155 /** | |
2156 * @brief Instance structure for the Q15 RFFT/RIFFT function. | |
2157 */ | |
2158 typedef struct | |
2159 { | |
2160 uint32_t fftLenReal; /**< length of the real FFT. */ | |
2161 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
2162 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
2163 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2164 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
2165 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
2166 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
2167 } arm_rfft_instance_q15; | |
2168 | |
2169 arm_status arm_rfft_init_q15( | |
2170 arm_rfft_instance_q15 * S, | |
2171 uint32_t fftLenReal, | |
2172 uint32_t ifftFlagR, | |
2173 uint32_t bitReverseFlag); | |
2174 | |
2175 void arm_rfft_q15( | |
2176 const arm_rfft_instance_q15 * S, | |
2177 q15_t * pSrc, | |
2178 q15_t * pDst); | |
2179 | |
2180 /** | |
2181 * @brief Instance structure for the Q31 RFFT/RIFFT function. | |
2182 */ | |
2183 typedef struct | |
2184 { | |
2185 uint32_t fftLenReal; /**< length of the real FFT. */ | |
2186 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
2187 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
2188 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2189 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
2190 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
2191 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
2192 } arm_rfft_instance_q31; | |
2193 | |
2194 arm_status arm_rfft_init_q31( | |
2195 arm_rfft_instance_q31 * S, | |
2196 uint32_t fftLenReal, | |
2197 uint32_t ifftFlagR, | |
2198 uint32_t bitReverseFlag); | |
2199 | |
2200 void arm_rfft_q31( | |
2201 const arm_rfft_instance_q31 * S, | |
2202 q31_t * pSrc, | |
2203 q31_t * pDst); | |
2204 | |
2205 /** | |
2206 * @brief Instance structure for the floating-point RFFT/RIFFT function. | |
2207 */ | |
2208 typedef struct | |
2209 { | |
2210 uint32_t fftLenReal; /**< length of the real FFT. */ | |
2211 uint16_t fftLenBy2; /**< length of the complex FFT. */ | |
2212 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ | |
2213 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ | |
2214 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ | |
2215 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ | |
2216 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ | |
2217 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
2218 } arm_rfft_instance_f32; | |
2219 | |
2220 arm_status arm_rfft_init_f32( | |
2221 arm_rfft_instance_f32 * S, | |
2222 arm_cfft_radix4_instance_f32 * S_CFFT, | |
2223 uint32_t fftLenReal, | |
2224 uint32_t ifftFlagR, | |
2225 uint32_t bitReverseFlag); | |
2226 | |
2227 void arm_rfft_f32( | |
2228 const arm_rfft_instance_f32 * S, | |
2229 float32_t * pSrc, | |
2230 float32_t * pDst); | |
2231 | |
2232 /** | |
2233 * @brief Instance structure for the floating-point RFFT/RIFFT function. | |
2234 */ | |
2235 typedef struct | |
2236 { | |
2237 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ | |
2238 uint16_t fftLenRFFT; /**< length of the real sequence */ | |
2239 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ | |
2240 } arm_rfft_fast_instance_f32 ; | |
2241 | |
2242 arm_status arm_rfft_fast_init_f32 ( | |
2243 arm_rfft_fast_instance_f32 * S, | |
2244 uint16_t fftLen); | |
2245 | |
2246 void arm_rfft_fast_f32( | |
2247 arm_rfft_fast_instance_f32 * S, | |
2248 float32_t * p, float32_t * pOut, | |
2249 uint8_t ifftFlag); | |
2250 | |
2251 /** | |
2252 * @brief Instance structure for the floating-point DCT4/IDCT4 function. | |
2253 */ | |
2254 typedef struct | |
2255 { | |
2256 uint16_t N; /**< length of the DCT4. */ | |
2257 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
2258 float32_t normalize; /**< normalizing factor. */ | |
2259 float32_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2260 float32_t *pCosFactor; /**< points to the cosFactor table. */ | |
2261 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ | |
2262 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ | |
2263 } arm_dct4_instance_f32; | |
2264 | |
2265 | |
2266 /** | |
2267 * @brief Initialization function for the floating-point DCT4/IDCT4. | |
2268 * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. | |
2269 * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. | |
2270 * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. | |
2271 * @param[in] N length of the DCT4. | |
2272 * @param[in] Nby2 half of the length of the DCT4. | |
2273 * @param[in] normalize normalizing factor. | |
2274 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. | |
2275 */ | |
2276 arm_status arm_dct4_init_f32( | |
2277 arm_dct4_instance_f32 * S, | |
2278 arm_rfft_instance_f32 * S_RFFT, | |
2279 arm_cfft_radix4_instance_f32 * S_CFFT, | |
2280 uint16_t N, | |
2281 uint16_t Nby2, | |
2282 float32_t normalize); | |
2283 | |
2284 | |
2285 /** | |
2286 * @brief Processing function for the floating-point DCT4/IDCT4. | |
2287 * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. | |
2288 * @param[in] pState points to state buffer. | |
2289 * @param[in,out] pInlineBuffer points to the in-place input and output buffer. | |
2290 */ | |
2291 void arm_dct4_f32( | |
2292 const arm_dct4_instance_f32 * S, | |
2293 float32_t * pState, | |
2294 float32_t * pInlineBuffer); | |
2295 | |
2296 | |
2297 /** | |
2298 * @brief Instance structure for the Q31 DCT4/IDCT4 function. | |
2299 */ | |
2300 typedef struct | |
2301 { | |
2302 uint16_t N; /**< length of the DCT4. */ | |
2303 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
2304 q31_t normalize; /**< normalizing factor. */ | |
2305 q31_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2306 q31_t *pCosFactor; /**< points to the cosFactor table. */ | |
2307 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ | |
2308 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ | |
2309 } arm_dct4_instance_q31; | |
2310 | |
2311 | |
2312 /** | |
2313 * @brief Initialization function for the Q31 DCT4/IDCT4. | |
2314 * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. | |
2315 * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure | |
2316 * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure | |
2317 * @param[in] N length of the DCT4. | |
2318 * @param[in] Nby2 half of the length of the DCT4. | |
2319 * @param[in] normalize normalizing factor. | |
2320 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
2321 */ | |
2322 arm_status arm_dct4_init_q31( | |
2323 arm_dct4_instance_q31 * S, | |
2324 arm_rfft_instance_q31 * S_RFFT, | |
2325 arm_cfft_radix4_instance_q31 * S_CFFT, | |
2326 uint16_t N, | |
2327 uint16_t Nby2, | |
2328 q31_t normalize); | |
2329 | |
2330 | |
2331 /** | |
2332 * @brief Processing function for the Q31 DCT4/IDCT4. | |
2333 * @param[in] S points to an instance of the Q31 DCT4 structure. | |
2334 * @param[in] pState points to state buffer. | |
2335 * @param[in,out] pInlineBuffer points to the in-place input and output buffer. | |
2336 */ | |
2337 void arm_dct4_q31( | |
2338 const arm_dct4_instance_q31 * S, | |
2339 q31_t * pState, | |
2340 q31_t * pInlineBuffer); | |
2341 | |
2342 | |
2343 /** | |
2344 * @brief Instance structure for the Q15 DCT4/IDCT4 function. | |
2345 */ | |
2346 typedef struct | |
2347 { | |
2348 uint16_t N; /**< length of the DCT4. */ | |
2349 uint16_t Nby2; /**< half of the length of the DCT4. */ | |
2350 q15_t normalize; /**< normalizing factor. */ | |
2351 q15_t *pTwiddle; /**< points to the twiddle factor table. */ | |
2352 q15_t *pCosFactor; /**< points to the cosFactor table. */ | |
2353 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ | |
2354 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ | |
2355 } arm_dct4_instance_q15; | |
2356 | |
2357 | |
2358 /** | |
2359 * @brief Initialization function for the Q15 DCT4/IDCT4. | |
2360 * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. | |
2361 * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. | |
2362 * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. | |
2363 * @param[in] N length of the DCT4. | |
2364 * @param[in] Nby2 half of the length of the DCT4. | |
2365 * @param[in] normalize normalizing factor. | |
2366 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. | |
2367 */ | |
2368 arm_status arm_dct4_init_q15( | |
2369 arm_dct4_instance_q15 * S, | |
2370 arm_rfft_instance_q15 * S_RFFT, | |
2371 arm_cfft_radix4_instance_q15 * S_CFFT, | |
2372 uint16_t N, | |
2373 uint16_t Nby2, | |
2374 q15_t normalize); | |
2375 | |
2376 | |
2377 /** | |
2378 * @brief Processing function for the Q15 DCT4/IDCT4. | |
2379 * @param[in] S points to an instance of the Q15 DCT4 structure. | |
2380 * @param[in] pState points to state buffer. | |
2381 * @param[in,out] pInlineBuffer points to the in-place input and output buffer. | |
2382 */ | |
2383 void arm_dct4_q15( | |
2384 const arm_dct4_instance_q15 * S, | |
2385 q15_t * pState, | |
2386 q15_t * pInlineBuffer); | |
2387 | |
2388 | |
2389 /** | |
2390 * @brief Floating-point vector addition. | |
2391 * @param[in] pSrcA points to the first input vector | |
2392 * @param[in] pSrcB points to the second input vector | |
2393 * @param[out] pDst points to the output vector | |
2394 * @param[in] blockSize number of samples in each vector | |
2395 */ | |
2396 void arm_add_f32( | |
2397 float32_t * pSrcA, | |
2398 float32_t * pSrcB, | |
2399 float32_t * pDst, | |
2400 uint32_t blockSize); | |
2401 | |
2402 | |
2403 /** | |
2404 * @brief Q7 vector addition. | |
2405 * @param[in] pSrcA points to the first input vector | |
2406 * @param[in] pSrcB points to the second input vector | |
2407 * @param[out] pDst points to the output vector | |
2408 * @param[in] blockSize number of samples in each vector | |
2409 */ | |
2410 void arm_add_q7( | |
2411 q7_t * pSrcA, | |
2412 q7_t * pSrcB, | |
2413 q7_t * pDst, | |
2414 uint32_t blockSize); | |
2415 | |
2416 | |
2417 /** | |
2418 * @brief Q15 vector addition. | |
2419 * @param[in] pSrcA points to the first input vector | |
2420 * @param[in] pSrcB points to the second input vector | |
2421 * @param[out] pDst points to the output vector | |
2422 * @param[in] blockSize number of samples in each vector | |
2423 */ | |
2424 void arm_add_q15( | |
2425 q15_t * pSrcA, | |
2426 q15_t * pSrcB, | |
2427 q15_t * pDst, | |
2428 uint32_t blockSize); | |
2429 | |
2430 | |
2431 /** | |
2432 * @brief Q31 vector addition. | |
2433 * @param[in] pSrcA points to the first input vector | |
2434 * @param[in] pSrcB points to the second input vector | |
2435 * @param[out] pDst points to the output vector | |
2436 * @param[in] blockSize number of samples in each vector | |
2437 */ | |
2438 void arm_add_q31( | |
2439 q31_t * pSrcA, | |
2440 q31_t * pSrcB, | |
2441 q31_t * pDst, | |
2442 uint32_t blockSize); | |
2443 | |
2444 | |
2445 /** | |
2446 * @brief Floating-point vector subtraction. | |
2447 * @param[in] pSrcA points to the first input vector | |
2448 * @param[in] pSrcB points to the second input vector | |
2449 * @param[out] pDst points to the output vector | |
2450 * @param[in] blockSize number of samples in each vector | |
2451 */ | |
2452 void arm_sub_f32( | |
2453 float32_t * pSrcA, | |
2454 float32_t * pSrcB, | |
2455 float32_t * pDst, | |
2456 uint32_t blockSize); | |
2457 | |
2458 | |
2459 /** | |
2460 * @brief Q7 vector subtraction. | |
2461 * @param[in] pSrcA points to the first input vector | |
2462 * @param[in] pSrcB points to the second input vector | |
2463 * @param[out] pDst points to the output vector | |
2464 * @param[in] blockSize number of samples in each vector | |
2465 */ | |
2466 void arm_sub_q7( | |
2467 q7_t * pSrcA, | |
2468 q7_t * pSrcB, | |
2469 q7_t * pDst, | |
2470 uint32_t blockSize); | |
2471 | |
2472 | |
2473 /** | |
2474 * @brief Q15 vector subtraction. | |
2475 * @param[in] pSrcA points to the first input vector | |
2476 * @param[in] pSrcB points to the second input vector | |
2477 * @param[out] pDst points to the output vector | |
2478 * @param[in] blockSize number of samples in each vector | |
2479 */ | |
2480 void arm_sub_q15( | |
2481 q15_t * pSrcA, | |
2482 q15_t * pSrcB, | |
2483 q15_t * pDst, | |
2484 uint32_t blockSize); | |
2485 | |
2486 | |
2487 /** | |
2488 * @brief Q31 vector subtraction. | |
2489 * @param[in] pSrcA points to the first input vector | |
2490 * @param[in] pSrcB points to the second input vector | |
2491 * @param[out] pDst points to the output vector | |
2492 * @param[in] blockSize number of samples in each vector | |
2493 */ | |
2494 void arm_sub_q31( | |
2495 q31_t * pSrcA, | |
2496 q31_t * pSrcB, | |
2497 q31_t * pDst, | |
2498 uint32_t blockSize); | |
2499 | |
2500 | |
2501 /** | |
2502 * @brief Multiplies a floating-point vector by a scalar. | |
2503 * @param[in] pSrc points to the input vector | |
2504 * @param[in] scale scale factor to be applied | |
2505 * @param[out] pDst points to the output vector | |
2506 * @param[in] blockSize number of samples in the vector | |
2507 */ | |
2508 void arm_scale_f32( | |
2509 float32_t * pSrc, | |
2510 float32_t scale, | |
2511 float32_t * pDst, | |
2512 uint32_t blockSize); | |
2513 | |
2514 | |
2515 /** | |
2516 * @brief Multiplies a Q7 vector by a scalar. | |
2517 * @param[in] pSrc points to the input vector | |
2518 * @param[in] scaleFract fractional portion of the scale value | |
2519 * @param[in] shift number of bits to shift the result by | |
2520 * @param[out] pDst points to the output vector | |
2521 * @param[in] blockSize number of samples in the vector | |
2522 */ | |
2523 void arm_scale_q7( | |
2524 q7_t * pSrc, | |
2525 q7_t scaleFract, | |
2526 int8_t shift, | |
2527 q7_t * pDst, | |
2528 uint32_t blockSize); | |
2529 | |
2530 | |
2531 /** | |
2532 * @brief Multiplies a Q15 vector by a scalar. | |
2533 * @param[in] pSrc points to the input vector | |
2534 * @param[in] scaleFract fractional portion of the scale value | |
2535 * @param[in] shift number of bits to shift the result by | |
2536 * @param[out] pDst points to the output vector | |
2537 * @param[in] blockSize number of samples in the vector | |
2538 */ | |
2539 void arm_scale_q15( | |
2540 q15_t * pSrc, | |
2541 q15_t scaleFract, | |
2542 int8_t shift, | |
2543 q15_t * pDst, | |
2544 uint32_t blockSize); | |
2545 | |
2546 | |
2547 /** | |
2548 * @brief Multiplies a Q31 vector by a scalar. | |
2549 * @param[in] pSrc points to the input vector | |
2550 * @param[in] scaleFract fractional portion of the scale value | |
2551 * @param[in] shift number of bits to shift the result by | |
2552 * @param[out] pDst points to the output vector | |
2553 * @param[in] blockSize number of samples in the vector | |
2554 */ | |
2555 void arm_scale_q31( | |
2556 q31_t * pSrc, | |
2557 q31_t scaleFract, | |
2558 int8_t shift, | |
2559 q31_t * pDst, | |
2560 uint32_t blockSize); | |
2561 | |
2562 | |
2563 /** | |
2564 * @brief Q7 vector absolute value. | |
2565 * @param[in] pSrc points to the input buffer | |
2566 * @param[out] pDst points to the output buffer | |
2567 * @param[in] blockSize number of samples in each vector | |
2568 */ | |
2569 void arm_abs_q7( | |
2570 q7_t * pSrc, | |
2571 q7_t * pDst, | |
2572 uint32_t blockSize); | |
2573 | |
2574 | |
2575 /** | |
2576 * @brief Floating-point vector absolute value. | |
2577 * @param[in] pSrc points to the input buffer | |
2578 * @param[out] pDst points to the output buffer | |
2579 * @param[in] blockSize number of samples in each vector | |
2580 */ | |
2581 void arm_abs_f32( | |
2582 float32_t * pSrc, | |
2583 float32_t * pDst, | |
2584 uint32_t blockSize); | |
2585 | |
2586 | |
2587 /** | |
2588 * @brief Q15 vector absolute value. | |
2589 * @param[in] pSrc points to the input buffer | |
2590 * @param[out] pDst points to the output buffer | |
2591 * @param[in] blockSize number of samples in each vector | |
2592 */ | |
2593 void arm_abs_q15( | |
2594 q15_t * pSrc, | |
2595 q15_t * pDst, | |
2596 uint32_t blockSize); | |
2597 | |
2598 | |
2599 /** | |
2600 * @brief Q31 vector absolute value. | |
2601 * @param[in] pSrc points to the input buffer | |
2602 * @param[out] pDst points to the output buffer | |
2603 * @param[in] blockSize number of samples in each vector | |
2604 */ | |
2605 void arm_abs_q31( | |
2606 q31_t * pSrc, | |
2607 q31_t * pDst, | |
2608 uint32_t blockSize); | |
2609 | |
2610 | |
2611 /** | |
2612 * @brief Dot product of floating-point vectors. | |
2613 * @param[in] pSrcA points to the first input vector | |
2614 * @param[in] pSrcB points to the second input vector | |
2615 * @param[in] blockSize number of samples in each vector | |
2616 * @param[out] result output result returned here | |
2617 */ | |
2618 void arm_dot_prod_f32( | |
2619 float32_t * pSrcA, | |
2620 float32_t * pSrcB, | |
2621 uint32_t blockSize, | |
2622 float32_t * result); | |
2623 | |
2624 | |
2625 /** | |
2626 * @brief Dot product of Q7 vectors. | |
2627 * @param[in] pSrcA points to the first input vector | |
2628 * @param[in] pSrcB points to the second input vector | |
2629 * @param[in] blockSize number of samples in each vector | |
2630 * @param[out] result output result returned here | |
2631 */ | |
2632 void arm_dot_prod_q7( | |
2633 q7_t * pSrcA, | |
2634 q7_t * pSrcB, | |
2635 uint32_t blockSize, | |
2636 q31_t * result); | |
2637 | |
2638 | |
2639 /** | |
2640 * @brief Dot product of Q15 vectors. | |
2641 * @param[in] pSrcA points to the first input vector | |
2642 * @param[in] pSrcB points to the second input vector | |
2643 * @param[in] blockSize number of samples in each vector | |
2644 * @param[out] result output result returned here | |
2645 */ | |
2646 void arm_dot_prod_q15( | |
2647 q15_t * pSrcA, | |
2648 q15_t * pSrcB, | |
2649 uint32_t blockSize, | |
2650 q63_t * result); | |
2651 | |
2652 | |
2653 /** | |
2654 * @brief Dot product of Q31 vectors. | |
2655 * @param[in] pSrcA points to the first input vector | |
2656 * @param[in] pSrcB points to the second input vector | |
2657 * @param[in] blockSize number of samples in each vector | |
2658 * @param[out] result output result returned here | |
2659 */ | |
2660 void arm_dot_prod_q31( | |
2661 q31_t * pSrcA, | |
2662 q31_t * pSrcB, | |
2663 uint32_t blockSize, | |
2664 q63_t * result); | |
2665 | |
2666 | |
2667 /** | |
2668 * @brief Shifts the elements of a Q7 vector a specified number of bits. | |
2669 * @param[in] pSrc points to the input vector | |
2670 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
2671 * @param[out] pDst points to the output vector | |
2672 * @param[in] blockSize number of samples in the vector | |
2673 */ | |
2674 void arm_shift_q7( | |
2675 q7_t * pSrc, | |
2676 int8_t shiftBits, | |
2677 q7_t * pDst, | |
2678 uint32_t blockSize); | |
2679 | |
2680 | |
2681 /** | |
2682 * @brief Shifts the elements of a Q15 vector a specified number of bits. | |
2683 * @param[in] pSrc points to the input vector | |
2684 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
2685 * @param[out] pDst points to the output vector | |
2686 * @param[in] blockSize number of samples in the vector | |
2687 */ | |
2688 void arm_shift_q15( | |
2689 q15_t * pSrc, | |
2690 int8_t shiftBits, | |
2691 q15_t * pDst, | |
2692 uint32_t blockSize); | |
2693 | |
2694 | |
2695 /** | |
2696 * @brief Shifts the elements of a Q31 vector a specified number of bits. | |
2697 * @param[in] pSrc points to the input vector | |
2698 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. | |
2699 * @param[out] pDst points to the output vector | |
2700 * @param[in] blockSize number of samples in the vector | |
2701 */ | |
2702 void arm_shift_q31( | |
2703 q31_t * pSrc, | |
2704 int8_t shiftBits, | |
2705 q31_t * pDst, | |
2706 uint32_t blockSize); | |
2707 | |
2708 | |
2709 /** | |
2710 * @brief Adds a constant offset to a floating-point vector. | |
2711 * @param[in] pSrc points to the input vector | |
2712 * @param[in] offset is the offset to be added | |
2713 * @param[out] pDst points to the output vector | |
2714 * @param[in] blockSize number of samples in the vector | |
2715 */ | |
2716 void arm_offset_f32( | |
2717 float32_t * pSrc, | |
2718 float32_t offset, | |
2719 float32_t * pDst, | |
2720 uint32_t blockSize); | |
2721 | |
2722 | |
2723 /** | |
2724 * @brief Adds a constant offset to a Q7 vector. | |
2725 * @param[in] pSrc points to the input vector | |
2726 * @param[in] offset is the offset to be added | |
2727 * @param[out] pDst points to the output vector | |
2728 * @param[in] blockSize number of samples in the vector | |
2729 */ | |
2730 void arm_offset_q7( | |
2731 q7_t * pSrc, | |
2732 q7_t offset, | |
2733 q7_t * pDst, | |
2734 uint32_t blockSize); | |
2735 | |
2736 | |
2737 /** | |
2738 * @brief Adds a constant offset to a Q15 vector. | |
2739 * @param[in] pSrc points to the input vector | |
2740 * @param[in] offset is the offset to be added | |
2741 * @param[out] pDst points to the output vector | |
2742 * @param[in] blockSize number of samples in the vector | |
2743 */ | |
2744 void arm_offset_q15( | |
2745 q15_t * pSrc, | |
2746 q15_t offset, | |
2747 q15_t * pDst, | |
2748 uint32_t blockSize); | |
2749 | |
2750 | |
2751 /** | |
2752 * @brief Adds a constant offset to a Q31 vector. | |
2753 * @param[in] pSrc points to the input vector | |
2754 * @param[in] offset is the offset to be added | |
2755 * @param[out] pDst points to the output vector | |
2756 * @param[in] blockSize number of samples in the vector | |
2757 */ | |
2758 void arm_offset_q31( | |
2759 q31_t * pSrc, | |
2760 q31_t offset, | |
2761 q31_t * pDst, | |
2762 uint32_t blockSize); | |
2763 | |
2764 | |
2765 /** | |
2766 * @brief Negates the elements of a floating-point vector. | |
2767 * @param[in] pSrc points to the input vector | |
2768 * @param[out] pDst points to the output vector | |
2769 * @param[in] blockSize number of samples in the vector | |
2770 */ | |
2771 void arm_negate_f32( | |
2772 float32_t * pSrc, | |
2773 float32_t * pDst, | |
2774 uint32_t blockSize); | |
2775 | |
2776 | |
2777 /** | |
2778 * @brief Negates the elements of a Q7 vector. | |
2779 * @param[in] pSrc points to the input vector | |
2780 * @param[out] pDst points to the output vector | |
2781 * @param[in] blockSize number of samples in the vector | |
2782 */ | |
2783 void arm_negate_q7( | |
2784 q7_t * pSrc, | |
2785 q7_t * pDst, | |
2786 uint32_t blockSize); | |
2787 | |
2788 | |
2789 /** | |
2790 * @brief Negates the elements of a Q15 vector. | |
2791 * @param[in] pSrc points to the input vector | |
2792 * @param[out] pDst points to the output vector | |
2793 * @param[in] blockSize number of samples in the vector | |
2794 */ | |
2795 void arm_negate_q15( | |
2796 q15_t * pSrc, | |
2797 q15_t * pDst, | |
2798 uint32_t blockSize); | |
2799 | |
2800 | |
2801 /** | |
2802 * @brief Negates the elements of a Q31 vector. | |
2803 * @param[in] pSrc points to the input vector | |
2804 * @param[out] pDst points to the output vector | |
2805 * @param[in] blockSize number of samples in the vector | |
2806 */ | |
2807 void arm_negate_q31( | |
2808 q31_t * pSrc, | |
2809 q31_t * pDst, | |
2810 uint32_t blockSize); | |
2811 | |
2812 | |
2813 /** | |
2814 * @brief Copies the elements of a floating-point vector. | |
2815 * @param[in] pSrc input pointer | |
2816 * @param[out] pDst output pointer | |
2817 * @param[in] blockSize number of samples to process | |
2818 */ | |
2819 void arm_copy_f32( | |
2820 float32_t * pSrc, | |
2821 float32_t * pDst, | |
2822 uint32_t blockSize); | |
2823 | |
2824 | |
2825 /** | |
2826 * @brief Copies the elements of a Q7 vector. | |
2827 * @param[in] pSrc input pointer | |
2828 * @param[out] pDst output pointer | |
2829 * @param[in] blockSize number of samples to process | |
2830 */ | |
2831 void arm_copy_q7( | |
2832 q7_t * pSrc, | |
2833 q7_t * pDst, | |
2834 uint32_t blockSize); | |
2835 | |
2836 | |
2837 /** | |
2838 * @brief Copies the elements of a Q15 vector. | |
2839 * @param[in] pSrc input pointer | |
2840 * @param[out] pDst output pointer | |
2841 * @param[in] blockSize number of samples to process | |
2842 */ | |
2843 void arm_copy_q15( | |
2844 q15_t * pSrc, | |
2845 q15_t * pDst, | |
2846 uint32_t blockSize); | |
2847 | |
2848 | |
2849 /** | |
2850 * @brief Copies the elements of a Q31 vector. | |
2851 * @param[in] pSrc input pointer | |
2852 * @param[out] pDst output pointer | |
2853 * @param[in] blockSize number of samples to process | |
2854 */ | |
2855 void arm_copy_q31( | |
2856 q31_t * pSrc, | |
2857 q31_t * pDst, | |
2858 uint32_t blockSize); | |
2859 | |
2860 | |
2861 /** | |
2862 * @brief Fills a constant value into a floating-point vector. | |
2863 * @param[in] value input value to be filled | |
2864 * @param[out] pDst output pointer | |
2865 * @param[in] blockSize number of samples to process | |
2866 */ | |
2867 void arm_fill_f32( | |
2868 float32_t value, | |
2869 float32_t * pDst, | |
2870 uint32_t blockSize); | |
2871 | |
2872 | |
2873 /** | |
2874 * @brief Fills a constant value into a Q7 vector. | |
2875 * @param[in] value input value to be filled | |
2876 * @param[out] pDst output pointer | |
2877 * @param[in] blockSize number of samples to process | |
2878 */ | |
2879 void arm_fill_q7( | |
2880 q7_t value, | |
2881 q7_t * pDst, | |
2882 uint32_t blockSize); | |
2883 | |
2884 | |
2885 /** | |
2886 * @brief Fills a constant value into a Q15 vector. | |
2887 * @param[in] value input value to be filled | |
2888 * @param[out] pDst output pointer | |
2889 * @param[in] blockSize number of samples to process | |
2890 */ | |
2891 void arm_fill_q15( | |
2892 q15_t value, | |
2893 q15_t * pDst, | |
2894 uint32_t blockSize); | |
2895 | |
2896 | |
2897 /** | |
2898 * @brief Fills a constant value into a Q31 vector. | |
2899 * @param[in] value input value to be filled | |
2900 * @param[out] pDst output pointer | |
2901 * @param[in] blockSize number of samples to process | |
2902 */ | |
2903 void arm_fill_q31( | |
2904 q31_t value, | |
2905 q31_t * pDst, | |
2906 uint32_t blockSize); | |
2907 | |
2908 | |
2909 /** | |
2910 * @brief Convolution of floating-point sequences. | |
2911 * @param[in] pSrcA points to the first input sequence. | |
2912 * @param[in] srcALen length of the first input sequence. | |
2913 * @param[in] pSrcB points to the second input sequence. | |
2914 * @param[in] srcBLen length of the second input sequence. | |
2915 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
2916 */ | |
2917 void arm_conv_f32( | |
2918 float32_t * pSrcA, | |
2919 uint32_t srcALen, | |
2920 float32_t * pSrcB, | |
2921 uint32_t srcBLen, | |
2922 float32_t * pDst); | |
2923 | |
2924 | |
2925 /** | |
2926 * @brief Convolution of Q15 sequences. | |
2927 * @param[in] pSrcA points to the first input sequence. | |
2928 * @param[in] srcALen length of the first input sequence. | |
2929 * @param[in] pSrcB points to the second input sequence. | |
2930 * @param[in] srcBLen length of the second input sequence. | |
2931 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
2932 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
2933 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
2934 */ | |
2935 void arm_conv_opt_q15( | |
2936 q15_t * pSrcA, | |
2937 uint32_t srcALen, | |
2938 q15_t * pSrcB, | |
2939 uint32_t srcBLen, | |
2940 q15_t * pDst, | |
2941 q15_t * pScratch1, | |
2942 q15_t * pScratch2); | |
2943 | |
2944 | |
2945 /** | |
2946 * @brief Convolution of Q15 sequences. | |
2947 * @param[in] pSrcA points to the first input sequence. | |
2948 * @param[in] srcALen length of the first input sequence. | |
2949 * @param[in] pSrcB points to the second input sequence. | |
2950 * @param[in] srcBLen length of the second input sequence. | |
2951 * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. | |
2952 */ | |
2953 void arm_conv_q15( | |
2954 q15_t * pSrcA, | |
2955 uint32_t srcALen, | |
2956 q15_t * pSrcB, | |
2957 uint32_t srcBLen, | |
2958 q15_t * pDst); | |
2959 | |
2960 | |
2961 /** | |
2962 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
2963 * @param[in] pSrcA points to the first input sequence. | |
2964 * @param[in] srcALen length of the first input sequence. | |
2965 * @param[in] pSrcB points to the second input sequence. | |
2966 * @param[in] srcBLen length of the second input sequence. | |
2967 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
2968 */ | |
2969 void arm_conv_fast_q15( | |
2970 q15_t * pSrcA, | |
2971 uint32_t srcALen, | |
2972 q15_t * pSrcB, | |
2973 uint32_t srcBLen, | |
2974 q15_t * pDst); | |
2975 | |
2976 | |
2977 /** | |
2978 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
2979 * @param[in] pSrcA points to the first input sequence. | |
2980 * @param[in] srcALen length of the first input sequence. | |
2981 * @param[in] pSrcB points to the second input sequence. | |
2982 * @param[in] srcBLen length of the second input sequence. | |
2983 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
2984 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
2985 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
2986 */ | |
2987 void arm_conv_fast_opt_q15( | |
2988 q15_t * pSrcA, | |
2989 uint32_t srcALen, | |
2990 q15_t * pSrcB, | |
2991 uint32_t srcBLen, | |
2992 q15_t * pDst, | |
2993 q15_t * pScratch1, | |
2994 q15_t * pScratch2); | |
2995 | |
2996 | |
2997 /** | |
2998 * @brief Convolution of Q31 sequences. | |
2999 * @param[in] pSrcA points to the first input sequence. | |
3000 * @param[in] srcALen length of the first input sequence. | |
3001 * @param[in] pSrcB points to the second input sequence. | |
3002 * @param[in] srcBLen length of the second input sequence. | |
3003 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
3004 */ | |
3005 void arm_conv_q31( | |
3006 q31_t * pSrcA, | |
3007 uint32_t srcALen, | |
3008 q31_t * pSrcB, | |
3009 uint32_t srcBLen, | |
3010 q31_t * pDst); | |
3011 | |
3012 | |
3013 /** | |
3014 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3015 * @param[in] pSrcA points to the first input sequence. | |
3016 * @param[in] srcALen length of the first input sequence. | |
3017 * @param[in] pSrcB points to the second input sequence. | |
3018 * @param[in] srcBLen length of the second input sequence. | |
3019 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
3020 */ | |
3021 void arm_conv_fast_q31( | |
3022 q31_t * pSrcA, | |
3023 uint32_t srcALen, | |
3024 q31_t * pSrcB, | |
3025 uint32_t srcBLen, | |
3026 q31_t * pDst); | |
3027 | |
3028 | |
3029 /** | |
3030 * @brief Convolution of Q7 sequences. | |
3031 * @param[in] pSrcA points to the first input sequence. | |
3032 * @param[in] srcALen length of the first input sequence. | |
3033 * @param[in] pSrcB points to the second input sequence. | |
3034 * @param[in] srcBLen length of the second input sequence. | |
3035 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
3036 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
3037 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | |
3038 */ | |
3039 void arm_conv_opt_q7( | |
3040 q7_t * pSrcA, | |
3041 uint32_t srcALen, | |
3042 q7_t * pSrcB, | |
3043 uint32_t srcBLen, | |
3044 q7_t * pDst, | |
3045 q15_t * pScratch1, | |
3046 q15_t * pScratch2); | |
3047 | |
3048 | |
3049 /** | |
3050 * @brief Convolution of Q7 sequences. | |
3051 * @param[in] pSrcA points to the first input sequence. | |
3052 * @param[in] srcALen length of the first input sequence. | |
3053 * @param[in] pSrcB points to the second input sequence. | |
3054 * @param[in] srcBLen length of the second input sequence. | |
3055 * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. | |
3056 */ | |
3057 void arm_conv_q7( | |
3058 q7_t * pSrcA, | |
3059 uint32_t srcALen, | |
3060 q7_t * pSrcB, | |
3061 uint32_t srcBLen, | |
3062 q7_t * pDst); | |
3063 | |
3064 | |
3065 /** | |
3066 * @brief Partial convolution of floating-point sequences. | |
3067 * @param[in] pSrcA points to the first input sequence. | |
3068 * @param[in] srcALen length of the first input sequence. | |
3069 * @param[in] pSrcB points to the second input sequence. | |
3070 * @param[in] srcBLen length of the second input sequence. | |
3071 * @param[out] pDst points to the block of output data | |
3072 * @param[in] firstIndex is the first output sample to start with. | |
3073 * @param[in] numPoints is the number of output points to be computed. | |
3074 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3075 */ | |
3076 arm_status arm_conv_partial_f32( | |
3077 float32_t * pSrcA, | |
3078 uint32_t srcALen, | |
3079 float32_t * pSrcB, | |
3080 uint32_t srcBLen, | |
3081 float32_t * pDst, | |
3082 uint32_t firstIndex, | |
3083 uint32_t numPoints); | |
3084 | |
3085 | |
3086 /** | |
3087 * @brief Partial convolution of Q15 sequences. | |
3088 * @param[in] pSrcA points to the first input sequence. | |
3089 * @param[in] srcALen length of the first input sequence. | |
3090 * @param[in] pSrcB points to the second input sequence. | |
3091 * @param[in] srcBLen length of the second input sequence. | |
3092 * @param[out] pDst points to the block of output data | |
3093 * @param[in] firstIndex is the first output sample to start with. | |
3094 * @param[in] numPoints is the number of output points to be computed. | |
3095 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
3096 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
3097 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3098 */ | |
3099 arm_status arm_conv_partial_opt_q15( | |
3100 q15_t * pSrcA, | |
3101 uint32_t srcALen, | |
3102 q15_t * pSrcB, | |
3103 uint32_t srcBLen, | |
3104 q15_t * pDst, | |
3105 uint32_t firstIndex, | |
3106 uint32_t numPoints, | |
3107 q15_t * pScratch1, | |
3108 q15_t * pScratch2); | |
3109 | |
3110 | |
3111 /** | |
3112 * @brief Partial convolution of Q15 sequences. | |
3113 * @param[in] pSrcA points to the first input sequence. | |
3114 * @param[in] srcALen length of the first input sequence. | |
3115 * @param[in] pSrcB points to the second input sequence. | |
3116 * @param[in] srcBLen length of the second input sequence. | |
3117 * @param[out] pDst points to the block of output data | |
3118 * @param[in] firstIndex is the first output sample to start with. | |
3119 * @param[in] numPoints is the number of output points to be computed. | |
3120 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3121 */ | |
3122 arm_status arm_conv_partial_q15( | |
3123 q15_t * pSrcA, | |
3124 uint32_t srcALen, | |
3125 q15_t * pSrcB, | |
3126 uint32_t srcBLen, | |
3127 q15_t * pDst, | |
3128 uint32_t firstIndex, | |
3129 uint32_t numPoints); | |
3130 | |
3131 | |
3132 /** | |
3133 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3134 * @param[in] pSrcA points to the first input sequence. | |
3135 * @param[in] srcALen length of the first input sequence. | |
3136 * @param[in] pSrcB points to the second input sequence. | |
3137 * @param[in] srcBLen length of the second input sequence. | |
3138 * @param[out] pDst points to the block of output data | |
3139 * @param[in] firstIndex is the first output sample to start with. | |
3140 * @param[in] numPoints is the number of output points to be computed. | |
3141 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3142 */ | |
3143 arm_status arm_conv_partial_fast_q15( | |
3144 q15_t * pSrcA, | |
3145 uint32_t srcALen, | |
3146 q15_t * pSrcB, | |
3147 uint32_t srcBLen, | |
3148 q15_t * pDst, | |
3149 uint32_t firstIndex, | |
3150 uint32_t numPoints); | |
3151 | |
3152 | |
3153 /** | |
3154 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3155 * @param[in] pSrcA points to the first input sequence. | |
3156 * @param[in] srcALen length of the first input sequence. | |
3157 * @param[in] pSrcB points to the second input sequence. | |
3158 * @param[in] srcBLen length of the second input sequence. | |
3159 * @param[out] pDst points to the block of output data | |
3160 * @param[in] firstIndex is the first output sample to start with. | |
3161 * @param[in] numPoints is the number of output points to be computed. | |
3162 * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
3163 * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). | |
3164 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3165 */ | |
3166 arm_status arm_conv_partial_fast_opt_q15( | |
3167 q15_t * pSrcA, | |
3168 uint32_t srcALen, | |
3169 q15_t * pSrcB, | |
3170 uint32_t srcBLen, | |
3171 q15_t * pDst, | |
3172 uint32_t firstIndex, | |
3173 uint32_t numPoints, | |
3174 q15_t * pScratch1, | |
3175 q15_t * pScratch2); | |
3176 | |
3177 | |
3178 /** | |
3179 * @brief Partial convolution of Q31 sequences. | |
3180 * @param[in] pSrcA points to the first input sequence. | |
3181 * @param[in] srcALen length of the first input sequence. | |
3182 * @param[in] pSrcB points to the second input sequence. | |
3183 * @param[in] srcBLen length of the second input sequence. | |
3184 * @param[out] pDst points to the block of output data | |
3185 * @param[in] firstIndex is the first output sample to start with. | |
3186 * @param[in] numPoints is the number of output points to be computed. | |
3187 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3188 */ | |
3189 arm_status arm_conv_partial_q31( | |
3190 q31_t * pSrcA, | |
3191 uint32_t srcALen, | |
3192 q31_t * pSrcB, | |
3193 uint32_t srcBLen, | |
3194 q31_t * pDst, | |
3195 uint32_t firstIndex, | |
3196 uint32_t numPoints); | |
3197 | |
3198 | |
3199 /** | |
3200 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
3201 * @param[in] pSrcA points to the first input sequence. | |
3202 * @param[in] srcALen length of the first input sequence. | |
3203 * @param[in] pSrcB points to the second input sequence. | |
3204 * @param[in] srcBLen length of the second input sequence. | |
3205 * @param[out] pDst points to the block of output data | |
3206 * @param[in] firstIndex is the first output sample to start with. | |
3207 * @param[in] numPoints is the number of output points to be computed. | |
3208 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3209 */ | |
3210 arm_status arm_conv_partial_fast_q31( | |
3211 q31_t * pSrcA, | |
3212 uint32_t srcALen, | |
3213 q31_t * pSrcB, | |
3214 uint32_t srcBLen, | |
3215 q31_t * pDst, | |
3216 uint32_t firstIndex, | |
3217 uint32_t numPoints); | |
3218 | |
3219 | |
3220 /** | |
3221 * @brief Partial convolution of Q7 sequences | |
3222 * @param[in] pSrcA points to the first input sequence. | |
3223 * @param[in] srcALen length of the first input sequence. | |
3224 * @param[in] pSrcB points to the second input sequence. | |
3225 * @param[in] srcBLen length of the second input sequence. | |
3226 * @param[out] pDst points to the block of output data | |
3227 * @param[in] firstIndex is the first output sample to start with. | |
3228 * @param[in] numPoints is the number of output points to be computed. | |
3229 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
3230 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | |
3231 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3232 */ | |
3233 arm_status arm_conv_partial_opt_q7( | |
3234 q7_t * pSrcA, | |
3235 uint32_t srcALen, | |
3236 q7_t * pSrcB, | |
3237 uint32_t srcBLen, | |
3238 q7_t * pDst, | |
3239 uint32_t firstIndex, | |
3240 uint32_t numPoints, | |
3241 q15_t * pScratch1, | |
3242 q15_t * pScratch2); | |
3243 | |
3244 | |
3245 /** | |
3246 * @brief Partial convolution of Q7 sequences. | |
3247 * @param[in] pSrcA points to the first input sequence. | |
3248 * @param[in] srcALen length of the first input sequence. | |
3249 * @param[in] pSrcB points to the second input sequence. | |
3250 * @param[in] srcBLen length of the second input sequence. | |
3251 * @param[out] pDst points to the block of output data | |
3252 * @param[in] firstIndex is the first output sample to start with. | |
3253 * @param[in] numPoints is the number of output points to be computed. | |
3254 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. | |
3255 */ | |
3256 arm_status arm_conv_partial_q7( | |
3257 q7_t * pSrcA, | |
3258 uint32_t srcALen, | |
3259 q7_t * pSrcB, | |
3260 uint32_t srcBLen, | |
3261 q7_t * pDst, | |
3262 uint32_t firstIndex, | |
3263 uint32_t numPoints); | |
3264 | |
3265 | |
3266 /** | |
3267 * @brief Instance structure for the Q15 FIR decimator. | |
3268 */ | |
3269 typedef struct | |
3270 { | |
3271 uint8_t M; /**< decimation factor. */ | |
3272 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3273 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
3274 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3275 } arm_fir_decimate_instance_q15; | |
3276 | |
3277 /** | |
3278 * @brief Instance structure for the Q31 FIR decimator. | |
3279 */ | |
3280 typedef struct | |
3281 { | |
3282 uint8_t M; /**< decimation factor. */ | |
3283 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3284 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
3285 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3286 } arm_fir_decimate_instance_q31; | |
3287 | |
3288 /** | |
3289 * @brief Instance structure for the floating-point FIR decimator. | |
3290 */ | |
3291 typedef struct | |
3292 { | |
3293 uint8_t M; /**< decimation factor. */ | |
3294 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3295 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
3296 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3297 } arm_fir_decimate_instance_f32; | |
3298 | |
3299 | |
3300 /** | |
3301 * @brief Processing function for the floating-point FIR decimator. | |
3302 * @param[in] S points to an instance of the floating-point FIR decimator structure. | |
3303 * @param[in] pSrc points to the block of input data. | |
3304 * @param[out] pDst points to the block of output data | |
3305 * @param[in] blockSize number of input samples to process per call. | |
3306 */ | |
3307 void arm_fir_decimate_f32( | |
3308 const arm_fir_decimate_instance_f32 * S, | |
3309 float32_t * pSrc, | |
3310 float32_t * pDst, | |
3311 uint32_t blockSize); | |
3312 | |
3313 | |
3314 /** | |
3315 * @brief Initialization function for the floating-point FIR decimator. | |
3316 * @param[in,out] S points to an instance of the floating-point FIR decimator structure. | |
3317 * @param[in] numTaps number of coefficients in the filter. | |
3318 * @param[in] M decimation factor. | |
3319 * @param[in] pCoeffs points to the filter coefficients. | |
3320 * @param[in] pState points to the state buffer. | |
3321 * @param[in] blockSize number of input samples to process per call. | |
3322 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3323 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
3324 */ | |
3325 arm_status arm_fir_decimate_init_f32( | |
3326 arm_fir_decimate_instance_f32 * S, | |
3327 uint16_t numTaps, | |
3328 uint8_t M, | |
3329 float32_t * pCoeffs, | |
3330 float32_t * pState, | |
3331 uint32_t blockSize); | |
3332 | |
3333 | |
3334 /** | |
3335 * @brief Processing function for the Q15 FIR decimator. | |
3336 * @param[in] S points to an instance of the Q15 FIR decimator structure. | |
3337 * @param[in] pSrc points to the block of input data. | |
3338 * @param[out] pDst points to the block of output data | |
3339 * @param[in] blockSize number of input samples to process per call. | |
3340 */ | |
3341 void arm_fir_decimate_q15( | |
3342 const arm_fir_decimate_instance_q15 * S, | |
3343 q15_t * pSrc, | |
3344 q15_t * pDst, | |
3345 uint32_t blockSize); | |
3346 | |
3347 | |
3348 /** | |
3349 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
3350 * @param[in] S points to an instance of the Q15 FIR decimator structure. | |
3351 * @param[in] pSrc points to the block of input data. | |
3352 * @param[out] pDst points to the block of output data | |
3353 * @param[in] blockSize number of input samples to process per call. | |
3354 */ | |
3355 void arm_fir_decimate_fast_q15( | |
3356 const arm_fir_decimate_instance_q15 * S, | |
3357 q15_t * pSrc, | |
3358 q15_t * pDst, | |
3359 uint32_t blockSize); | |
3360 | |
3361 | |
3362 /** | |
3363 * @brief Initialization function for the Q15 FIR decimator. | |
3364 * @param[in,out] S points to an instance of the Q15 FIR decimator structure. | |
3365 * @param[in] numTaps number of coefficients in the filter. | |
3366 * @param[in] M decimation factor. | |
3367 * @param[in] pCoeffs points to the filter coefficients. | |
3368 * @param[in] pState points to the state buffer. | |
3369 * @param[in] blockSize number of input samples to process per call. | |
3370 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3371 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
3372 */ | |
3373 arm_status arm_fir_decimate_init_q15( | |
3374 arm_fir_decimate_instance_q15 * S, | |
3375 uint16_t numTaps, | |
3376 uint8_t M, | |
3377 q15_t * pCoeffs, | |
3378 q15_t * pState, | |
3379 uint32_t blockSize); | |
3380 | |
3381 | |
3382 /** | |
3383 * @brief Processing function for the Q31 FIR decimator. | |
3384 * @param[in] S points to an instance of the Q31 FIR decimator structure. | |
3385 * @param[in] pSrc points to the block of input data. | |
3386 * @param[out] pDst points to the block of output data | |
3387 * @param[in] blockSize number of input samples to process per call. | |
3388 */ | |
3389 void arm_fir_decimate_q31( | |
3390 const arm_fir_decimate_instance_q31 * S, | |
3391 q31_t * pSrc, | |
3392 q31_t * pDst, | |
3393 uint32_t blockSize); | |
3394 | |
3395 /** | |
3396 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. | |
3397 * @param[in] S points to an instance of the Q31 FIR decimator structure. | |
3398 * @param[in] pSrc points to the block of input data. | |
3399 * @param[out] pDst points to the block of output data | |
3400 * @param[in] blockSize number of input samples to process per call. | |
3401 */ | |
3402 void arm_fir_decimate_fast_q31( | |
3403 arm_fir_decimate_instance_q31 * S, | |
3404 q31_t * pSrc, | |
3405 q31_t * pDst, | |
3406 uint32_t blockSize); | |
3407 | |
3408 | |
3409 /** | |
3410 * @brief Initialization function for the Q31 FIR decimator. | |
3411 * @param[in,out] S points to an instance of the Q31 FIR decimator structure. | |
3412 * @param[in] numTaps number of coefficients in the filter. | |
3413 * @param[in] M decimation factor. | |
3414 * @param[in] pCoeffs points to the filter coefficients. | |
3415 * @param[in] pState points to the state buffer. | |
3416 * @param[in] blockSize number of input samples to process per call. | |
3417 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3418 * <code>blockSize</code> is not a multiple of <code>M</code>. | |
3419 */ | |
3420 arm_status arm_fir_decimate_init_q31( | |
3421 arm_fir_decimate_instance_q31 * S, | |
3422 uint16_t numTaps, | |
3423 uint8_t M, | |
3424 q31_t * pCoeffs, | |
3425 q31_t * pState, | |
3426 uint32_t blockSize); | |
3427 | |
3428 | |
3429 /** | |
3430 * @brief Instance structure for the Q15 FIR interpolator. | |
3431 */ | |
3432 typedef struct | |
3433 { | |
3434 uint8_t L; /**< upsample factor. */ | |
3435 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
3436 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
3437 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
3438 } arm_fir_interpolate_instance_q15; | |
3439 | |
3440 /** | |
3441 * @brief Instance structure for the Q31 FIR interpolator. | |
3442 */ | |
3443 typedef struct | |
3444 { | |
3445 uint8_t L; /**< upsample factor. */ | |
3446 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
3447 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
3448 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ | |
3449 } arm_fir_interpolate_instance_q31; | |
3450 | |
3451 /** | |
3452 * @brief Instance structure for the floating-point FIR interpolator. | |
3453 */ | |
3454 typedef struct | |
3455 { | |
3456 uint8_t L; /**< upsample factor. */ | |
3457 uint16_t phaseLength; /**< length of each polyphase filter component. */ | |
3458 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ | |
3459 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ | |
3460 } arm_fir_interpolate_instance_f32; | |
3461 | |
3462 | |
3463 /** | |
3464 * @brief Processing function for the Q15 FIR interpolator. | |
3465 * @param[in] S points to an instance of the Q15 FIR interpolator structure. | |
3466 * @param[in] pSrc points to the block of input data. | |
3467 * @param[out] pDst points to the block of output data. | |
3468 * @param[in] blockSize number of input samples to process per call. | |
3469 */ | |
3470 void arm_fir_interpolate_q15( | |
3471 const arm_fir_interpolate_instance_q15 * S, | |
3472 q15_t * pSrc, | |
3473 q15_t * pDst, | |
3474 uint32_t blockSize); | |
3475 | |
3476 | |
3477 /** | |
3478 * @brief Initialization function for the Q15 FIR interpolator. | |
3479 * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. | |
3480 * @param[in] L upsample factor. | |
3481 * @param[in] numTaps number of filter coefficients in the filter. | |
3482 * @param[in] pCoeffs points to the filter coefficient buffer. | |
3483 * @param[in] pState points to the state buffer. | |
3484 * @param[in] blockSize number of input samples to process per call. | |
3485 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3486 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
3487 */ | |
3488 arm_status arm_fir_interpolate_init_q15( | |
3489 arm_fir_interpolate_instance_q15 * S, | |
3490 uint8_t L, | |
3491 uint16_t numTaps, | |
3492 q15_t * pCoeffs, | |
3493 q15_t * pState, | |
3494 uint32_t blockSize); | |
3495 | |
3496 | |
3497 /** | |
3498 * @brief Processing function for the Q31 FIR interpolator. | |
3499 * @param[in] S points to an instance of the Q15 FIR interpolator structure. | |
3500 * @param[in] pSrc points to the block of input data. | |
3501 * @param[out] pDst points to the block of output data. | |
3502 * @param[in] blockSize number of input samples to process per call. | |
3503 */ | |
3504 void arm_fir_interpolate_q31( | |
3505 const arm_fir_interpolate_instance_q31 * S, | |
3506 q31_t * pSrc, | |
3507 q31_t * pDst, | |
3508 uint32_t blockSize); | |
3509 | |
3510 | |
3511 /** | |
3512 * @brief Initialization function for the Q31 FIR interpolator. | |
3513 * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. | |
3514 * @param[in] L upsample factor. | |
3515 * @param[in] numTaps number of filter coefficients in the filter. | |
3516 * @param[in] pCoeffs points to the filter coefficient buffer. | |
3517 * @param[in] pState points to the state buffer. | |
3518 * @param[in] blockSize number of input samples to process per call. | |
3519 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3520 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
3521 */ | |
3522 arm_status arm_fir_interpolate_init_q31( | |
3523 arm_fir_interpolate_instance_q31 * S, | |
3524 uint8_t L, | |
3525 uint16_t numTaps, | |
3526 q31_t * pCoeffs, | |
3527 q31_t * pState, | |
3528 uint32_t blockSize); | |
3529 | |
3530 | |
3531 /** | |
3532 * @brief Processing function for the floating-point FIR interpolator. | |
3533 * @param[in] S points to an instance of the floating-point FIR interpolator structure. | |
3534 * @param[in] pSrc points to the block of input data. | |
3535 * @param[out] pDst points to the block of output data. | |
3536 * @param[in] blockSize number of input samples to process per call. | |
3537 */ | |
3538 void arm_fir_interpolate_f32( | |
3539 const arm_fir_interpolate_instance_f32 * S, | |
3540 float32_t * pSrc, | |
3541 float32_t * pDst, | |
3542 uint32_t blockSize); | |
3543 | |
3544 | |
3545 /** | |
3546 * @brief Initialization function for the floating-point FIR interpolator. | |
3547 * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. | |
3548 * @param[in] L upsample factor. | |
3549 * @param[in] numTaps number of filter coefficients in the filter. | |
3550 * @param[in] pCoeffs points to the filter coefficient buffer. | |
3551 * @param[in] pState points to the state buffer. | |
3552 * @param[in] blockSize number of input samples to process per call. | |
3553 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if | |
3554 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. | |
3555 */ | |
3556 arm_status arm_fir_interpolate_init_f32( | |
3557 arm_fir_interpolate_instance_f32 * S, | |
3558 uint8_t L, | |
3559 uint16_t numTaps, | |
3560 float32_t * pCoeffs, | |
3561 float32_t * pState, | |
3562 uint32_t blockSize); | |
3563 | |
3564 | |
3565 /** | |
3566 * @brief Instance structure for the high precision Q31 Biquad cascade filter. | |
3567 */ | |
3568 typedef struct | |
3569 { | |
3570 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
3571 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | |
3572 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
3573 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ | |
3574 } arm_biquad_cas_df1_32x64_ins_q31; | |
3575 | |
3576 | |
3577 /** | |
3578 * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
3579 * @param[in] pSrc points to the block of input data. | |
3580 * @param[out] pDst points to the block of output data | |
3581 * @param[in] blockSize number of samples to process. | |
3582 */ | |
3583 void arm_biquad_cas_df1_32x64_q31( | |
3584 const arm_biquad_cas_df1_32x64_ins_q31 * S, | |
3585 q31_t * pSrc, | |
3586 q31_t * pDst, | |
3587 uint32_t blockSize); | |
3588 | |
3589 | |
3590 /** | |
3591 * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. | |
3592 * @param[in] numStages number of 2nd order stages in the filter. | |
3593 * @param[in] pCoeffs points to the filter coefficients. | |
3594 * @param[in] pState points to the state buffer. | |
3595 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format | |
3596 */ | |
3597 void arm_biquad_cas_df1_32x64_init_q31( | |
3598 arm_biquad_cas_df1_32x64_ins_q31 * S, | |
3599 uint8_t numStages, | |
3600 q31_t * pCoeffs, | |
3601 q63_t * pState, | |
3602 uint8_t postShift); | |
3603 | |
3604 | |
3605 /** | |
3606 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
3607 */ | |
3608 typedef struct | |
3609 { | |
3610 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
3611 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | |
3612 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
3613 } arm_biquad_cascade_df2T_instance_f32; | |
3614 | |
3615 /** | |
3616 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
3617 */ | |
3618 typedef struct | |
3619 { | |
3620 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
3621 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ | |
3622 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
3623 } arm_biquad_cascade_stereo_df2T_instance_f32; | |
3624 | |
3625 /** | |
3626 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. | |
3627 */ | |
3628 typedef struct | |
3629 { | |
3630 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ | |
3631 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ | |
3632 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ | |
3633 } arm_biquad_cascade_df2T_instance_f64; | |
3634 | |
3635 | |
3636 /** | |
3637 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | |
3638 * @param[in] S points to an instance of the filter data structure. | |
3639 * @param[in] pSrc points to the block of input data. | |
3640 * @param[out] pDst points to the block of output data | |
3641 * @param[in] blockSize number of samples to process. | |
3642 */ | |
3643 void arm_biquad_cascade_df2T_f32( | |
3644 const arm_biquad_cascade_df2T_instance_f32 * S, | |
3645 float32_t * pSrc, | |
3646 float32_t * pDst, | |
3647 uint32_t blockSize); | |
3648 | |
3649 | |
3650 /** | |
3651 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels | |
3652 * @param[in] S points to an instance of the filter data structure. | |
3653 * @param[in] pSrc points to the block of input data. | |
3654 * @param[out] pDst points to the block of output data | |
3655 * @param[in] blockSize number of samples to process. | |
3656 */ | |
3657 void arm_biquad_cascade_stereo_df2T_f32( | |
3658 const arm_biquad_cascade_stereo_df2T_instance_f32 * S, | |
3659 float32_t * pSrc, | |
3660 float32_t * pDst, | |
3661 uint32_t blockSize); | |
3662 | |
3663 | |
3664 /** | |
3665 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. | |
3666 * @param[in] S points to an instance of the filter data structure. | |
3667 * @param[in] pSrc points to the block of input data. | |
3668 * @param[out] pDst points to the block of output data | |
3669 * @param[in] blockSize number of samples to process. | |
3670 */ | |
3671 void arm_biquad_cascade_df2T_f64( | |
3672 const arm_biquad_cascade_df2T_instance_f64 * S, | |
3673 float64_t * pSrc, | |
3674 float64_t * pDst, | |
3675 uint32_t blockSize); | |
3676 | |
3677 | |
3678 /** | |
3679 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
3680 * @param[in,out] S points to an instance of the filter data structure. | |
3681 * @param[in] numStages number of 2nd order stages in the filter. | |
3682 * @param[in] pCoeffs points to the filter coefficients. | |
3683 * @param[in] pState points to the state buffer. | |
3684 */ | |
3685 void arm_biquad_cascade_df2T_init_f32( | |
3686 arm_biquad_cascade_df2T_instance_f32 * S, | |
3687 uint8_t numStages, | |
3688 float32_t * pCoeffs, | |
3689 float32_t * pState); | |
3690 | |
3691 | |
3692 /** | |
3693 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
3694 * @param[in,out] S points to an instance of the filter data structure. | |
3695 * @param[in] numStages number of 2nd order stages in the filter. | |
3696 * @param[in] pCoeffs points to the filter coefficients. | |
3697 * @param[in] pState points to the state buffer. | |
3698 */ | |
3699 void arm_biquad_cascade_stereo_df2T_init_f32( | |
3700 arm_biquad_cascade_stereo_df2T_instance_f32 * S, | |
3701 uint8_t numStages, | |
3702 float32_t * pCoeffs, | |
3703 float32_t * pState); | |
3704 | |
3705 | |
3706 /** | |
3707 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. | |
3708 * @param[in,out] S points to an instance of the filter data structure. | |
3709 * @param[in] numStages number of 2nd order stages in the filter. | |
3710 * @param[in] pCoeffs points to the filter coefficients. | |
3711 * @param[in] pState points to the state buffer. | |
3712 */ | |
3713 void arm_biquad_cascade_df2T_init_f64( | |
3714 arm_biquad_cascade_df2T_instance_f64 * S, | |
3715 uint8_t numStages, | |
3716 float64_t * pCoeffs, | |
3717 float64_t * pState); | |
3718 | |
3719 | |
3720 /** | |
3721 * @brief Instance structure for the Q15 FIR lattice filter. | |
3722 */ | |
3723 typedef struct | |
3724 { | |
3725 uint16_t numStages; /**< number of filter stages. */ | |
3726 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
3727 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
3728 } arm_fir_lattice_instance_q15; | |
3729 | |
3730 /** | |
3731 * @brief Instance structure for the Q31 FIR lattice filter. | |
3732 */ | |
3733 typedef struct | |
3734 { | |
3735 uint16_t numStages; /**< number of filter stages. */ | |
3736 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
3737 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
3738 } arm_fir_lattice_instance_q31; | |
3739 | |
3740 /** | |
3741 * @brief Instance structure for the floating-point FIR lattice filter. | |
3742 */ | |
3743 typedef struct | |
3744 { | |
3745 uint16_t numStages; /**< number of filter stages. */ | |
3746 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ | |
3747 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ | |
3748 } arm_fir_lattice_instance_f32; | |
3749 | |
3750 | |
3751 /** | |
3752 * @brief Initialization function for the Q15 FIR lattice filter. | |
3753 * @param[in] S points to an instance of the Q15 FIR lattice structure. | |
3754 * @param[in] numStages number of filter stages. | |
3755 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. | |
3756 * @param[in] pState points to the state buffer. The array is of length numStages. | |
3757 */ | |
3758 void arm_fir_lattice_init_q15( | |
3759 arm_fir_lattice_instance_q15 * S, | |
3760 uint16_t numStages, | |
3761 q15_t * pCoeffs, | |
3762 q15_t * pState); | |
3763 | |
3764 | |
3765 /** | |
3766 * @brief Processing function for the Q15 FIR lattice filter. | |
3767 * @param[in] S points to an instance of the Q15 FIR lattice structure. | |
3768 * @param[in] pSrc points to the block of input data. | |
3769 * @param[out] pDst points to the block of output data. | |
3770 * @param[in] blockSize number of samples to process. | |
3771 */ | |
3772 void arm_fir_lattice_q15( | |
3773 const arm_fir_lattice_instance_q15 * S, | |
3774 q15_t * pSrc, | |
3775 q15_t * pDst, | |
3776 uint32_t blockSize); | |
3777 | |
3778 | |
3779 /** | |
3780 * @brief Initialization function for the Q31 FIR lattice filter. | |
3781 * @param[in] S points to an instance of the Q31 FIR lattice structure. | |
3782 * @param[in] numStages number of filter stages. | |
3783 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. | |
3784 * @param[in] pState points to the state buffer. The array is of length numStages. | |
3785 */ | |
3786 void arm_fir_lattice_init_q31( | |
3787 arm_fir_lattice_instance_q31 * S, | |
3788 uint16_t numStages, | |
3789 q31_t * pCoeffs, | |
3790 q31_t * pState); | |
3791 | |
3792 | |
3793 /** | |
3794 * @brief Processing function for the Q31 FIR lattice filter. | |
3795 * @param[in] S points to an instance of the Q31 FIR lattice structure. | |
3796 * @param[in] pSrc points to the block of input data. | |
3797 * @param[out] pDst points to the block of output data | |
3798 * @param[in] blockSize number of samples to process. | |
3799 */ | |
3800 void arm_fir_lattice_q31( | |
3801 const arm_fir_lattice_instance_q31 * S, | |
3802 q31_t * pSrc, | |
3803 q31_t * pDst, | |
3804 uint32_t blockSize); | |
3805 | |
3806 | |
3807 /** | |
3808 * @brief Initialization function for the floating-point FIR lattice filter. | |
3809 * @param[in] S points to an instance of the floating-point FIR lattice structure. | |
3810 * @param[in] numStages number of filter stages. | |
3811 * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. | |
3812 * @param[in] pState points to the state buffer. The array is of length numStages. | |
3813 */ | |
3814 void arm_fir_lattice_init_f32( | |
3815 arm_fir_lattice_instance_f32 * S, | |
3816 uint16_t numStages, | |
3817 float32_t * pCoeffs, | |
3818 float32_t * pState); | |
3819 | |
3820 | |
3821 /** | |
3822 * @brief Processing function for the floating-point FIR lattice filter. | |
3823 * @param[in] S points to an instance of the floating-point FIR lattice structure. | |
3824 * @param[in] pSrc points to the block of input data. | |
3825 * @param[out] pDst points to the block of output data | |
3826 * @param[in] blockSize number of samples to process. | |
3827 */ | |
3828 void arm_fir_lattice_f32( | |
3829 const arm_fir_lattice_instance_f32 * S, | |
3830 float32_t * pSrc, | |
3831 float32_t * pDst, | |
3832 uint32_t blockSize); | |
3833 | |
3834 | |
3835 /** | |
3836 * @brief Instance structure for the Q15 IIR lattice filter. | |
3837 */ | |
3838 typedef struct | |
3839 { | |
3840 uint16_t numStages; /**< number of stages in the filter. */ | |
3841 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
3842 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
3843 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
3844 } arm_iir_lattice_instance_q15; | |
3845 | |
3846 /** | |
3847 * @brief Instance structure for the Q31 IIR lattice filter. | |
3848 */ | |
3849 typedef struct | |
3850 { | |
3851 uint16_t numStages; /**< number of stages in the filter. */ | |
3852 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
3853 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
3854 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
3855 } arm_iir_lattice_instance_q31; | |
3856 | |
3857 /** | |
3858 * @brief Instance structure for the floating-point IIR lattice filter. | |
3859 */ | |
3860 typedef struct | |
3861 { | |
3862 uint16_t numStages; /**< number of stages in the filter. */ | |
3863 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ | |
3864 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ | |
3865 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ | |
3866 } arm_iir_lattice_instance_f32; | |
3867 | |
3868 | |
3869 /** | |
3870 * @brief Processing function for the floating-point IIR lattice filter. | |
3871 * @param[in] S points to an instance of the floating-point IIR lattice structure. | |
3872 * @param[in] pSrc points to the block of input data. | |
3873 * @param[out] pDst points to the block of output data. | |
3874 * @param[in] blockSize number of samples to process. | |
3875 */ | |
3876 void arm_iir_lattice_f32( | |
3877 const arm_iir_lattice_instance_f32 * S, | |
3878 float32_t * pSrc, | |
3879 float32_t * pDst, | |
3880 uint32_t blockSize); | |
3881 | |
3882 | |
3883 /** | |
3884 * @brief Initialization function for the floating-point IIR lattice filter. | |
3885 * @param[in] S points to an instance of the floating-point IIR lattice structure. | |
3886 * @param[in] numStages number of stages in the filter. | |
3887 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
3888 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
3889 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. | |
3890 * @param[in] blockSize number of samples to process. | |
3891 */ | |
3892 void arm_iir_lattice_init_f32( | |
3893 arm_iir_lattice_instance_f32 * S, | |
3894 uint16_t numStages, | |
3895 float32_t * pkCoeffs, | |
3896 float32_t * pvCoeffs, | |
3897 float32_t * pState, | |
3898 uint32_t blockSize); | |
3899 | |
3900 | |
3901 /** | |
3902 * @brief Processing function for the Q31 IIR lattice filter. | |
3903 * @param[in] S points to an instance of the Q31 IIR lattice structure. | |
3904 * @param[in] pSrc points to the block of input data. | |
3905 * @param[out] pDst points to the block of output data. | |
3906 * @param[in] blockSize number of samples to process. | |
3907 */ | |
3908 void arm_iir_lattice_q31( | |
3909 const arm_iir_lattice_instance_q31 * S, | |
3910 q31_t * pSrc, | |
3911 q31_t * pDst, | |
3912 uint32_t blockSize); | |
3913 | |
3914 | |
3915 /** | |
3916 * @brief Initialization function for the Q31 IIR lattice filter. | |
3917 * @param[in] S points to an instance of the Q31 IIR lattice structure. | |
3918 * @param[in] numStages number of stages in the filter. | |
3919 * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. | |
3920 * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. | |
3921 * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. | |
3922 * @param[in] blockSize number of samples to process. | |
3923 */ | |
3924 void arm_iir_lattice_init_q31( | |
3925 arm_iir_lattice_instance_q31 * S, | |
3926 uint16_t numStages, | |
3927 q31_t * pkCoeffs, | |
3928 q31_t * pvCoeffs, | |
3929 q31_t * pState, | |
3930 uint32_t blockSize); | |
3931 | |
3932 | |
3933 /** | |
3934 * @brief Processing function for the Q15 IIR lattice filter. | |
3935 * @param[in] S points to an instance of the Q15 IIR lattice structure. | |
3936 * @param[in] pSrc points to the block of input data. | |
3937 * @param[out] pDst points to the block of output data. | |
3938 * @param[in] blockSize number of samples to process. | |
3939 */ | |
3940 void arm_iir_lattice_q15( | |
3941 const arm_iir_lattice_instance_q15 * S, | |
3942 q15_t * pSrc, | |
3943 q15_t * pDst, | |
3944 uint32_t blockSize); | |
3945 | |
3946 | |
3947 /** | |
3948 * @brief Initialization function for the Q15 IIR lattice filter. | |
3949 * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. | |
3950 * @param[in] numStages number of stages in the filter. | |
3951 * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. | |
3952 * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. | |
3953 * @param[in] pState points to state buffer. The array is of length numStages+blockSize. | |
3954 * @param[in] blockSize number of samples to process per call. | |
3955 */ | |
3956 void arm_iir_lattice_init_q15( | |
3957 arm_iir_lattice_instance_q15 * S, | |
3958 uint16_t numStages, | |
3959 q15_t * pkCoeffs, | |
3960 q15_t * pvCoeffs, | |
3961 q15_t * pState, | |
3962 uint32_t blockSize); | |
3963 | |
3964 | |
3965 /** | |
3966 * @brief Instance structure for the floating-point LMS filter. | |
3967 */ | |
3968 typedef struct | |
3969 { | |
3970 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
3971 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
3972 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
3973 float32_t mu; /**< step size that controls filter coefficient updates. */ | |
3974 } arm_lms_instance_f32; | |
3975 | |
3976 | |
3977 /** | |
3978 * @brief Processing function for floating-point LMS filter. | |
3979 * @param[in] S points to an instance of the floating-point LMS filter structure. | |
3980 * @param[in] pSrc points to the block of input data. | |
3981 * @param[in] pRef points to the block of reference data. | |
3982 * @param[out] pOut points to the block of output data. | |
3983 * @param[out] pErr points to the block of error data. | |
3984 * @param[in] blockSize number of samples to process. | |
3985 */ | |
3986 void arm_lms_f32( | |
3987 const arm_lms_instance_f32 * S, | |
3988 float32_t * pSrc, | |
3989 float32_t * pRef, | |
3990 float32_t * pOut, | |
3991 float32_t * pErr, | |
3992 uint32_t blockSize); | |
3993 | |
3994 | |
3995 /** | |
3996 * @brief Initialization function for floating-point LMS filter. | |
3997 * @param[in] S points to an instance of the floating-point LMS filter structure. | |
3998 * @param[in] numTaps number of filter coefficients. | |
3999 * @param[in] pCoeffs points to the coefficient buffer. | |
4000 * @param[in] pState points to state buffer. | |
4001 * @param[in] mu step size that controls filter coefficient updates. | |
4002 * @param[in] blockSize number of samples to process. | |
4003 */ | |
4004 void arm_lms_init_f32( | |
4005 arm_lms_instance_f32 * S, | |
4006 uint16_t numTaps, | |
4007 float32_t * pCoeffs, | |
4008 float32_t * pState, | |
4009 float32_t mu, | |
4010 uint32_t blockSize); | |
4011 | |
4012 | |
4013 /** | |
4014 * @brief Instance structure for the Q15 LMS filter. | |
4015 */ | |
4016 typedef struct | |
4017 { | |
4018 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4019 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4020 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4021 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
4022 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
4023 } arm_lms_instance_q15; | |
4024 | |
4025 | |
4026 /** | |
4027 * @brief Initialization function for the Q15 LMS filter. | |
4028 * @param[in] S points to an instance of the Q15 LMS filter structure. | |
4029 * @param[in] numTaps number of filter coefficients. | |
4030 * @param[in] pCoeffs points to the coefficient buffer. | |
4031 * @param[in] pState points to the state buffer. | |
4032 * @param[in] mu step size that controls filter coefficient updates. | |
4033 * @param[in] blockSize number of samples to process. | |
4034 * @param[in] postShift bit shift applied to coefficients. | |
4035 */ | |
4036 void arm_lms_init_q15( | |
4037 arm_lms_instance_q15 * S, | |
4038 uint16_t numTaps, | |
4039 q15_t * pCoeffs, | |
4040 q15_t * pState, | |
4041 q15_t mu, | |
4042 uint32_t blockSize, | |
4043 uint32_t postShift); | |
4044 | |
4045 | |
4046 /** | |
4047 * @brief Processing function for Q15 LMS filter. | |
4048 * @param[in] S points to an instance of the Q15 LMS filter structure. | |
4049 * @param[in] pSrc points to the block of input data. | |
4050 * @param[in] pRef points to the block of reference data. | |
4051 * @param[out] pOut points to the block of output data. | |
4052 * @param[out] pErr points to the block of error data. | |
4053 * @param[in] blockSize number of samples to process. | |
4054 */ | |
4055 void arm_lms_q15( | |
4056 const arm_lms_instance_q15 * S, | |
4057 q15_t * pSrc, | |
4058 q15_t * pRef, | |
4059 q15_t * pOut, | |
4060 q15_t * pErr, | |
4061 uint32_t blockSize); | |
4062 | |
4063 | |
4064 /** | |
4065 * @brief Instance structure for the Q31 LMS filter. | |
4066 */ | |
4067 typedef struct | |
4068 { | |
4069 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4070 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4071 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4072 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
4073 uint32_t postShift; /**< bit shift applied to coefficients. */ | |
4074 } arm_lms_instance_q31; | |
4075 | |
4076 | |
4077 /** | |
4078 * @brief Processing function for Q31 LMS filter. | |
4079 * @param[in] S points to an instance of the Q15 LMS filter structure. | |
4080 * @param[in] pSrc points to the block of input data. | |
4081 * @param[in] pRef points to the block of reference data. | |
4082 * @param[out] pOut points to the block of output data. | |
4083 * @param[out] pErr points to the block of error data. | |
4084 * @param[in] blockSize number of samples to process. | |
4085 */ | |
4086 void arm_lms_q31( | |
4087 const arm_lms_instance_q31 * S, | |
4088 q31_t * pSrc, | |
4089 q31_t * pRef, | |
4090 q31_t * pOut, | |
4091 q31_t * pErr, | |
4092 uint32_t blockSize); | |
4093 | |
4094 | |
4095 /** | |
4096 * @brief Initialization function for Q31 LMS filter. | |
4097 * @param[in] S points to an instance of the Q31 LMS filter structure. | |
4098 * @param[in] numTaps number of filter coefficients. | |
4099 * @param[in] pCoeffs points to coefficient buffer. | |
4100 * @param[in] pState points to state buffer. | |
4101 * @param[in] mu step size that controls filter coefficient updates. | |
4102 * @param[in] blockSize number of samples to process. | |
4103 * @param[in] postShift bit shift applied to coefficients. | |
4104 */ | |
4105 void arm_lms_init_q31( | |
4106 arm_lms_instance_q31 * S, | |
4107 uint16_t numTaps, | |
4108 q31_t * pCoeffs, | |
4109 q31_t * pState, | |
4110 q31_t mu, | |
4111 uint32_t blockSize, | |
4112 uint32_t postShift); | |
4113 | |
4114 | |
4115 /** | |
4116 * @brief Instance structure for the floating-point normalized LMS filter. | |
4117 */ | |
4118 typedef struct | |
4119 { | |
4120 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4121 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4122 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4123 float32_t mu; /**< step size that control filter coefficient updates. */ | |
4124 float32_t energy; /**< saves previous frame energy. */ | |
4125 float32_t x0; /**< saves previous input sample. */ | |
4126 } arm_lms_norm_instance_f32; | |
4127 | |
4128 | |
4129 /** | |
4130 * @brief Processing function for floating-point normalized LMS filter. | |
4131 * @param[in] S points to an instance of the floating-point normalized LMS filter structure. | |
4132 * @param[in] pSrc points to the block of input data. | |
4133 * @param[in] pRef points to the block of reference data. | |
4134 * @param[out] pOut points to the block of output data. | |
4135 * @param[out] pErr points to the block of error data. | |
4136 * @param[in] blockSize number of samples to process. | |
4137 */ | |
4138 void arm_lms_norm_f32( | |
4139 arm_lms_norm_instance_f32 * S, | |
4140 float32_t * pSrc, | |
4141 float32_t * pRef, | |
4142 float32_t * pOut, | |
4143 float32_t * pErr, | |
4144 uint32_t blockSize); | |
4145 | |
4146 | |
4147 /** | |
4148 * @brief Initialization function for floating-point normalized LMS filter. | |
4149 * @param[in] S points to an instance of the floating-point LMS filter structure. | |
4150 * @param[in] numTaps number of filter coefficients. | |
4151 * @param[in] pCoeffs points to coefficient buffer. | |
4152 * @param[in] pState points to state buffer. | |
4153 * @param[in] mu step size that controls filter coefficient updates. | |
4154 * @param[in] blockSize number of samples to process. | |
4155 */ | |
4156 void arm_lms_norm_init_f32( | |
4157 arm_lms_norm_instance_f32 * S, | |
4158 uint16_t numTaps, | |
4159 float32_t * pCoeffs, | |
4160 float32_t * pState, | |
4161 float32_t mu, | |
4162 uint32_t blockSize); | |
4163 | |
4164 | |
4165 /** | |
4166 * @brief Instance structure for the Q31 normalized LMS filter. | |
4167 */ | |
4168 typedef struct | |
4169 { | |
4170 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4171 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4172 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4173 q31_t mu; /**< step size that controls filter coefficient updates. */ | |
4174 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
4175 q31_t *recipTable; /**< points to the reciprocal initial value table. */ | |
4176 q31_t energy; /**< saves previous frame energy. */ | |
4177 q31_t x0; /**< saves previous input sample. */ | |
4178 } arm_lms_norm_instance_q31; | |
4179 | |
4180 | |
4181 /** | |
4182 * @brief Processing function for Q31 normalized LMS filter. | |
4183 * @param[in] S points to an instance of the Q31 normalized LMS filter structure. | |
4184 * @param[in] pSrc points to the block of input data. | |
4185 * @param[in] pRef points to the block of reference data. | |
4186 * @param[out] pOut points to the block of output data. | |
4187 * @param[out] pErr points to the block of error data. | |
4188 * @param[in] blockSize number of samples to process. | |
4189 */ | |
4190 void arm_lms_norm_q31( | |
4191 arm_lms_norm_instance_q31 * S, | |
4192 q31_t * pSrc, | |
4193 q31_t * pRef, | |
4194 q31_t * pOut, | |
4195 q31_t * pErr, | |
4196 uint32_t blockSize); | |
4197 | |
4198 | |
4199 /** | |
4200 * @brief Initialization function for Q31 normalized LMS filter. | |
4201 * @param[in] S points to an instance of the Q31 normalized LMS filter structure. | |
4202 * @param[in] numTaps number of filter coefficients. | |
4203 * @param[in] pCoeffs points to coefficient buffer. | |
4204 * @param[in] pState points to state buffer. | |
4205 * @param[in] mu step size that controls filter coefficient updates. | |
4206 * @param[in] blockSize number of samples to process. | |
4207 * @param[in] postShift bit shift applied to coefficients. | |
4208 */ | |
4209 void arm_lms_norm_init_q31( | |
4210 arm_lms_norm_instance_q31 * S, | |
4211 uint16_t numTaps, | |
4212 q31_t * pCoeffs, | |
4213 q31_t * pState, | |
4214 q31_t mu, | |
4215 uint32_t blockSize, | |
4216 uint8_t postShift); | |
4217 | |
4218 | |
4219 /** | |
4220 * @brief Instance structure for the Q15 normalized LMS filter. | |
4221 */ | |
4222 typedef struct | |
4223 { | |
4224 uint16_t numTaps; /**< Number of coefficients in the filter. */ | |
4225 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ | |
4226 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ | |
4227 q15_t mu; /**< step size that controls filter coefficient updates. */ | |
4228 uint8_t postShift; /**< bit shift applied to coefficients. */ | |
4229 q15_t *recipTable; /**< Points to the reciprocal initial value table. */ | |
4230 q15_t energy; /**< saves previous frame energy. */ | |
4231 q15_t x0; /**< saves previous input sample. */ | |
4232 } arm_lms_norm_instance_q15; | |
4233 | |
4234 | |
4235 /** | |
4236 * @brief Processing function for Q15 normalized LMS filter. | |
4237 * @param[in] S points to an instance of the Q15 normalized LMS filter structure. | |
4238 * @param[in] pSrc points to the block of input data. | |
4239 * @param[in] pRef points to the block of reference data. | |
4240 * @param[out] pOut points to the block of output data. | |
4241 * @param[out] pErr points to the block of error data. | |
4242 * @param[in] blockSize number of samples to process. | |
4243 */ | |
4244 void arm_lms_norm_q15( | |
4245 arm_lms_norm_instance_q15 * S, | |
4246 q15_t * pSrc, | |
4247 q15_t * pRef, | |
4248 q15_t * pOut, | |
4249 q15_t * pErr, | |
4250 uint32_t blockSize); | |
4251 | |
4252 | |
4253 /** | |
4254 * @brief Initialization function for Q15 normalized LMS filter. | |
4255 * @param[in] S points to an instance of the Q15 normalized LMS filter structure. | |
4256 * @param[in] numTaps number of filter coefficients. | |
4257 * @param[in] pCoeffs points to coefficient buffer. | |
4258 * @param[in] pState points to state buffer. | |
4259 * @param[in] mu step size that controls filter coefficient updates. | |
4260 * @param[in] blockSize number of samples to process. | |
4261 * @param[in] postShift bit shift applied to coefficients. | |
4262 */ | |
4263 void arm_lms_norm_init_q15( | |
4264 arm_lms_norm_instance_q15 * S, | |
4265 uint16_t numTaps, | |
4266 q15_t * pCoeffs, | |
4267 q15_t * pState, | |
4268 q15_t mu, | |
4269 uint32_t blockSize, | |
4270 uint8_t postShift); | |
4271 | |
4272 | |
4273 /** | |
4274 * @brief Correlation of floating-point sequences. | |
4275 * @param[in] pSrcA points to the first input sequence. | |
4276 * @param[in] srcALen length of the first input sequence. | |
4277 * @param[in] pSrcB points to the second input sequence. | |
4278 * @param[in] srcBLen length of the second input sequence. | |
4279 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4280 */ | |
4281 void arm_correlate_f32( | |
4282 float32_t * pSrcA, | |
4283 uint32_t srcALen, | |
4284 float32_t * pSrcB, | |
4285 uint32_t srcBLen, | |
4286 float32_t * pDst); | |
4287 | |
4288 | |
4289 /** | |
4290 * @brief Correlation of Q15 sequences | |
4291 * @param[in] pSrcA points to the first input sequence. | |
4292 * @param[in] srcALen length of the first input sequence. | |
4293 * @param[in] pSrcB points to the second input sequence. | |
4294 * @param[in] srcBLen length of the second input sequence. | |
4295 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4296 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
4297 */ | |
4298 void arm_correlate_opt_q15( | |
4299 q15_t * pSrcA, | |
4300 uint32_t srcALen, | |
4301 q15_t * pSrcB, | |
4302 uint32_t srcBLen, | |
4303 q15_t * pDst, | |
4304 q15_t * pScratch); | |
4305 | |
4306 | |
4307 /** | |
4308 * @brief Correlation of Q15 sequences. | |
4309 * @param[in] pSrcA points to the first input sequence. | |
4310 * @param[in] srcALen length of the first input sequence. | |
4311 * @param[in] pSrcB points to the second input sequence. | |
4312 * @param[in] srcBLen length of the second input sequence. | |
4313 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4314 */ | |
4315 | |
4316 void arm_correlate_q15( | |
4317 q15_t * pSrcA, | |
4318 uint32_t srcALen, | |
4319 q15_t * pSrcB, | |
4320 uint32_t srcBLen, | |
4321 q15_t * pDst); | |
4322 | |
4323 | |
4324 /** | |
4325 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | |
4326 * @param[in] pSrcA points to the first input sequence. | |
4327 * @param[in] srcALen length of the first input sequence. | |
4328 * @param[in] pSrcB points to the second input sequence. | |
4329 * @param[in] srcBLen length of the second input sequence. | |
4330 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4331 */ | |
4332 | |
4333 void arm_correlate_fast_q15( | |
4334 q15_t * pSrcA, | |
4335 uint32_t srcALen, | |
4336 q15_t * pSrcB, | |
4337 uint32_t srcBLen, | |
4338 q15_t * pDst); | |
4339 | |
4340 | |
4341 /** | |
4342 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. | |
4343 * @param[in] pSrcA points to the first input sequence. | |
4344 * @param[in] srcALen length of the first input sequence. | |
4345 * @param[in] pSrcB points to the second input sequence. | |
4346 * @param[in] srcBLen length of the second input sequence. | |
4347 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4348 * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
4349 */ | |
4350 void arm_correlate_fast_opt_q15( | |
4351 q15_t * pSrcA, | |
4352 uint32_t srcALen, | |
4353 q15_t * pSrcB, | |
4354 uint32_t srcBLen, | |
4355 q15_t * pDst, | |
4356 q15_t * pScratch); | |
4357 | |
4358 | |
4359 /** | |
4360 * @brief Correlation of Q31 sequences. | |
4361 * @param[in] pSrcA points to the first input sequence. | |
4362 * @param[in] srcALen length of the first input sequence. | |
4363 * @param[in] pSrcB points to the second input sequence. | |
4364 * @param[in] srcBLen length of the second input sequence. | |
4365 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4366 */ | |
4367 void arm_correlate_q31( | |
4368 q31_t * pSrcA, | |
4369 uint32_t srcALen, | |
4370 q31_t * pSrcB, | |
4371 uint32_t srcBLen, | |
4372 q31_t * pDst); | |
4373 | |
4374 | |
4375 /** | |
4376 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 | |
4377 * @param[in] pSrcA points to the first input sequence. | |
4378 * @param[in] srcALen length of the first input sequence. | |
4379 * @param[in] pSrcB points to the second input sequence. | |
4380 * @param[in] srcBLen length of the second input sequence. | |
4381 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4382 */ | |
4383 void arm_correlate_fast_q31( | |
4384 q31_t * pSrcA, | |
4385 uint32_t srcALen, | |
4386 q31_t * pSrcB, | |
4387 uint32_t srcBLen, | |
4388 q31_t * pDst); | |
4389 | |
4390 | |
4391 /** | |
4392 * @brief Correlation of Q7 sequences. | |
4393 * @param[in] pSrcA points to the first input sequence. | |
4394 * @param[in] srcALen length of the first input sequence. | |
4395 * @param[in] pSrcB points to the second input sequence. | |
4396 * @param[in] srcBLen length of the second input sequence. | |
4397 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4398 * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. | |
4399 * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). | |
4400 */ | |
4401 void arm_correlate_opt_q7( | |
4402 q7_t * pSrcA, | |
4403 uint32_t srcALen, | |
4404 q7_t * pSrcB, | |
4405 uint32_t srcBLen, | |
4406 q7_t * pDst, | |
4407 q15_t * pScratch1, | |
4408 q15_t * pScratch2); | |
4409 | |
4410 | |
4411 /** | |
4412 * @brief Correlation of Q7 sequences. | |
4413 * @param[in] pSrcA points to the first input sequence. | |
4414 * @param[in] srcALen length of the first input sequence. | |
4415 * @param[in] pSrcB points to the second input sequence. | |
4416 * @param[in] srcBLen length of the second input sequence. | |
4417 * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. | |
4418 */ | |
4419 void arm_correlate_q7( | |
4420 q7_t * pSrcA, | |
4421 uint32_t srcALen, | |
4422 q7_t * pSrcB, | |
4423 uint32_t srcBLen, | |
4424 q7_t * pDst); | |
4425 | |
4426 | |
4427 /** | |
4428 * @brief Instance structure for the floating-point sparse FIR filter. | |
4429 */ | |
4430 typedef struct | |
4431 { | |
4432 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4433 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4434 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4435 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4436 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4437 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4438 } arm_fir_sparse_instance_f32; | |
4439 | |
4440 /** | |
4441 * @brief Instance structure for the Q31 sparse FIR filter. | |
4442 */ | |
4443 typedef struct | |
4444 { | |
4445 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4446 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4447 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4448 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4449 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4450 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4451 } arm_fir_sparse_instance_q31; | |
4452 | |
4453 /** | |
4454 * @brief Instance structure for the Q15 sparse FIR filter. | |
4455 */ | |
4456 typedef struct | |
4457 { | |
4458 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4459 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4460 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4461 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4462 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4463 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4464 } arm_fir_sparse_instance_q15; | |
4465 | |
4466 /** | |
4467 * @brief Instance structure for the Q7 sparse FIR filter. | |
4468 */ | |
4469 typedef struct | |
4470 { | |
4471 uint16_t numTaps; /**< number of coefficients in the filter. */ | |
4472 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ | |
4473 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ | |
4474 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ | |
4475 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ | |
4476 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ | |
4477 } arm_fir_sparse_instance_q7; | |
4478 | |
4479 | |
4480 /** | |
4481 * @brief Processing function for the floating-point sparse FIR filter. | |
4482 * @param[in] S points to an instance of the floating-point sparse FIR structure. | |
4483 * @param[in] pSrc points to the block of input data. | |
4484 * @param[out] pDst points to the block of output data | |
4485 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
4486 * @param[in] blockSize number of input samples to process per call. | |
4487 */ | |
4488 void arm_fir_sparse_f32( | |
4489 arm_fir_sparse_instance_f32 * S, | |
4490 float32_t * pSrc, | |
4491 float32_t * pDst, | |
4492 float32_t * pScratchIn, | |
4493 uint32_t blockSize); | |
4494 | |
4495 | |
4496 /** | |
4497 * @brief Initialization function for the floating-point sparse FIR filter. | |
4498 * @param[in,out] S points to an instance of the floating-point sparse FIR structure. | |
4499 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4500 * @param[in] pCoeffs points to the array of filter coefficients. | |
4501 * @param[in] pState points to the state buffer. | |
4502 * @param[in] pTapDelay points to the array of offset times. | |
4503 * @param[in] maxDelay maximum offset time supported. | |
4504 * @param[in] blockSize number of samples that will be processed per block. | |
4505 */ | |
4506 void arm_fir_sparse_init_f32( | |
4507 arm_fir_sparse_instance_f32 * S, | |
4508 uint16_t numTaps, | |
4509 float32_t * pCoeffs, | |
4510 float32_t * pState, | |
4511 int32_t * pTapDelay, | |
4512 uint16_t maxDelay, | |
4513 uint32_t blockSize); | |
4514 | |
4515 | |
4516 /** | |
4517 * @brief Processing function for the Q31 sparse FIR filter. | |
4518 * @param[in] S points to an instance of the Q31 sparse FIR structure. | |
4519 * @param[in] pSrc points to the block of input data. | |
4520 * @param[out] pDst points to the block of output data | |
4521 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
4522 * @param[in] blockSize number of input samples to process per call. | |
4523 */ | |
4524 void arm_fir_sparse_q31( | |
4525 arm_fir_sparse_instance_q31 * S, | |
4526 q31_t * pSrc, | |
4527 q31_t * pDst, | |
4528 q31_t * pScratchIn, | |
4529 uint32_t blockSize); | |
4530 | |
4531 | |
4532 /** | |
4533 * @brief Initialization function for the Q31 sparse FIR filter. | |
4534 * @param[in,out] S points to an instance of the Q31 sparse FIR structure. | |
4535 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4536 * @param[in] pCoeffs points to the array of filter coefficients. | |
4537 * @param[in] pState points to the state buffer. | |
4538 * @param[in] pTapDelay points to the array of offset times. | |
4539 * @param[in] maxDelay maximum offset time supported. | |
4540 * @param[in] blockSize number of samples that will be processed per block. | |
4541 */ | |
4542 void arm_fir_sparse_init_q31( | |
4543 arm_fir_sparse_instance_q31 * S, | |
4544 uint16_t numTaps, | |
4545 q31_t * pCoeffs, | |
4546 q31_t * pState, | |
4547 int32_t * pTapDelay, | |
4548 uint16_t maxDelay, | |
4549 uint32_t blockSize); | |
4550 | |
4551 | |
4552 /** | |
4553 * @brief Processing function for the Q15 sparse FIR filter. | |
4554 * @param[in] S points to an instance of the Q15 sparse FIR structure. | |
4555 * @param[in] pSrc points to the block of input data. | |
4556 * @param[out] pDst points to the block of output data | |
4557 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
4558 * @param[in] pScratchOut points to a temporary buffer of size blockSize. | |
4559 * @param[in] blockSize number of input samples to process per call. | |
4560 */ | |
4561 void arm_fir_sparse_q15( | |
4562 arm_fir_sparse_instance_q15 * S, | |
4563 q15_t * pSrc, | |
4564 q15_t * pDst, | |
4565 q15_t * pScratchIn, | |
4566 q31_t * pScratchOut, | |
4567 uint32_t blockSize); | |
4568 | |
4569 | |
4570 /** | |
4571 * @brief Initialization function for the Q15 sparse FIR filter. | |
4572 * @param[in,out] S points to an instance of the Q15 sparse FIR structure. | |
4573 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4574 * @param[in] pCoeffs points to the array of filter coefficients. | |
4575 * @param[in] pState points to the state buffer. | |
4576 * @param[in] pTapDelay points to the array of offset times. | |
4577 * @param[in] maxDelay maximum offset time supported. | |
4578 * @param[in] blockSize number of samples that will be processed per block. | |
4579 */ | |
4580 void arm_fir_sparse_init_q15( | |
4581 arm_fir_sparse_instance_q15 * S, | |
4582 uint16_t numTaps, | |
4583 q15_t * pCoeffs, | |
4584 q15_t * pState, | |
4585 int32_t * pTapDelay, | |
4586 uint16_t maxDelay, | |
4587 uint32_t blockSize); | |
4588 | |
4589 | |
4590 /** | |
4591 * @brief Processing function for the Q7 sparse FIR filter. | |
4592 * @param[in] S points to an instance of the Q7 sparse FIR structure. | |
4593 * @param[in] pSrc points to the block of input data. | |
4594 * @param[out] pDst points to the block of output data | |
4595 * @param[in] pScratchIn points to a temporary buffer of size blockSize. | |
4596 * @param[in] pScratchOut points to a temporary buffer of size blockSize. | |
4597 * @param[in] blockSize number of input samples to process per call. | |
4598 */ | |
4599 void arm_fir_sparse_q7( | |
4600 arm_fir_sparse_instance_q7 * S, | |
4601 q7_t * pSrc, | |
4602 q7_t * pDst, | |
4603 q7_t * pScratchIn, | |
4604 q31_t * pScratchOut, | |
4605 uint32_t blockSize); | |
4606 | |
4607 | |
4608 /** | |
4609 * @brief Initialization function for the Q7 sparse FIR filter. | |
4610 * @param[in,out] S points to an instance of the Q7 sparse FIR structure. | |
4611 * @param[in] numTaps number of nonzero coefficients in the filter. | |
4612 * @param[in] pCoeffs points to the array of filter coefficients. | |
4613 * @param[in] pState points to the state buffer. | |
4614 * @param[in] pTapDelay points to the array of offset times. | |
4615 * @param[in] maxDelay maximum offset time supported. | |
4616 * @param[in] blockSize number of samples that will be processed per block. | |
4617 */ | |
4618 void arm_fir_sparse_init_q7( | |
4619 arm_fir_sparse_instance_q7 * S, | |
4620 uint16_t numTaps, | |
4621 q7_t * pCoeffs, | |
4622 q7_t * pState, | |
4623 int32_t * pTapDelay, | |
4624 uint16_t maxDelay, | |
4625 uint32_t blockSize); | |
4626 | |
4627 | |
4628 /** | |
4629 * @brief Floating-point sin_cos function. | |
4630 * @param[in] theta input value in degrees | |
4631 * @param[out] pSinVal points to the processed sine output. | |
4632 * @param[out] pCosVal points to the processed cos output. | |
4633 */ | |
4634 void arm_sin_cos_f32( | |
4635 float32_t theta, | |
4636 float32_t * pSinVal, | |
4637 float32_t * pCosVal); | |
4638 | |
4639 | |
4640 /** | |
4641 * @brief Q31 sin_cos function. | |
4642 * @param[in] theta scaled input value in degrees | |
4643 * @param[out] pSinVal points to the processed sine output. | |
4644 * @param[out] pCosVal points to the processed cosine output. | |
4645 */ | |
4646 void arm_sin_cos_q31( | |
4647 q31_t theta, | |
4648 q31_t * pSinVal, | |
4649 q31_t * pCosVal); | |
4650 | |
4651 | |
4652 /** | |
4653 * @brief Floating-point complex conjugate. | |
4654 * @param[in] pSrc points to the input vector | |
4655 * @param[out] pDst points to the output vector | |
4656 * @param[in] numSamples number of complex samples in each vector | |
4657 */ | |
4658 void arm_cmplx_conj_f32( | |
4659 float32_t * pSrc, | |
4660 float32_t * pDst, | |
4661 uint32_t numSamples); | |
4662 | |
4663 /** | |
4664 * @brief Q31 complex conjugate. | |
4665 * @param[in] pSrc points to the input vector | |
4666 * @param[out] pDst points to the output vector | |
4667 * @param[in] numSamples number of complex samples in each vector | |
4668 */ | |
4669 void arm_cmplx_conj_q31( | |
4670 q31_t * pSrc, | |
4671 q31_t * pDst, | |
4672 uint32_t numSamples); | |
4673 | |
4674 | |
4675 /** | |
4676 * @brief Q15 complex conjugate. | |
4677 * @param[in] pSrc points to the input vector | |
4678 * @param[out] pDst points to the output vector | |
4679 * @param[in] numSamples number of complex samples in each vector | |
4680 */ | |
4681 void arm_cmplx_conj_q15( | |
4682 q15_t * pSrc, | |
4683 q15_t * pDst, | |
4684 uint32_t numSamples); | |
4685 | |
4686 | |
4687 /** | |
4688 * @brief Floating-point complex magnitude squared | |
4689 * @param[in] pSrc points to the complex input vector | |
4690 * @param[out] pDst points to the real output vector | |
4691 * @param[in] numSamples number of complex samples in the input vector | |
4692 */ | |
4693 void arm_cmplx_mag_squared_f32( | |
4694 float32_t * pSrc, | |
4695 float32_t * pDst, | |
4696 uint32_t numSamples); | |
4697 | |
4698 | |
4699 /** | |
4700 * @brief Q31 complex magnitude squared | |
4701 * @param[in] pSrc points to the complex input vector | |
4702 * @param[out] pDst points to the real output vector | |
4703 * @param[in] numSamples number of complex samples in the input vector | |
4704 */ | |
4705 void arm_cmplx_mag_squared_q31( | |
4706 q31_t * pSrc, | |
4707 q31_t * pDst, | |
4708 uint32_t numSamples); | |
4709 | |
4710 | |
4711 /** | |
4712 * @brief Q15 complex magnitude squared | |
4713 * @param[in] pSrc points to the complex input vector | |
4714 * @param[out] pDst points to the real output vector | |
4715 * @param[in] numSamples number of complex samples in the input vector | |
4716 */ | |
4717 void arm_cmplx_mag_squared_q15( | |
4718 q15_t * pSrc, | |
4719 q15_t * pDst, | |
4720 uint32_t numSamples); | |
4721 | |
4722 | |
4723 /** | |
4724 * @ingroup groupController | |
4725 */ | |
4726 | |
4727 /** | |
4728 * @defgroup PID PID Motor Control | |
4729 * | |
4730 * A Proportional Integral Derivative (PID) controller is a generic feedback control | |
4731 * loop mechanism widely used in industrial control systems. | |
4732 * A PID controller is the most commonly used type of feedback controller. | |
4733 * | |
4734 * This set of functions implements (PID) controllers | |
4735 * for Q15, Q31, and floating-point data types. The functions operate on a single sample | |
4736 * of data and each call to the function returns a single processed value. | |
4737 * <code>S</code> points to an instance of the PID control data structure. <code>in</code> | |
4738 * is the input sample value. The functions return the output value. | |
4739 * | |
4740 * \par Algorithm: | |
4741 * <pre> | |
4742 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] | |
4743 * A0 = Kp + Ki + Kd | |
4744 * A1 = (-Kp ) - (2 * Kd ) | |
4745 * A2 = Kd </pre> | |
4746 * | |
4747 * \par | |
4748 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant | |
4749 * | |
4750 * \par | |
4751 * \image html PID.gif "Proportional Integral Derivative Controller" | |
4752 * | |
4753 * \par | |
4754 * The PID controller calculates an "error" value as the difference between | |
4755 * the measured output and the reference input. | |
4756 * The controller attempts to minimize the error by adjusting the process control inputs. | |
4757 * The proportional value determines the reaction to the current error, | |
4758 * the integral value determines the reaction based on the sum of recent errors, | |
4759 * and the derivative value determines the reaction based on the rate at which the error has been changing. | |
4760 * | |
4761 * \par Instance Structure | |
4762 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. | |
4763 * A separate instance structure must be defined for each PID Controller. | |
4764 * There are separate instance structure declarations for each of the 3 supported data types. | |
4765 * | |
4766 * \par Reset Functions | |
4767 * There is also an associated reset function for each data type which clears the state array. | |
4768 * | |
4769 * \par Initialization Functions | |
4770 * There is also an associated initialization function for each data type. | |
4771 * The initialization function performs the following operations: | |
4772 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. | |
4773 * - Zeros out the values in the state buffer. | |
4774 * | |
4775 * \par | |
4776 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. | |
4777 * | |
4778 * \par Fixed-Point Behavior | |
4779 * Care must be taken when using the fixed-point versions of the PID Controller functions. | |
4780 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. | |
4781 * Refer to the function specific documentation below for usage guidelines. | |
4782 */ | |
4783 | |
4784 /** | |
4785 * @addtogroup PID | |
4786 * @{ | |
4787 */ | |
4788 | |
4789 /** | |
4790 * @brief Process function for the floating-point PID Control. | |
4791 * @param[in,out] S is an instance of the floating-point PID Control structure | |
4792 * @param[in] in input sample to process | |
4793 * @return out processed output sample. | |
4794 */ | |
4795 static __INLINE float32_t arm_pid_f32( | |
4796 arm_pid_instance_f32 * S, | |
4797 float32_t in) | |
4798 { | |
4799 float32_t out; | |
4800 | |
4801 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ | |
4802 out = (S->A0 * in) + | |
4803 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); | |
4804 | |
4805 /* Update state */ | |
4806 S->state[1] = S->state[0]; | |
4807 S->state[0] = in; | |
4808 S->state[2] = out; | |
4809 | |
4810 /* return to application */ | |
4811 return (out); | |
4812 | |
4813 } | |
4814 | |
4815 /** | |
4816 * @brief Process function for the Q31 PID Control. | |
4817 * @param[in,out] S points to an instance of the Q31 PID Control structure | |
4818 * @param[in] in input sample to process | |
4819 * @return out processed output sample. | |
4820 * | |
4821 * <b>Scaling and Overflow Behavior:</b> | |
4822 * \par | |
4823 * The function is implemented using an internal 64-bit accumulator. | |
4824 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. | |
4825 * Thus, if the accumulator result overflows it wraps around rather than clip. | |
4826 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. | |
4827 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. | |
4828 */ | |
4829 static __INLINE q31_t arm_pid_q31( | |
4830 arm_pid_instance_q31 * S, | |
4831 q31_t in) | |
4832 { | |
4833 q63_t acc; | |
4834 q31_t out; | |
4835 | |
4836 /* acc = A0 * x[n] */ | |
4837 acc = (q63_t) S->A0 * in; | |
4838 | |
4839 /* acc += A1 * x[n-1] */ | |
4840 acc += (q63_t) S->A1 * S->state[0]; | |
4841 | |
4842 /* acc += A2 * x[n-2] */ | |
4843 acc += (q63_t) S->A2 * S->state[1]; | |
4844 | |
4845 /* convert output to 1.31 format to add y[n-1] */ | |
4846 out = (q31_t) (acc >> 31u); | |
4847 | |
4848 /* out += y[n-1] */ | |
4849 out += S->state[2]; | |
4850 | |
4851 /* Update state */ | |
4852 S->state[1] = S->state[0]; | |
4853 S->state[0] = in; | |
4854 S->state[2] = out; | |
4855 | |
4856 /* return to application */ | |
4857 return (out); | |
4858 } | |
4859 | |
4860 | |
4861 /** | |
4862 * @brief Process function for the Q15 PID Control. | |
4863 * @param[in,out] S points to an instance of the Q15 PID Control structure | |
4864 * @param[in] in input sample to process | |
4865 * @return out processed output sample. | |
4866 * | |
4867 * <b>Scaling and Overflow Behavior:</b> | |
4868 * \par | |
4869 * The function is implemented using a 64-bit internal accumulator. | |
4870 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. | |
4871 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. | |
4872 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. | |
4873 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. | |
4874 * Lastly, the accumulator is saturated to yield a result in 1.15 format. | |
4875 */ | |
4876 static __INLINE q15_t arm_pid_q15( | |
4877 arm_pid_instance_q15 * S, | |
4878 q15_t in) | |
4879 { | |
4880 q63_t acc; | |
4881 q15_t out; | |
4882 | |
4883 #ifndef ARM_MATH_CM0_FAMILY | |
4884 __SIMD32_TYPE *vstate; | |
4885 | |
4886 /* Implementation of PID controller */ | |
4887 | |
4888 /* acc = A0 * x[n] */ | |
4889 acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); | |
4890 | |
4891 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
4892 vstate = __SIMD32_CONST(S->state); | |
4893 acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); | |
4894 #else | |
4895 /* acc = A0 * x[n] */ | |
4896 acc = ((q31_t) S->A0) * in; | |
4897 | |
4898 /* acc += A1 * x[n-1] + A2 * x[n-2] */ | |
4899 acc += (q31_t) S->A1 * S->state[0]; | |
4900 acc += (q31_t) S->A2 * S->state[1]; | |
4901 #endif | |
4902 | |
4903 /* acc += y[n-1] */ | |
4904 acc += (q31_t) S->state[2] << 15; | |
4905 | |
4906 /* saturate the output */ | |
4907 out = (q15_t) (__SSAT((acc >> 15), 16)); | |
4908 | |
4909 /* Update state */ | |
4910 S->state[1] = S->state[0]; | |
4911 S->state[0] = in; | |
4912 S->state[2] = out; | |
4913 | |
4914 /* return to application */ | |
4915 return (out); | |
4916 } | |
4917 | |
4918 /** | |
4919 * @} end of PID group | |
4920 */ | |
4921 | |
4922 | |
4923 /** | |
4924 * @brief Floating-point matrix inverse. | |
4925 * @param[in] src points to the instance of the input floating-point matrix structure. | |
4926 * @param[out] dst points to the instance of the output floating-point matrix structure. | |
4927 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | |
4928 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | |
4929 */ | |
4930 arm_status arm_mat_inverse_f32( | |
4931 const arm_matrix_instance_f32 * src, | |
4932 arm_matrix_instance_f32 * dst); | |
4933 | |
4934 | |
4935 /** | |
4936 * @brief Floating-point matrix inverse. | |
4937 * @param[in] src points to the instance of the input floating-point matrix structure. | |
4938 * @param[out] dst points to the instance of the output floating-point matrix structure. | |
4939 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. | |
4940 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. | |
4941 */ | |
4942 arm_status arm_mat_inverse_f64( | |
4943 const arm_matrix_instance_f64 * src, | |
4944 arm_matrix_instance_f64 * dst); | |
4945 | |
4946 | |
4947 | |
4948 /** | |
4949 * @ingroup groupController | |
4950 */ | |
4951 | |
4952 /** | |
4953 * @defgroup clarke Vector Clarke Transform | |
4954 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. | |
4955 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents | |
4956 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. | |
4957 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below | |
4958 * \image html clarke.gif Stator current space vector and its components in (a,b). | |
4959 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> | |
4960 * can be calculated using only <code>Ia</code> and <code>Ib</code>. | |
4961 * | |
4962 * The function operates on a single sample of data and each call to the function returns the processed output. | |
4963 * The library provides separate functions for Q31 and floating-point data types. | |
4964 * \par Algorithm | |
4965 * \image html clarkeFormula.gif | |
4966 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and | |
4967 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. | |
4968 * \par Fixed-Point Behavior | |
4969 * Care must be taken when using the Q31 version of the Clarke transform. | |
4970 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
4971 * Refer to the function specific documentation below for usage guidelines. | |
4972 */ | |
4973 | |
4974 /** | |
4975 * @addtogroup clarke | |
4976 * @{ | |
4977 */ | |
4978 | |
4979 /** | |
4980 * | |
4981 * @brief Floating-point Clarke transform | |
4982 * @param[in] Ia input three-phase coordinate <code>a</code> | |
4983 * @param[in] Ib input three-phase coordinate <code>b</code> | |
4984 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
4985 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
4986 */ | |
4987 static __INLINE void arm_clarke_f32( | |
4988 float32_t Ia, | |
4989 float32_t Ib, | |
4990 float32_t * pIalpha, | |
4991 float32_t * pIbeta) | |
4992 { | |
4993 /* Calculate pIalpha using the equation, pIalpha = Ia */ | |
4994 *pIalpha = Ia; | |
4995 | |
4996 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ | |
4997 *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); | |
4998 } | |
4999 | |
5000 | |
5001 /** | |
5002 * @brief Clarke transform for Q31 version | |
5003 * @param[in] Ia input three-phase coordinate <code>a</code> | |
5004 * @param[in] Ib input three-phase coordinate <code>b</code> | |
5005 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
5006 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
5007 * | |
5008 * <b>Scaling and Overflow Behavior:</b> | |
5009 * \par | |
5010 * The function is implemented using an internal 32-bit accumulator. | |
5011 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5012 * There is saturation on the addition, hence there is no risk of overflow. | |
5013 */ | |
5014 static __INLINE void arm_clarke_q31( | |
5015 q31_t Ia, | |
5016 q31_t Ib, | |
5017 q31_t * pIalpha, | |
5018 q31_t * pIbeta) | |
5019 { | |
5020 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5021 | |
5022 /* Calculating pIalpha from Ia by equation pIalpha = Ia */ | |
5023 *pIalpha = Ia; | |
5024 | |
5025 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ | |
5026 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); | |
5027 | |
5028 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ | |
5029 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); | |
5030 | |
5031 /* pIbeta is calculated by adding the intermediate products */ | |
5032 *pIbeta = __QADD(product1, product2); | |
5033 } | |
5034 | |
5035 /** | |
5036 * @} end of clarke group | |
5037 */ | |
5038 | |
5039 /** | |
5040 * @brief Converts the elements of the Q7 vector to Q31 vector. | |
5041 * @param[in] pSrc input pointer | |
5042 * @param[out] pDst output pointer | |
5043 * @param[in] blockSize number of samples to process | |
5044 */ | |
5045 void arm_q7_to_q31( | |
5046 q7_t * pSrc, | |
5047 q31_t * pDst, | |
5048 uint32_t blockSize); | |
5049 | |
5050 | |
5051 | |
5052 /** | |
5053 * @ingroup groupController | |
5054 */ | |
5055 | |
5056 /** | |
5057 * @defgroup inv_clarke Vector Inverse Clarke Transform | |
5058 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. | |
5059 * | |
5060 * The function operates on a single sample of data and each call to the function returns the processed output. | |
5061 * The library provides separate functions for Q31 and floating-point data types. | |
5062 * \par Algorithm | |
5063 * \image html clarkeInvFormula.gif | |
5064 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and | |
5065 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. | |
5066 * \par Fixed-Point Behavior | |
5067 * Care must be taken when using the Q31 version of the Clarke transform. | |
5068 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
5069 * Refer to the function specific documentation below for usage guidelines. | |
5070 */ | |
5071 | |
5072 /** | |
5073 * @addtogroup inv_clarke | |
5074 * @{ | |
5075 */ | |
5076 | |
5077 /** | |
5078 * @brief Floating-point Inverse Clarke transform | |
5079 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
5080 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
5081 * @param[out] pIa points to output three-phase coordinate <code>a</code> | |
5082 * @param[out] pIb points to output three-phase coordinate <code>b</code> | |
5083 */ | |
5084 static __INLINE void arm_inv_clarke_f32( | |
5085 float32_t Ialpha, | |
5086 float32_t Ibeta, | |
5087 float32_t * pIa, | |
5088 float32_t * pIb) | |
5089 { | |
5090 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
5091 *pIa = Ialpha; | |
5092 | |
5093 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ | |
5094 *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; | |
5095 } | |
5096 | |
5097 | |
5098 /** | |
5099 * @brief Inverse Clarke transform for Q31 version | |
5100 * @param[in] Ialpha input two-phase orthogonal vector axis alpha | |
5101 * @param[in] Ibeta input two-phase orthogonal vector axis beta | |
5102 * @param[out] pIa points to output three-phase coordinate <code>a</code> | |
5103 * @param[out] pIb points to output three-phase coordinate <code>b</code> | |
5104 * | |
5105 * <b>Scaling and Overflow Behavior:</b> | |
5106 * \par | |
5107 * The function is implemented using an internal 32-bit accumulator. | |
5108 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5109 * There is saturation on the subtraction, hence there is no risk of overflow. | |
5110 */ | |
5111 static __INLINE void arm_inv_clarke_q31( | |
5112 q31_t Ialpha, | |
5113 q31_t Ibeta, | |
5114 q31_t * pIa, | |
5115 q31_t * pIb) | |
5116 { | |
5117 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5118 | |
5119 /* Calculating pIa from Ialpha by equation pIa = Ialpha */ | |
5120 *pIa = Ialpha; | |
5121 | |
5122 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ | |
5123 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); | |
5124 | |
5125 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ | |
5126 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); | |
5127 | |
5128 /* pIb is calculated by subtracting the products */ | |
5129 *pIb = __QSUB(product2, product1); | |
5130 } | |
5131 | |
5132 /** | |
5133 * @} end of inv_clarke group | |
5134 */ | |
5135 | |
5136 /** | |
5137 * @brief Converts the elements of the Q7 vector to Q15 vector. | |
5138 * @param[in] pSrc input pointer | |
5139 * @param[out] pDst output pointer | |
5140 * @param[in] blockSize number of samples to process | |
5141 */ | |
5142 void arm_q7_to_q15( | |
5143 q7_t * pSrc, | |
5144 q15_t * pDst, | |
5145 uint32_t blockSize); | |
5146 | |
5147 | |
5148 | |
5149 /** | |
5150 * @ingroup groupController | |
5151 */ | |
5152 | |
5153 /** | |
5154 * @defgroup park Vector Park Transform | |
5155 * | |
5156 * Forward Park transform converts the input two-coordinate vector to flux and torque components. | |
5157 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents | |
5158 * from the stationary to the moving reference frame and control the spatial relationship between | |
5159 * the stator vector current and rotor flux vector. | |
5160 * If we consider the d axis aligned with the rotor flux, the diagram below shows the | |
5161 * current vector and the relationship from the two reference frames: | |
5162 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" | |
5163 * | |
5164 * The function operates on a single sample of data and each call to the function returns the processed output. | |
5165 * The library provides separate functions for Q31 and floating-point data types. | |
5166 * \par Algorithm | |
5167 * \image html parkFormula.gif | |
5168 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, | |
5169 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
5170 * cosine and sine values of theta (rotor flux position). | |
5171 * \par Fixed-Point Behavior | |
5172 * Care must be taken when using the Q31 version of the Park transform. | |
5173 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
5174 * Refer to the function specific documentation below for usage guidelines. | |
5175 */ | |
5176 | |
5177 /** | |
5178 * @addtogroup park | |
5179 * @{ | |
5180 */ | |
5181 | |
5182 /** | |
5183 * @brief Floating-point Park transform | |
5184 * @param[in] Ialpha input two-phase vector coordinate alpha | |
5185 * @param[in] Ibeta input two-phase vector coordinate beta | |
5186 * @param[out] pId points to output rotor reference frame d | |
5187 * @param[out] pIq points to output rotor reference frame q | |
5188 * @param[in] sinVal sine value of rotation angle theta | |
5189 * @param[in] cosVal cosine value of rotation angle theta | |
5190 * | |
5191 * The function implements the forward Park transform. | |
5192 * | |
5193 */ | |
5194 static __INLINE void arm_park_f32( | |
5195 float32_t Ialpha, | |
5196 float32_t Ibeta, | |
5197 float32_t * pId, | |
5198 float32_t * pIq, | |
5199 float32_t sinVal, | |
5200 float32_t cosVal) | |
5201 { | |
5202 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ | |
5203 *pId = Ialpha * cosVal + Ibeta * sinVal; | |
5204 | |
5205 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ | |
5206 *pIq = -Ialpha * sinVal + Ibeta * cosVal; | |
5207 } | |
5208 | |
5209 | |
5210 /** | |
5211 * @brief Park transform for Q31 version | |
5212 * @param[in] Ialpha input two-phase vector coordinate alpha | |
5213 * @param[in] Ibeta input two-phase vector coordinate beta | |
5214 * @param[out] pId points to output rotor reference frame d | |
5215 * @param[out] pIq points to output rotor reference frame q | |
5216 * @param[in] sinVal sine value of rotation angle theta | |
5217 * @param[in] cosVal cosine value of rotation angle theta | |
5218 * | |
5219 * <b>Scaling and Overflow Behavior:</b> | |
5220 * \par | |
5221 * The function is implemented using an internal 32-bit accumulator. | |
5222 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5223 * There is saturation on the addition and subtraction, hence there is no risk of overflow. | |
5224 */ | |
5225 static __INLINE void arm_park_q31( | |
5226 q31_t Ialpha, | |
5227 q31_t Ibeta, | |
5228 q31_t * pId, | |
5229 q31_t * pIq, | |
5230 q31_t sinVal, | |
5231 q31_t cosVal) | |
5232 { | |
5233 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5234 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
5235 | |
5236 /* Intermediate product is calculated by (Ialpha * cosVal) */ | |
5237 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); | |
5238 | |
5239 /* Intermediate product is calculated by (Ibeta * sinVal) */ | |
5240 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); | |
5241 | |
5242 | |
5243 /* Intermediate product is calculated by (Ialpha * sinVal) */ | |
5244 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); | |
5245 | |
5246 /* Intermediate product is calculated by (Ibeta * cosVal) */ | |
5247 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); | |
5248 | |
5249 /* Calculate pId by adding the two intermediate products 1 and 2 */ | |
5250 *pId = __QADD(product1, product2); | |
5251 | |
5252 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ | |
5253 *pIq = __QSUB(product4, product3); | |
5254 } | |
5255 | |
5256 /** | |
5257 * @} end of park group | |
5258 */ | |
5259 | |
5260 /** | |
5261 * @brief Converts the elements of the Q7 vector to floating-point vector. | |
5262 * @param[in] pSrc is input pointer | |
5263 * @param[out] pDst is output pointer | |
5264 * @param[in] blockSize is the number of samples to process | |
5265 */ | |
5266 void arm_q7_to_float( | |
5267 q7_t * pSrc, | |
5268 float32_t * pDst, | |
5269 uint32_t blockSize); | |
5270 | |
5271 | |
5272 /** | |
5273 * @ingroup groupController | |
5274 */ | |
5275 | |
5276 /** | |
5277 * @defgroup inv_park Vector Inverse Park transform | |
5278 * Inverse Park transform converts the input flux and torque components to two-coordinate vector. | |
5279 * | |
5280 * The function operates on a single sample of data and each call to the function returns the processed output. | |
5281 * The library provides separate functions for Q31 and floating-point data types. | |
5282 * \par Algorithm | |
5283 * \image html parkInvFormula.gif | |
5284 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, | |
5285 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the | |
5286 * cosine and sine values of theta (rotor flux position). | |
5287 * \par Fixed-Point Behavior | |
5288 * Care must be taken when using the Q31 version of the Park transform. | |
5289 * In particular, the overflow and saturation behavior of the accumulator used must be considered. | |
5290 * Refer to the function specific documentation below for usage guidelines. | |
5291 */ | |
5292 | |
5293 /** | |
5294 * @addtogroup inv_park | |
5295 * @{ | |
5296 */ | |
5297 | |
5298 /** | |
5299 * @brief Floating-point Inverse Park transform | |
5300 * @param[in] Id input coordinate of rotor reference frame d | |
5301 * @param[in] Iq input coordinate of rotor reference frame q | |
5302 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
5303 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
5304 * @param[in] sinVal sine value of rotation angle theta | |
5305 * @param[in] cosVal cosine value of rotation angle theta | |
5306 */ | |
5307 static __INLINE void arm_inv_park_f32( | |
5308 float32_t Id, | |
5309 float32_t Iq, | |
5310 float32_t * pIalpha, | |
5311 float32_t * pIbeta, | |
5312 float32_t sinVal, | |
5313 float32_t cosVal) | |
5314 { | |
5315 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ | |
5316 *pIalpha = Id * cosVal - Iq * sinVal; | |
5317 | |
5318 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ | |
5319 *pIbeta = Id * sinVal + Iq * cosVal; | |
5320 } | |
5321 | |
5322 | |
5323 /** | |
5324 * @brief Inverse Park transform for Q31 version | |
5325 * @param[in] Id input coordinate of rotor reference frame d | |
5326 * @param[in] Iq input coordinate of rotor reference frame q | |
5327 * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha | |
5328 * @param[out] pIbeta points to output two-phase orthogonal vector axis beta | |
5329 * @param[in] sinVal sine value of rotation angle theta | |
5330 * @param[in] cosVal cosine value of rotation angle theta | |
5331 * | |
5332 * <b>Scaling and Overflow Behavior:</b> | |
5333 * \par | |
5334 * The function is implemented using an internal 32-bit accumulator. | |
5335 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. | |
5336 * There is saturation on the addition, hence there is no risk of overflow. | |
5337 */ | |
5338 static __INLINE void arm_inv_park_q31( | |
5339 q31_t Id, | |
5340 q31_t Iq, | |
5341 q31_t * pIalpha, | |
5342 q31_t * pIbeta, | |
5343 q31_t sinVal, | |
5344 q31_t cosVal) | |
5345 { | |
5346 q31_t product1, product2; /* Temporary variables used to store intermediate results */ | |
5347 q31_t product3, product4; /* Temporary variables used to store intermediate results */ | |
5348 | |
5349 /* Intermediate product is calculated by (Id * cosVal) */ | |
5350 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); | |
5351 | |
5352 /* Intermediate product is calculated by (Iq * sinVal) */ | |
5353 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); | |
5354 | |
5355 | |
5356 /* Intermediate product is calculated by (Id * sinVal) */ | |
5357 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); | |
5358 | |
5359 /* Intermediate product is calculated by (Iq * cosVal) */ | |
5360 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); | |
5361 | |
5362 /* Calculate pIalpha by using the two intermediate products 1 and 2 */ | |
5363 *pIalpha = __QSUB(product1, product2); | |
5364 | |
5365 /* Calculate pIbeta by using the two intermediate products 3 and 4 */ | |
5366 *pIbeta = __QADD(product4, product3); | |
5367 } | |
5368 | |
5369 /** | |
5370 * @} end of Inverse park group | |
5371 */ | |
5372 | |
5373 | |
5374 /** | |
5375 * @brief Converts the elements of the Q31 vector to floating-point vector. | |
5376 * @param[in] pSrc is input pointer | |
5377 * @param[out] pDst is output pointer | |
5378 * @param[in] blockSize is the number of samples to process | |
5379 */ | |
5380 void arm_q31_to_float( | |
5381 q31_t * pSrc, | |
5382 float32_t * pDst, | |
5383 uint32_t blockSize); | |
5384 | |
5385 /** | |
5386 * @ingroup groupInterpolation | |
5387 */ | |
5388 | |
5389 /** | |
5390 * @defgroup LinearInterpolate Linear Interpolation | |
5391 * | |
5392 * Linear interpolation is a method of curve fitting using linear polynomials. | |
5393 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line | |
5394 * | |
5395 * \par | |
5396 * \image html LinearInterp.gif "Linear interpolation" | |
5397 * | |
5398 * \par | |
5399 * A Linear Interpolate function calculates an output value(y), for the input(x) | |
5400 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) | |
5401 * | |
5402 * \par Algorithm: | |
5403 * <pre> | |
5404 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) | |
5405 * where x0, x1 are nearest values of input x | |
5406 * y0, y1 are nearest values to output y | |
5407 * </pre> | |
5408 * | |
5409 * \par | |
5410 * This set of functions implements Linear interpolation process | |
5411 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single | |
5412 * sample of data and each call to the function returns a single processed value. | |
5413 * <code>S</code> points to an instance of the Linear Interpolate function data structure. | |
5414 * <code>x</code> is the input sample value. The functions returns the output value. | |
5415 * | |
5416 * \par | |
5417 * if x is outside of the table boundary, Linear interpolation returns first value of the table | |
5418 * if x is below input range and returns last value of table if x is above range. | |
5419 */ | |
5420 | |
5421 /** | |
5422 * @addtogroup LinearInterpolate | |
5423 * @{ | |
5424 */ | |
5425 | |
5426 /** | |
5427 * @brief Process function for the floating-point Linear Interpolation Function. | |
5428 * @param[in,out] S is an instance of the floating-point Linear Interpolation structure | |
5429 * @param[in] x input sample to process | |
5430 * @return y processed output sample. | |
5431 * | |
5432 */ | |
5433 static __INLINE float32_t arm_linear_interp_f32( | |
5434 arm_linear_interp_instance_f32 * S, | |
5435 float32_t x) | |
5436 { | |
5437 float32_t y; | |
5438 float32_t x0, x1; /* Nearest input values */ | |
5439 float32_t y0, y1; /* Nearest output values */ | |
5440 float32_t xSpacing = S->xSpacing; /* spacing between input values */ | |
5441 int32_t i; /* Index variable */ | |
5442 float32_t *pYData = S->pYData; /* pointer to output table */ | |
5443 | |
5444 /* Calculation of index */ | |
5445 i = (int32_t) ((x - S->x1) / xSpacing); | |
5446 | |
5447 if(i < 0) | |
5448 { | |
5449 /* Iniatilize output for below specified range as least output value of table */ | |
5450 y = pYData[0]; | |
5451 } | |
5452 else if((uint32_t)i >= S->nValues) | |
5453 { | |
5454 /* Iniatilize output for above specified range as last output value of table */ | |
5455 y = pYData[S->nValues - 1]; | |
5456 } | |
5457 else | |
5458 { | |
5459 /* Calculation of nearest input values */ | |
5460 x0 = S->x1 + i * xSpacing; | |
5461 x1 = S->x1 + (i + 1) * xSpacing; | |
5462 | |
5463 /* Read of nearest output values */ | |
5464 y0 = pYData[i]; | |
5465 y1 = pYData[i + 1]; | |
5466 | |
5467 /* Calculation of output */ | |
5468 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); | |
5469 | |
5470 } | |
5471 | |
5472 /* returns output value */ | |
5473 return (y); | |
5474 } | |
5475 | |
5476 | |
5477 /** | |
5478 * | |
5479 * @brief Process function for the Q31 Linear Interpolation Function. | |
5480 * @param[in] pYData pointer to Q31 Linear Interpolation table | |
5481 * @param[in] x input sample to process | |
5482 * @param[in] nValues number of table values | |
5483 * @return y processed output sample. | |
5484 * | |
5485 * \par | |
5486 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
5487 * This function can support maximum of table size 2^12. | |
5488 * | |
5489 */ | |
5490 static __INLINE q31_t arm_linear_interp_q31( | |
5491 q31_t * pYData, | |
5492 q31_t x, | |
5493 uint32_t nValues) | |
5494 { | |
5495 q31_t y; /* output */ | |
5496 q31_t y0, y1; /* Nearest output values */ | |
5497 q31_t fract; /* fractional part */ | |
5498 int32_t index; /* Index to read nearest output values */ | |
5499 | |
5500 /* Input is in 12.20 format */ | |
5501 /* 12 bits for the table index */ | |
5502 /* Index value calculation */ | |
5503 index = ((x & (q31_t)0xFFF00000) >> 20); | |
5504 | |
5505 if(index >= (int32_t)(nValues - 1)) | |
5506 { | |
5507 return (pYData[nValues - 1]); | |
5508 } | |
5509 else if(index < 0) | |
5510 { | |
5511 return (pYData[0]); | |
5512 } | |
5513 else | |
5514 { | |
5515 /* 20 bits for the fractional part */ | |
5516 /* shift left by 11 to keep fract in 1.31 format */ | |
5517 fract = (x & 0x000FFFFF) << 11; | |
5518 | |
5519 /* Read two nearest output values from the index in 1.31(q31) format */ | |
5520 y0 = pYData[index]; | |
5521 y1 = pYData[index + 1]; | |
5522 | |
5523 /* Calculation of y0 * (1-fract) and y is in 2.30 format */ | |
5524 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); | |
5525 | |
5526 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ | |
5527 y += ((q31_t) (((q63_t) y1 * fract) >> 32)); | |
5528 | |
5529 /* Convert y to 1.31 format */ | |
5530 return (y << 1u); | |
5531 } | |
5532 } | |
5533 | |
5534 | |
5535 /** | |
5536 * | |
5537 * @brief Process function for the Q15 Linear Interpolation Function. | |
5538 * @param[in] pYData pointer to Q15 Linear Interpolation table | |
5539 * @param[in] x input sample to process | |
5540 * @param[in] nValues number of table values | |
5541 * @return y processed output sample. | |
5542 * | |
5543 * \par | |
5544 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
5545 * This function can support maximum of table size 2^12. | |
5546 * | |
5547 */ | |
5548 static __INLINE q15_t arm_linear_interp_q15( | |
5549 q15_t * pYData, | |
5550 q31_t x, | |
5551 uint32_t nValues) | |
5552 { | |
5553 q63_t y; /* output */ | |
5554 q15_t y0, y1; /* Nearest output values */ | |
5555 q31_t fract; /* fractional part */ | |
5556 int32_t index; /* Index to read nearest output values */ | |
5557 | |
5558 /* Input is in 12.20 format */ | |
5559 /* 12 bits for the table index */ | |
5560 /* Index value calculation */ | |
5561 index = ((x & (int32_t)0xFFF00000) >> 20); | |
5562 | |
5563 if(index >= (int32_t)(nValues - 1)) | |
5564 { | |
5565 return (pYData[nValues - 1]); | |
5566 } | |
5567 else if(index < 0) | |
5568 { | |
5569 return (pYData[0]); | |
5570 } | |
5571 else | |
5572 { | |
5573 /* 20 bits for the fractional part */ | |
5574 /* fract is in 12.20 format */ | |
5575 fract = (x & 0x000FFFFF); | |
5576 | |
5577 /* Read two nearest output values from the index */ | |
5578 y0 = pYData[index]; | |
5579 y1 = pYData[index + 1]; | |
5580 | |
5581 /* Calculation of y0 * (1-fract) and y is in 13.35 format */ | |
5582 y = ((q63_t) y0 * (0xFFFFF - fract)); | |
5583 | |
5584 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ | |
5585 y += ((q63_t) y1 * (fract)); | |
5586 | |
5587 /* convert y to 1.15 format */ | |
5588 return (q15_t) (y >> 20); | |
5589 } | |
5590 } | |
5591 | |
5592 | |
5593 /** | |
5594 * | |
5595 * @brief Process function for the Q7 Linear Interpolation Function. | |
5596 * @param[in] pYData pointer to Q7 Linear Interpolation table | |
5597 * @param[in] x input sample to process | |
5598 * @param[in] nValues number of table values | |
5599 * @return y processed output sample. | |
5600 * | |
5601 * \par | |
5602 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. | |
5603 * This function can support maximum of table size 2^12. | |
5604 */ | |
5605 static __INLINE q7_t arm_linear_interp_q7( | |
5606 q7_t * pYData, | |
5607 q31_t x, | |
5608 uint32_t nValues) | |
5609 { | |
5610 q31_t y; /* output */ | |
5611 q7_t y0, y1; /* Nearest output values */ | |
5612 q31_t fract; /* fractional part */ | |
5613 uint32_t index; /* Index to read nearest output values */ | |
5614 | |
5615 /* Input is in 12.20 format */ | |
5616 /* 12 bits for the table index */ | |
5617 /* Index value calculation */ | |
5618 if (x < 0) | |
5619 { | |
5620 return (pYData[0]); | |
5621 } | |
5622 index = (x >> 20) & 0xfff; | |
5623 | |
5624 if(index >= (nValues - 1)) | |
5625 { | |
5626 return (pYData[nValues - 1]); | |
5627 } | |
5628 else | |
5629 { | |
5630 /* 20 bits for the fractional part */ | |
5631 /* fract is in 12.20 format */ | |
5632 fract = (x & 0x000FFFFF); | |
5633 | |
5634 /* Read two nearest output values from the index and are in 1.7(q7) format */ | |
5635 y0 = pYData[index]; | |
5636 y1 = pYData[index + 1]; | |
5637 | |
5638 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ | |
5639 y = ((y0 * (0xFFFFF - fract))); | |
5640 | |
5641 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ | |
5642 y += (y1 * fract); | |
5643 | |
5644 /* convert y to 1.7(q7) format */ | |
5645 return (q7_t) (y >> 20); | |
5646 } | |
5647 } | |
5648 | |
5649 /** | |
5650 * @} end of LinearInterpolate group | |
5651 */ | |
5652 | |
5653 /** | |
5654 * @brief Fast approximation to the trigonometric sine function for floating-point data. | |
5655 * @param[in] x input value in radians. | |
5656 * @return sin(x). | |
5657 */ | |
5658 float32_t arm_sin_f32( | |
5659 float32_t x); | |
5660 | |
5661 | |
5662 /** | |
5663 * @brief Fast approximation to the trigonometric sine function for Q31 data. | |
5664 * @param[in] x Scaled input value in radians. | |
5665 * @return sin(x). | |
5666 */ | |
5667 q31_t arm_sin_q31( | |
5668 q31_t x); | |
5669 | |
5670 | |
5671 /** | |
5672 * @brief Fast approximation to the trigonometric sine function for Q15 data. | |
5673 * @param[in] x Scaled input value in radians. | |
5674 * @return sin(x). | |
5675 */ | |
5676 q15_t arm_sin_q15( | |
5677 q15_t x); | |
5678 | |
5679 | |
5680 /** | |
5681 * @brief Fast approximation to the trigonometric cosine function for floating-point data. | |
5682 * @param[in] x input value in radians. | |
5683 * @return cos(x). | |
5684 */ | |
5685 float32_t arm_cos_f32( | |
5686 float32_t x); | |
5687 | |
5688 | |
5689 /** | |
5690 * @brief Fast approximation to the trigonometric cosine function for Q31 data. | |
5691 * @param[in] x Scaled input value in radians. | |
5692 * @return cos(x). | |
5693 */ | |
5694 q31_t arm_cos_q31( | |
5695 q31_t x); | |
5696 | |
5697 | |
5698 /** | |
5699 * @brief Fast approximation to the trigonometric cosine function for Q15 data. | |
5700 * @param[in] x Scaled input value in radians. | |
5701 * @return cos(x). | |
5702 */ | |
5703 q15_t arm_cos_q15( | |
5704 q15_t x); | |
5705 | |
5706 | |
5707 /** | |
5708 * @ingroup groupFastMath | |
5709 */ | |
5710 | |
5711 | |
5712 /** | |
5713 * @defgroup SQRT Square Root | |
5714 * | |
5715 * Computes the square root of a number. | |
5716 * There are separate functions for Q15, Q31, and floating-point data types. | |
5717 * The square root function is computed using the Newton-Raphson algorithm. | |
5718 * This is an iterative algorithm of the form: | |
5719 * <pre> | |
5720 * x1 = x0 - f(x0)/f'(x0) | |
5721 * </pre> | |
5722 * where <code>x1</code> is the current estimate, | |
5723 * <code>x0</code> is the previous estimate, and | |
5724 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. | |
5725 * For the square root function, the algorithm reduces to: | |
5726 * <pre> | |
5727 * x0 = in/2 [initial guess] | |
5728 * x1 = 1/2 * ( x0 + in / x0) [each iteration] | |
5729 * </pre> | |
5730 */ | |
5731 | |
5732 | |
5733 /** | |
5734 * @addtogroup SQRT | |
5735 * @{ | |
5736 */ | |
5737 | |
5738 /** | |
5739 * @brief Floating-point square root function. | |
5740 * @param[in] in input value. | |
5741 * @param[out] pOut square root of input value. | |
5742 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
5743 * <code>in</code> is negative value and returns zero output for negative values. | |
5744 */ | |
5745 static __INLINE arm_status arm_sqrt_f32( | |
5746 float32_t in, | |
5747 float32_t * pOut) | |
5748 { | |
5749 if(in >= 0.0f) | |
5750 { | |
5751 | |
5752 #if (__FPU_USED == 1) && defined ( __CC_ARM ) | |
5753 *pOut = __sqrtf(in); | |
5754 #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) | |
5755 *pOut = __builtin_sqrtf(in); | |
5756 #elif (__FPU_USED == 1) && defined(__GNUC__) | |
5757 *pOut = __builtin_sqrtf(in); | |
5758 #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) | |
5759 __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); | |
5760 #else | |
5761 *pOut = sqrtf(in); | |
5762 #endif | |
5763 | |
5764 return (ARM_MATH_SUCCESS); | |
5765 } | |
5766 else | |
5767 { | |
5768 *pOut = 0.0f; | |
5769 return (ARM_MATH_ARGUMENT_ERROR); | |
5770 } | |
5771 } | |
5772 | |
5773 | |
5774 /** | |
5775 * @brief Q31 square root function. | |
5776 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. | |
5777 * @param[out] pOut square root of input value. | |
5778 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
5779 * <code>in</code> is negative value and returns zero output for negative values. | |
5780 */ | |
5781 arm_status arm_sqrt_q31( | |
5782 q31_t in, | |
5783 q31_t * pOut); | |
5784 | |
5785 | |
5786 /** | |
5787 * @brief Q15 square root function. | |
5788 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. | |
5789 * @param[out] pOut square root of input value. | |
5790 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if | |
5791 * <code>in</code> is negative value and returns zero output for negative values. | |
5792 */ | |
5793 arm_status arm_sqrt_q15( | |
5794 q15_t in, | |
5795 q15_t * pOut); | |
5796 | |
5797 /** | |
5798 * @} end of SQRT group | |
5799 */ | |
5800 | |
5801 | |
5802 /** | |
5803 * @brief floating-point Circular write function. | |
5804 */ | |
5805 static __INLINE void arm_circularWrite_f32( | |
5806 int32_t * circBuffer, | |
5807 int32_t L, | |
5808 uint16_t * writeOffset, | |
5809 int32_t bufferInc, | |
5810 const int32_t * src, | |
5811 int32_t srcInc, | |
5812 uint32_t blockSize) | |
5813 { | |
5814 uint32_t i = 0u; | |
5815 int32_t wOffset; | |
5816 | |
5817 /* Copy the value of Index pointer that points | |
5818 * to the current location where the input samples to be copied */ | |
5819 wOffset = *writeOffset; | |
5820 | |
5821 /* Loop over the blockSize */ | |
5822 i = blockSize; | |
5823 | |
5824 while(i > 0u) | |
5825 { | |
5826 /* copy the input sample to the circular buffer */ | |
5827 circBuffer[wOffset] = *src; | |
5828 | |
5829 /* Update the input pointer */ | |
5830 src += srcInc; | |
5831 | |
5832 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5833 wOffset += bufferInc; | |
5834 if(wOffset >= L) | |
5835 wOffset -= L; | |
5836 | |
5837 /* Decrement the loop counter */ | |
5838 i--; | |
5839 } | |
5840 | |
5841 /* Update the index pointer */ | |
5842 *writeOffset = (uint16_t)wOffset; | |
5843 } | |
5844 | |
5845 | |
5846 | |
5847 /** | |
5848 * @brief floating-point Circular Read function. | |
5849 */ | |
5850 static __INLINE void arm_circularRead_f32( | |
5851 int32_t * circBuffer, | |
5852 int32_t L, | |
5853 int32_t * readOffset, | |
5854 int32_t bufferInc, | |
5855 int32_t * dst, | |
5856 int32_t * dst_base, | |
5857 int32_t dst_length, | |
5858 int32_t dstInc, | |
5859 uint32_t blockSize) | |
5860 { | |
5861 uint32_t i = 0u; | |
5862 int32_t rOffset, dst_end; | |
5863 | |
5864 /* Copy the value of Index pointer that points | |
5865 * to the current location from where the input samples to be read */ | |
5866 rOffset = *readOffset; | |
5867 dst_end = (int32_t) (dst_base + dst_length); | |
5868 | |
5869 /* Loop over the blockSize */ | |
5870 i = blockSize; | |
5871 | |
5872 while(i > 0u) | |
5873 { | |
5874 /* copy the sample from the circular buffer to the destination buffer */ | |
5875 *dst = circBuffer[rOffset]; | |
5876 | |
5877 /* Update the input pointer */ | |
5878 dst += dstInc; | |
5879 | |
5880 if(dst == (int32_t *) dst_end) | |
5881 { | |
5882 dst = dst_base; | |
5883 } | |
5884 | |
5885 /* Circularly update rOffset. Watch out for positive and negative value */ | |
5886 rOffset += bufferInc; | |
5887 | |
5888 if(rOffset >= L) | |
5889 { | |
5890 rOffset -= L; | |
5891 } | |
5892 | |
5893 /* Decrement the loop counter */ | |
5894 i--; | |
5895 } | |
5896 | |
5897 /* Update the index pointer */ | |
5898 *readOffset = rOffset; | |
5899 } | |
5900 | |
5901 | |
5902 /** | |
5903 * @brief Q15 Circular write function. | |
5904 */ | |
5905 static __INLINE void arm_circularWrite_q15( | |
5906 q15_t * circBuffer, | |
5907 int32_t L, | |
5908 uint16_t * writeOffset, | |
5909 int32_t bufferInc, | |
5910 const q15_t * src, | |
5911 int32_t srcInc, | |
5912 uint32_t blockSize) | |
5913 { | |
5914 uint32_t i = 0u; | |
5915 int32_t wOffset; | |
5916 | |
5917 /* Copy the value of Index pointer that points | |
5918 * to the current location where the input samples to be copied */ | |
5919 wOffset = *writeOffset; | |
5920 | |
5921 /* Loop over the blockSize */ | |
5922 i = blockSize; | |
5923 | |
5924 while(i > 0u) | |
5925 { | |
5926 /* copy the input sample to the circular buffer */ | |
5927 circBuffer[wOffset] = *src; | |
5928 | |
5929 /* Update the input pointer */ | |
5930 src += srcInc; | |
5931 | |
5932 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5933 wOffset += bufferInc; | |
5934 if(wOffset >= L) | |
5935 wOffset -= L; | |
5936 | |
5937 /* Decrement the loop counter */ | |
5938 i--; | |
5939 } | |
5940 | |
5941 /* Update the index pointer */ | |
5942 *writeOffset = (uint16_t)wOffset; | |
5943 } | |
5944 | |
5945 | |
5946 /** | |
5947 * @brief Q15 Circular Read function. | |
5948 */ | |
5949 static __INLINE void arm_circularRead_q15( | |
5950 q15_t * circBuffer, | |
5951 int32_t L, | |
5952 int32_t * readOffset, | |
5953 int32_t bufferInc, | |
5954 q15_t * dst, | |
5955 q15_t * dst_base, | |
5956 int32_t dst_length, | |
5957 int32_t dstInc, | |
5958 uint32_t blockSize) | |
5959 { | |
5960 uint32_t i = 0; | |
5961 int32_t rOffset, dst_end; | |
5962 | |
5963 /* Copy the value of Index pointer that points | |
5964 * to the current location from where the input samples to be read */ | |
5965 rOffset = *readOffset; | |
5966 | |
5967 dst_end = (int32_t) (dst_base + dst_length); | |
5968 | |
5969 /* Loop over the blockSize */ | |
5970 i = blockSize; | |
5971 | |
5972 while(i > 0u) | |
5973 { | |
5974 /* copy the sample from the circular buffer to the destination buffer */ | |
5975 *dst = circBuffer[rOffset]; | |
5976 | |
5977 /* Update the input pointer */ | |
5978 dst += dstInc; | |
5979 | |
5980 if(dst == (q15_t *) dst_end) | |
5981 { | |
5982 dst = dst_base; | |
5983 } | |
5984 | |
5985 /* Circularly update wOffset. Watch out for positive and negative value */ | |
5986 rOffset += bufferInc; | |
5987 | |
5988 if(rOffset >= L) | |
5989 { | |
5990 rOffset -= L; | |
5991 } | |
5992 | |
5993 /* Decrement the loop counter */ | |
5994 i--; | |
5995 } | |
5996 | |
5997 /* Update the index pointer */ | |
5998 *readOffset = rOffset; | |
5999 } | |
6000 | |
6001 | |
6002 /** | |
6003 * @brief Q7 Circular write function. | |
6004 */ | |
6005 static __INLINE void arm_circularWrite_q7( | |
6006 q7_t * circBuffer, | |
6007 int32_t L, | |
6008 uint16_t * writeOffset, | |
6009 int32_t bufferInc, | |
6010 const q7_t * src, | |
6011 int32_t srcInc, | |
6012 uint32_t blockSize) | |
6013 { | |
6014 uint32_t i = 0u; | |
6015 int32_t wOffset; | |
6016 | |
6017 /* Copy the value of Index pointer that points | |
6018 * to the current location where the input samples to be copied */ | |
6019 wOffset = *writeOffset; | |
6020 | |
6021 /* Loop over the blockSize */ | |
6022 i = blockSize; | |
6023 | |
6024 while(i > 0u) | |
6025 { | |
6026 /* copy the input sample to the circular buffer */ | |
6027 circBuffer[wOffset] = *src; | |
6028 | |
6029 /* Update the input pointer */ | |
6030 src += srcInc; | |
6031 | |
6032 /* Circularly update wOffset. Watch out for positive and negative value */ | |
6033 wOffset += bufferInc; | |
6034 if(wOffset >= L) | |
6035 wOffset -= L; | |
6036 | |
6037 /* Decrement the loop counter */ | |
6038 i--; | |
6039 } | |
6040 | |
6041 /* Update the index pointer */ | |
6042 *writeOffset = (uint16_t)wOffset; | |
6043 } | |
6044 | |
6045 | |
6046 /** | |
6047 * @brief Q7 Circular Read function. | |
6048 */ | |
6049 static __INLINE void arm_circularRead_q7( | |
6050 q7_t * circBuffer, | |
6051 int32_t L, | |
6052 int32_t * readOffset, | |
6053 int32_t bufferInc, | |
6054 q7_t * dst, | |
6055 q7_t * dst_base, | |
6056 int32_t dst_length, | |
6057 int32_t dstInc, | |
6058 uint32_t blockSize) | |
6059 { | |
6060 uint32_t i = 0; | |
6061 int32_t rOffset, dst_end; | |
6062 | |
6063 /* Copy the value of Index pointer that points | |
6064 * to the current location from where the input samples to be read */ | |
6065 rOffset = *readOffset; | |
6066 | |
6067 dst_end = (int32_t) (dst_base + dst_length); | |
6068 | |
6069 /* Loop over the blockSize */ | |
6070 i = blockSize; | |
6071 | |
6072 while(i > 0u) | |
6073 { | |
6074 /* copy the sample from the circular buffer to the destination buffer */ | |
6075 *dst = circBuffer[rOffset]; | |
6076 | |
6077 /* Update the input pointer */ | |
6078 dst += dstInc; | |
6079 | |
6080 if(dst == (q7_t *) dst_end) | |
6081 { | |
6082 dst = dst_base; | |
6083 } | |
6084 | |
6085 /* Circularly update rOffset. Watch out for positive and negative value */ | |
6086 rOffset += bufferInc; | |
6087 | |
6088 if(rOffset >= L) | |
6089 { | |
6090 rOffset -= L; | |
6091 } | |
6092 | |
6093 /* Decrement the loop counter */ | |
6094 i--; | |
6095 } | |
6096 | |
6097 /* Update the index pointer */ | |
6098 *readOffset = rOffset; | |
6099 } | |
6100 | |
6101 | |
6102 /** | |
6103 * @brief Sum of the squares of the elements of a Q31 vector. | |
6104 * @param[in] pSrc is input pointer | |
6105 * @param[in] blockSize is the number of samples to process | |
6106 * @param[out] pResult is output value. | |
6107 */ | |
6108 void arm_power_q31( | |
6109 q31_t * pSrc, | |
6110 uint32_t blockSize, | |
6111 q63_t * pResult); | |
6112 | |
6113 | |
6114 /** | |
6115 * @brief Sum of the squares of the elements of a floating-point vector. | |
6116 * @param[in] pSrc is input pointer | |
6117 * @param[in] blockSize is the number of samples to process | |
6118 * @param[out] pResult is output value. | |
6119 */ | |
6120 void arm_power_f32( | |
6121 float32_t * pSrc, | |
6122 uint32_t blockSize, | |
6123 float32_t * pResult); | |
6124 | |
6125 | |
6126 /** | |
6127 * @brief Sum of the squares of the elements of a Q15 vector. | |
6128 * @param[in] pSrc is input pointer | |
6129 * @param[in] blockSize is the number of samples to process | |
6130 * @param[out] pResult is output value. | |
6131 */ | |
6132 void arm_power_q15( | |
6133 q15_t * pSrc, | |
6134 uint32_t blockSize, | |
6135 q63_t * pResult); | |
6136 | |
6137 | |
6138 /** | |
6139 * @brief Sum of the squares of the elements of a Q7 vector. | |
6140 * @param[in] pSrc is input pointer | |
6141 * @param[in] blockSize is the number of samples to process | |
6142 * @param[out] pResult is output value. | |
6143 */ | |
6144 void arm_power_q7( | |
6145 q7_t * pSrc, | |
6146 uint32_t blockSize, | |
6147 q31_t * pResult); | |
6148 | |
6149 | |
6150 /** | |
6151 * @brief Mean value of a Q7 vector. | |
6152 * @param[in] pSrc is input pointer | |
6153 * @param[in] blockSize is the number of samples to process | |
6154 * @param[out] pResult is output value. | |
6155 */ | |
6156 void arm_mean_q7( | |
6157 q7_t * pSrc, | |
6158 uint32_t blockSize, | |
6159 q7_t * pResult); | |
6160 | |
6161 | |
6162 /** | |
6163 * @brief Mean value of a Q15 vector. | |
6164 * @param[in] pSrc is input pointer | |
6165 * @param[in] blockSize is the number of samples to process | |
6166 * @param[out] pResult is output value. | |
6167 */ | |
6168 void arm_mean_q15( | |
6169 q15_t * pSrc, | |
6170 uint32_t blockSize, | |
6171 q15_t * pResult); | |
6172 | |
6173 | |
6174 /** | |
6175 * @brief Mean value of a Q31 vector. | |
6176 * @param[in] pSrc is input pointer | |
6177 * @param[in] blockSize is the number of samples to process | |
6178 * @param[out] pResult is output value. | |
6179 */ | |
6180 void arm_mean_q31( | |
6181 q31_t * pSrc, | |
6182 uint32_t blockSize, | |
6183 q31_t * pResult); | |
6184 | |
6185 | |
6186 /** | |
6187 * @brief Mean value of a floating-point vector. | |
6188 * @param[in] pSrc is input pointer | |
6189 * @param[in] blockSize is the number of samples to process | |
6190 * @param[out] pResult is output value. | |
6191 */ | |
6192 void arm_mean_f32( | |
6193 float32_t * pSrc, | |
6194 uint32_t blockSize, | |
6195 float32_t * pResult); | |
6196 | |
6197 | |
6198 /** | |
6199 * @brief Variance of the elements of a floating-point vector. | |
6200 * @param[in] pSrc is input pointer | |
6201 * @param[in] blockSize is the number of samples to process | |
6202 * @param[out] pResult is output value. | |
6203 */ | |
6204 void arm_var_f32( | |
6205 float32_t * pSrc, | |
6206 uint32_t blockSize, | |
6207 float32_t * pResult); | |
6208 | |
6209 | |
6210 /** | |
6211 * @brief Variance of the elements of a Q31 vector. | |
6212 * @param[in] pSrc is input pointer | |
6213 * @param[in] blockSize is the number of samples to process | |
6214 * @param[out] pResult is output value. | |
6215 */ | |
6216 void arm_var_q31( | |
6217 q31_t * pSrc, | |
6218 uint32_t blockSize, | |
6219 q31_t * pResult); | |
6220 | |
6221 | |
6222 /** | |
6223 * @brief Variance of the elements of a Q15 vector. | |
6224 * @param[in] pSrc is input pointer | |
6225 * @param[in] blockSize is the number of samples to process | |
6226 * @param[out] pResult is output value. | |
6227 */ | |
6228 void arm_var_q15( | |
6229 q15_t * pSrc, | |
6230 uint32_t blockSize, | |
6231 q15_t * pResult); | |
6232 | |
6233 | |
6234 /** | |
6235 * @brief Root Mean Square of the elements of a floating-point vector. | |
6236 * @param[in] pSrc is input pointer | |
6237 * @param[in] blockSize is the number of samples to process | |
6238 * @param[out] pResult is output value. | |
6239 */ | |
6240 void arm_rms_f32( | |
6241 float32_t * pSrc, | |
6242 uint32_t blockSize, | |
6243 float32_t * pResult); | |
6244 | |
6245 | |
6246 /** | |
6247 * @brief Root Mean Square of the elements of a Q31 vector. | |
6248 * @param[in] pSrc is input pointer | |
6249 * @param[in] blockSize is the number of samples to process | |
6250 * @param[out] pResult is output value. | |
6251 */ | |
6252 void arm_rms_q31( | |
6253 q31_t * pSrc, | |
6254 uint32_t blockSize, | |
6255 q31_t * pResult); | |
6256 | |
6257 | |
6258 /** | |
6259 * @brief Root Mean Square of the elements of a Q15 vector. | |
6260 * @param[in] pSrc is input pointer | |
6261 * @param[in] blockSize is the number of samples to process | |
6262 * @param[out] pResult is output value. | |
6263 */ | |
6264 void arm_rms_q15( | |
6265 q15_t * pSrc, | |
6266 uint32_t blockSize, | |
6267 q15_t * pResult); | |
6268 | |
6269 | |
6270 /** | |
6271 * @brief Standard deviation of the elements of a floating-point vector. | |
6272 * @param[in] pSrc is input pointer | |
6273 * @param[in] blockSize is the number of samples to process | |
6274 * @param[out] pResult is output value. | |
6275 */ | |
6276 void arm_std_f32( | |
6277 float32_t * pSrc, | |
6278 uint32_t blockSize, | |
6279 float32_t * pResult); | |
6280 | |
6281 | |
6282 /** | |
6283 * @brief Standard deviation of the elements of a Q31 vector. | |
6284 * @param[in] pSrc is input pointer | |
6285 * @param[in] blockSize is the number of samples to process | |
6286 * @param[out] pResult is output value. | |
6287 */ | |
6288 void arm_std_q31( | |
6289 q31_t * pSrc, | |
6290 uint32_t blockSize, | |
6291 q31_t * pResult); | |
6292 | |
6293 | |
6294 /** | |
6295 * @brief Standard deviation of the elements of a Q15 vector. | |
6296 * @param[in] pSrc is input pointer | |
6297 * @param[in] blockSize is the number of samples to process | |
6298 * @param[out] pResult is output value. | |
6299 */ | |
6300 void arm_std_q15( | |
6301 q15_t * pSrc, | |
6302 uint32_t blockSize, | |
6303 q15_t * pResult); | |
6304 | |
6305 | |
6306 /** | |
6307 * @brief Floating-point complex magnitude | |
6308 * @param[in] pSrc points to the complex input vector | |
6309 * @param[out] pDst points to the real output vector | |
6310 * @param[in] numSamples number of complex samples in the input vector | |
6311 */ | |
6312 void arm_cmplx_mag_f32( | |
6313 float32_t * pSrc, | |
6314 float32_t * pDst, | |
6315 uint32_t numSamples); | |
6316 | |
6317 | |
6318 /** | |
6319 * @brief Q31 complex magnitude | |
6320 * @param[in] pSrc points to the complex input vector | |
6321 * @param[out] pDst points to the real output vector | |
6322 * @param[in] numSamples number of complex samples in the input vector | |
6323 */ | |
6324 void arm_cmplx_mag_q31( | |
6325 q31_t * pSrc, | |
6326 q31_t * pDst, | |
6327 uint32_t numSamples); | |
6328 | |
6329 | |
6330 /** | |
6331 * @brief Q15 complex magnitude | |
6332 * @param[in] pSrc points to the complex input vector | |
6333 * @param[out] pDst points to the real output vector | |
6334 * @param[in] numSamples number of complex samples in the input vector | |
6335 */ | |
6336 void arm_cmplx_mag_q15( | |
6337 q15_t * pSrc, | |
6338 q15_t * pDst, | |
6339 uint32_t numSamples); | |
6340 | |
6341 | |
6342 /** | |
6343 * @brief Q15 complex dot product | |
6344 * @param[in] pSrcA points to the first input vector | |
6345 * @param[in] pSrcB points to the second input vector | |
6346 * @param[in] numSamples number of complex samples in each vector | |
6347 * @param[out] realResult real part of the result returned here | |
6348 * @param[out] imagResult imaginary part of the result returned here | |
6349 */ | |
6350 void arm_cmplx_dot_prod_q15( | |
6351 q15_t * pSrcA, | |
6352 q15_t * pSrcB, | |
6353 uint32_t numSamples, | |
6354 q31_t * realResult, | |
6355 q31_t * imagResult); | |
6356 | |
6357 | |
6358 /** | |
6359 * @brief Q31 complex dot product | |
6360 * @param[in] pSrcA points to the first input vector | |
6361 * @param[in] pSrcB points to the second input vector | |
6362 * @param[in] numSamples number of complex samples in each vector | |
6363 * @param[out] realResult real part of the result returned here | |
6364 * @param[out] imagResult imaginary part of the result returned here | |
6365 */ | |
6366 void arm_cmplx_dot_prod_q31( | |
6367 q31_t * pSrcA, | |
6368 q31_t * pSrcB, | |
6369 uint32_t numSamples, | |
6370 q63_t * realResult, | |
6371 q63_t * imagResult); | |
6372 | |
6373 | |
6374 /** | |
6375 * @brief Floating-point complex dot product | |
6376 * @param[in] pSrcA points to the first input vector | |
6377 * @param[in] pSrcB points to the second input vector | |
6378 * @param[in] numSamples number of complex samples in each vector | |
6379 * @param[out] realResult real part of the result returned here | |
6380 * @param[out] imagResult imaginary part of the result returned here | |
6381 */ | |
6382 void arm_cmplx_dot_prod_f32( | |
6383 float32_t * pSrcA, | |
6384 float32_t * pSrcB, | |
6385 uint32_t numSamples, | |
6386 float32_t * realResult, | |
6387 float32_t * imagResult); | |
6388 | |
6389 | |
6390 /** | |
6391 * @brief Q15 complex-by-real multiplication | |
6392 * @param[in] pSrcCmplx points to the complex input vector | |
6393 * @param[in] pSrcReal points to the real input vector | |
6394 * @param[out] pCmplxDst points to the complex output vector | |
6395 * @param[in] numSamples number of samples in each vector | |
6396 */ | |
6397 void arm_cmplx_mult_real_q15( | |
6398 q15_t * pSrcCmplx, | |
6399 q15_t * pSrcReal, | |
6400 q15_t * pCmplxDst, | |
6401 uint32_t numSamples); | |
6402 | |
6403 | |
6404 /** | |
6405 * @brief Q31 complex-by-real multiplication | |
6406 * @param[in] pSrcCmplx points to the complex input vector | |
6407 * @param[in] pSrcReal points to the real input vector | |
6408 * @param[out] pCmplxDst points to the complex output vector | |
6409 * @param[in] numSamples number of samples in each vector | |
6410 */ | |
6411 void arm_cmplx_mult_real_q31( | |
6412 q31_t * pSrcCmplx, | |
6413 q31_t * pSrcReal, | |
6414 q31_t * pCmplxDst, | |
6415 uint32_t numSamples); | |
6416 | |
6417 | |
6418 /** | |
6419 * @brief Floating-point complex-by-real multiplication | |
6420 * @param[in] pSrcCmplx points to the complex input vector | |
6421 * @param[in] pSrcReal points to the real input vector | |
6422 * @param[out] pCmplxDst points to the complex output vector | |
6423 * @param[in] numSamples number of samples in each vector | |
6424 */ | |
6425 void arm_cmplx_mult_real_f32( | |
6426 float32_t * pSrcCmplx, | |
6427 float32_t * pSrcReal, | |
6428 float32_t * pCmplxDst, | |
6429 uint32_t numSamples); | |
6430 | |
6431 | |
6432 /** | |
6433 * @brief Minimum value of a Q7 vector. | |
6434 * @param[in] pSrc is input pointer | |
6435 * @param[in] blockSize is the number of samples to process | |
6436 * @param[out] result is output pointer | |
6437 * @param[in] index is the array index of the minimum value in the input buffer. | |
6438 */ | |
6439 void arm_min_q7( | |
6440 q7_t * pSrc, | |
6441 uint32_t blockSize, | |
6442 q7_t * result, | |
6443 uint32_t * index); | |
6444 | |
6445 | |
6446 /** | |
6447 * @brief Minimum value of a Q15 vector. | |
6448 * @param[in] pSrc is input pointer | |
6449 * @param[in] blockSize is the number of samples to process | |
6450 * @param[out] pResult is output pointer | |
6451 * @param[in] pIndex is the array index of the minimum value in the input buffer. | |
6452 */ | |
6453 void arm_min_q15( | |
6454 q15_t * pSrc, | |
6455 uint32_t blockSize, | |
6456 q15_t * pResult, | |
6457 uint32_t * pIndex); | |
6458 | |
6459 | |
6460 /** | |
6461 * @brief Minimum value of a Q31 vector. | |
6462 * @param[in] pSrc is input pointer | |
6463 * @param[in] blockSize is the number of samples to process | |
6464 * @param[out] pResult is output pointer | |
6465 * @param[out] pIndex is the array index of the minimum value in the input buffer. | |
6466 */ | |
6467 void arm_min_q31( | |
6468 q31_t * pSrc, | |
6469 uint32_t blockSize, | |
6470 q31_t * pResult, | |
6471 uint32_t * pIndex); | |
6472 | |
6473 | |
6474 /** | |
6475 * @brief Minimum value of a floating-point vector. | |
6476 * @param[in] pSrc is input pointer | |
6477 * @param[in] blockSize is the number of samples to process | |
6478 * @param[out] pResult is output pointer | |
6479 * @param[out] pIndex is the array index of the minimum value in the input buffer. | |
6480 */ | |
6481 void arm_min_f32( | |
6482 float32_t * pSrc, | |
6483 uint32_t blockSize, | |
6484 float32_t * pResult, | |
6485 uint32_t * pIndex); | |
6486 | |
6487 | |
6488 /** | |
6489 * @brief Maximum value of a Q7 vector. | |
6490 * @param[in] pSrc points to the input buffer | |
6491 * @param[in] blockSize length of the input vector | |
6492 * @param[out] pResult maximum value returned here | |
6493 * @param[out] pIndex index of maximum value returned here | |
6494 */ | |
6495 void arm_max_q7( | |
6496 q7_t * pSrc, | |
6497 uint32_t blockSize, | |
6498 q7_t * pResult, | |
6499 uint32_t * pIndex); | |
6500 | |
6501 | |
6502 /** | |
6503 * @brief Maximum value of a Q15 vector. | |
6504 * @param[in] pSrc points to the input buffer | |
6505 * @param[in] blockSize length of the input vector | |
6506 * @param[out] pResult maximum value returned here | |
6507 * @param[out] pIndex index of maximum value returned here | |
6508 */ | |
6509 void arm_max_q15( | |
6510 q15_t * pSrc, | |
6511 uint32_t blockSize, | |
6512 q15_t * pResult, | |
6513 uint32_t * pIndex); | |
6514 | |
6515 | |
6516 /** | |
6517 * @brief Maximum value of a Q31 vector. | |
6518 * @param[in] pSrc points to the input buffer | |
6519 * @param[in] blockSize length of the input vector | |
6520 * @param[out] pResult maximum value returned here | |
6521 * @param[out] pIndex index of maximum value returned here | |
6522 */ | |
6523 void arm_max_q31( | |
6524 q31_t * pSrc, | |
6525 uint32_t blockSize, | |
6526 q31_t * pResult, | |
6527 uint32_t * pIndex); | |
6528 | |
6529 | |
6530 /** | |
6531 * @brief Maximum value of a floating-point vector. | |
6532 * @param[in] pSrc points to the input buffer | |
6533 * @param[in] blockSize length of the input vector | |
6534 * @param[out] pResult maximum value returned here | |
6535 * @param[out] pIndex index of maximum value returned here | |
6536 */ | |
6537 void arm_max_f32( | |
6538 float32_t * pSrc, | |
6539 uint32_t blockSize, | |
6540 float32_t * pResult, | |
6541 uint32_t * pIndex); | |
6542 | |
6543 | |
6544 /** | |
6545 * @brief Q15 complex-by-complex multiplication | |
6546 * @param[in] pSrcA points to the first input vector | |
6547 * @param[in] pSrcB points to the second input vector | |
6548 * @param[out] pDst points to the output vector | |
6549 * @param[in] numSamples number of complex samples in each vector | |
6550 */ | |
6551 void arm_cmplx_mult_cmplx_q15( | |
6552 q15_t * pSrcA, | |
6553 q15_t * pSrcB, | |
6554 q15_t * pDst, | |
6555 uint32_t numSamples); | |
6556 | |
6557 | |
6558 /** | |
6559 * @brief Q31 complex-by-complex multiplication | |
6560 * @param[in] pSrcA points to the first input vector | |
6561 * @param[in] pSrcB points to the second input vector | |
6562 * @param[out] pDst points to the output vector | |
6563 * @param[in] numSamples number of complex samples in each vector | |
6564 */ | |
6565 void arm_cmplx_mult_cmplx_q31( | |
6566 q31_t * pSrcA, | |
6567 q31_t * pSrcB, | |
6568 q31_t * pDst, | |
6569 uint32_t numSamples); | |
6570 | |
6571 | |
6572 /** | |
6573 * @brief Floating-point complex-by-complex multiplication | |
6574 * @param[in] pSrcA points to the first input vector | |
6575 * @param[in] pSrcB points to the second input vector | |
6576 * @param[out] pDst points to the output vector | |
6577 * @param[in] numSamples number of complex samples in each vector | |
6578 */ | |
6579 void arm_cmplx_mult_cmplx_f32( | |
6580 float32_t * pSrcA, | |
6581 float32_t * pSrcB, | |
6582 float32_t * pDst, | |
6583 uint32_t numSamples); | |
6584 | |
6585 | |
6586 /** | |
6587 * @brief Converts the elements of the floating-point vector to Q31 vector. | |
6588 * @param[in] pSrc points to the floating-point input vector | |
6589 * @param[out] pDst points to the Q31 output vector | |
6590 * @param[in] blockSize length of the input vector | |
6591 */ | |
6592 void arm_float_to_q31( | |
6593 float32_t * pSrc, | |
6594 q31_t * pDst, | |
6595 uint32_t blockSize); | |
6596 | |
6597 | |
6598 /** | |
6599 * @brief Converts the elements of the floating-point vector to Q15 vector. | |
6600 * @param[in] pSrc points to the floating-point input vector | |
6601 * @param[out] pDst points to the Q15 output vector | |
6602 * @param[in] blockSize length of the input vector | |
6603 */ | |
6604 void arm_float_to_q15( | |
6605 float32_t * pSrc, | |
6606 q15_t * pDst, | |
6607 uint32_t blockSize); | |
6608 | |
6609 | |
6610 /** | |
6611 * @brief Converts the elements of the floating-point vector to Q7 vector. | |
6612 * @param[in] pSrc points to the floating-point input vector | |
6613 * @param[out] pDst points to the Q7 output vector | |
6614 * @param[in] blockSize length of the input vector | |
6615 */ | |
6616 void arm_float_to_q7( | |
6617 float32_t * pSrc, | |
6618 q7_t * pDst, | |
6619 uint32_t blockSize); | |
6620 | |
6621 | |
6622 /** | |
6623 * @brief Converts the elements of the Q31 vector to Q15 vector. | |
6624 * @param[in] pSrc is input pointer | |
6625 * @param[out] pDst is output pointer | |
6626 * @param[in] blockSize is the number of samples to process | |
6627 */ | |
6628 void arm_q31_to_q15( | |
6629 q31_t * pSrc, | |
6630 q15_t * pDst, | |
6631 uint32_t blockSize); | |
6632 | |
6633 | |
6634 /** | |
6635 * @brief Converts the elements of the Q31 vector to Q7 vector. | |
6636 * @param[in] pSrc is input pointer | |
6637 * @param[out] pDst is output pointer | |
6638 * @param[in] blockSize is the number of samples to process | |
6639 */ | |
6640 void arm_q31_to_q7( | |
6641 q31_t * pSrc, | |
6642 q7_t * pDst, | |
6643 uint32_t blockSize); | |
6644 | |
6645 | |
6646 /** | |
6647 * @brief Converts the elements of the Q15 vector to floating-point vector. | |
6648 * @param[in] pSrc is input pointer | |
6649 * @param[out] pDst is output pointer | |
6650 * @param[in] blockSize is the number of samples to process | |
6651 */ | |
6652 void arm_q15_to_float( | |
6653 q15_t * pSrc, | |
6654 float32_t * pDst, | |
6655 uint32_t blockSize); | |
6656 | |
6657 | |
6658 /** | |
6659 * @brief Converts the elements of the Q15 vector to Q31 vector. | |
6660 * @param[in] pSrc is input pointer | |
6661 * @param[out] pDst is output pointer | |
6662 * @param[in] blockSize is the number of samples to process | |
6663 */ | |
6664 void arm_q15_to_q31( | |
6665 q15_t * pSrc, | |
6666 q31_t * pDst, | |
6667 uint32_t blockSize); | |
6668 | |
6669 | |
6670 /** | |
6671 * @brief Converts the elements of the Q15 vector to Q7 vector. | |
6672 * @param[in] pSrc is input pointer | |
6673 * @param[out] pDst is output pointer | |
6674 * @param[in] blockSize is the number of samples to process | |
6675 */ | |
6676 void arm_q15_to_q7( | |
6677 q15_t * pSrc, | |
6678 q7_t * pDst, | |
6679 uint32_t blockSize); | |
6680 | |
6681 | |
6682 /** | |
6683 * @ingroup groupInterpolation | |
6684 */ | |
6685 | |
6686 /** | |
6687 * @defgroup BilinearInterpolate Bilinear Interpolation | |
6688 * | |
6689 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. | |
6690 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process | |
6691 * determines values between the grid points. | |
6692 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. | |
6693 * Bilinear interpolation is often used in image processing to rescale images. | |
6694 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. | |
6695 * | |
6696 * <b>Algorithm</b> | |
6697 * \par | |
6698 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. | |
6699 * For floating-point, the instance structure is defined as: | |
6700 * <pre> | |
6701 * typedef struct | |
6702 * { | |
6703 * uint16_t numRows; | |
6704 * uint16_t numCols; | |
6705 * float32_t *pData; | |
6706 * } arm_bilinear_interp_instance_f32; | |
6707 * </pre> | |
6708 * | |
6709 * \par | |
6710 * where <code>numRows</code> specifies the number of rows in the table; | |
6711 * <code>numCols</code> specifies the number of columns in the table; | |
6712 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. | |
6713 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. | |
6714 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. | |
6715 * | |
6716 * \par | |
6717 * Let <code>(x, y)</code> specify the desired interpolation point. Then define: | |
6718 * <pre> | |
6719 * XF = floor(x) | |
6720 * YF = floor(y) | |
6721 * </pre> | |
6722 * \par | |
6723 * The interpolated output point is computed as: | |
6724 * <pre> | |
6725 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) | |
6726 * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) | |
6727 * + f(XF, YF+1) * (1-(x-XF))*(y-YF) | |
6728 * + f(XF+1, YF+1) * (x-XF)*(y-YF) | |
6729 * </pre> | |
6730 * Note that the coordinates (x, y) contain integer and fractional components. | |
6731 * The integer components specify which portion of the table to use while the | |
6732 * fractional components control the interpolation processor. | |
6733 * | |
6734 * \par | |
6735 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. | |
6736 */ | |
6737 | |
6738 /** | |
6739 * @addtogroup BilinearInterpolate | |
6740 * @{ | |
6741 */ | |
6742 | |
6743 | |
6744 /** | |
6745 * | |
6746 * @brief Floating-point bilinear interpolation. | |
6747 * @param[in,out] S points to an instance of the interpolation structure. | |
6748 * @param[in] X interpolation coordinate. | |
6749 * @param[in] Y interpolation coordinate. | |
6750 * @return out interpolated value. | |
6751 */ | |
6752 static __INLINE float32_t arm_bilinear_interp_f32( | |
6753 const arm_bilinear_interp_instance_f32 * S, | |
6754 float32_t X, | |
6755 float32_t Y) | |
6756 { | |
6757 float32_t out; | |
6758 float32_t f00, f01, f10, f11; | |
6759 float32_t *pData = S->pData; | |
6760 int32_t xIndex, yIndex, index; | |
6761 float32_t xdiff, ydiff; | |
6762 float32_t b1, b2, b3, b4; | |
6763 | |
6764 xIndex = (int32_t) X; | |
6765 yIndex = (int32_t) Y; | |
6766 | |
6767 /* Care taken for table outside boundary */ | |
6768 /* Returns zero output when values are outside table boundary */ | |
6769 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) | |
6770 { | |
6771 return (0); | |
6772 } | |
6773 | |
6774 /* Calculation of index for two nearest points in X-direction */ | |
6775 index = (xIndex - 1) + (yIndex - 1) * S->numCols; | |
6776 | |
6777 | |
6778 /* Read two nearest points in X-direction */ | |
6779 f00 = pData[index]; | |
6780 f01 = pData[index + 1]; | |
6781 | |
6782 /* Calculation of index for two nearest points in Y-direction */ | |
6783 index = (xIndex - 1) + (yIndex) * S->numCols; | |
6784 | |
6785 | |
6786 /* Read two nearest points in Y-direction */ | |
6787 f10 = pData[index]; | |
6788 f11 = pData[index + 1]; | |
6789 | |
6790 /* Calculation of intermediate values */ | |
6791 b1 = f00; | |
6792 b2 = f01 - f00; | |
6793 b3 = f10 - f00; | |
6794 b4 = f00 - f01 - f10 + f11; | |
6795 | |
6796 /* Calculation of fractional part in X */ | |
6797 xdiff = X - xIndex; | |
6798 | |
6799 /* Calculation of fractional part in Y */ | |
6800 ydiff = Y - yIndex; | |
6801 | |
6802 /* Calculation of bi-linear interpolated output */ | |
6803 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; | |
6804 | |
6805 /* return to application */ | |
6806 return (out); | |
6807 } | |
6808 | |
6809 | |
6810 /** | |
6811 * | |
6812 * @brief Q31 bilinear interpolation. | |
6813 * @param[in,out] S points to an instance of the interpolation structure. | |
6814 * @param[in] X interpolation coordinate in 12.20 format. | |
6815 * @param[in] Y interpolation coordinate in 12.20 format. | |
6816 * @return out interpolated value. | |
6817 */ | |
6818 static __INLINE q31_t arm_bilinear_interp_q31( | |
6819 arm_bilinear_interp_instance_q31 * S, | |
6820 q31_t X, | |
6821 q31_t Y) | |
6822 { | |
6823 q31_t out; /* Temporary output */ | |
6824 q31_t acc = 0; /* output */ | |
6825 q31_t xfract, yfract; /* X, Y fractional parts */ | |
6826 q31_t x1, x2, y1, y2; /* Nearest output values */ | |
6827 int32_t rI, cI; /* Row and column indices */ | |
6828 q31_t *pYData = S->pData; /* pointer to output table values */ | |
6829 uint32_t nCols = S->numCols; /* num of rows */ | |
6830 | |
6831 /* Input is in 12.20 format */ | |
6832 /* 12 bits for the table index */ | |
6833 /* Index value calculation */ | |
6834 rI = ((X & (q31_t)0xFFF00000) >> 20); | |
6835 | |
6836 /* Input is in 12.20 format */ | |
6837 /* 12 bits for the table index */ | |
6838 /* Index value calculation */ | |
6839 cI = ((Y & (q31_t)0xFFF00000) >> 20); | |
6840 | |
6841 /* Care taken for table outside boundary */ | |
6842 /* Returns zero output when values are outside table boundary */ | |
6843 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | |
6844 { | |
6845 return (0); | |
6846 } | |
6847 | |
6848 /* 20 bits for the fractional part */ | |
6849 /* shift left xfract by 11 to keep 1.31 format */ | |
6850 xfract = (X & 0x000FFFFF) << 11u; | |
6851 | |
6852 /* Read two nearest output values from the index */ | |
6853 x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; | |
6854 x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; | |
6855 | |
6856 /* 20 bits for the fractional part */ | |
6857 /* shift left yfract by 11 to keep 1.31 format */ | |
6858 yfract = (Y & 0x000FFFFF) << 11u; | |
6859 | |
6860 /* Read two nearest output values from the index */ | |
6861 y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; | |
6862 y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; | |
6863 | |
6864 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ | |
6865 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); | |
6866 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); | |
6867 | |
6868 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ | |
6869 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); | |
6870 acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); | |
6871 | |
6872 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
6873 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); | |
6874 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
6875 | |
6876 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ | |
6877 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); | |
6878 acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); | |
6879 | |
6880 /* Convert acc to 1.31(q31) format */ | |
6881 return ((q31_t)(acc << 2)); | |
6882 } | |
6883 | |
6884 | |
6885 /** | |
6886 * @brief Q15 bilinear interpolation. | |
6887 * @param[in,out] S points to an instance of the interpolation structure. | |
6888 * @param[in] X interpolation coordinate in 12.20 format. | |
6889 * @param[in] Y interpolation coordinate in 12.20 format. | |
6890 * @return out interpolated value. | |
6891 */ | |
6892 static __INLINE q15_t arm_bilinear_interp_q15( | |
6893 arm_bilinear_interp_instance_q15 * S, | |
6894 q31_t X, | |
6895 q31_t Y) | |
6896 { | |
6897 q63_t acc = 0; /* output */ | |
6898 q31_t out; /* Temporary output */ | |
6899 q15_t x1, x2, y1, y2; /* Nearest output values */ | |
6900 q31_t xfract, yfract; /* X, Y fractional parts */ | |
6901 int32_t rI, cI; /* Row and column indices */ | |
6902 q15_t *pYData = S->pData; /* pointer to output table values */ | |
6903 uint32_t nCols = S->numCols; /* num of rows */ | |
6904 | |
6905 /* Input is in 12.20 format */ | |
6906 /* 12 bits for the table index */ | |
6907 /* Index value calculation */ | |
6908 rI = ((X & (q31_t)0xFFF00000) >> 20); | |
6909 | |
6910 /* Input is in 12.20 format */ | |
6911 /* 12 bits for the table index */ | |
6912 /* Index value calculation */ | |
6913 cI = ((Y & (q31_t)0xFFF00000) >> 20); | |
6914 | |
6915 /* Care taken for table outside boundary */ | |
6916 /* Returns zero output when values are outside table boundary */ | |
6917 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | |
6918 { | |
6919 return (0); | |
6920 } | |
6921 | |
6922 /* 20 bits for the fractional part */ | |
6923 /* xfract should be in 12.20 format */ | |
6924 xfract = (X & 0x000FFFFF); | |
6925 | |
6926 /* Read two nearest output values from the index */ | |
6927 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; | |
6928 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; | |
6929 | |
6930 /* 20 bits for the fractional part */ | |
6931 /* yfract should be in 12.20 format */ | |
6932 yfract = (Y & 0x000FFFFF); | |
6933 | |
6934 /* Read two nearest output values from the index */ | |
6935 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; | |
6936 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; | |
6937 | |
6938 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ | |
6939 | |
6940 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ | |
6941 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ | |
6942 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); | |
6943 acc = ((q63_t) out * (0xFFFFF - yfract)); | |
6944 | |
6945 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ | |
6946 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); | |
6947 acc += ((q63_t) out * (xfract)); | |
6948 | |
6949 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ | |
6950 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); | |
6951 acc += ((q63_t) out * (yfract)); | |
6952 | |
6953 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ | |
6954 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); | |
6955 acc += ((q63_t) out * (yfract)); | |
6956 | |
6957 /* acc is in 13.51 format and down shift acc by 36 times */ | |
6958 /* Convert out to 1.15 format */ | |
6959 return ((q15_t)(acc >> 36)); | |
6960 } | |
6961 | |
6962 | |
6963 /** | |
6964 * @brief Q7 bilinear interpolation. | |
6965 * @param[in,out] S points to an instance of the interpolation structure. | |
6966 * @param[in] X interpolation coordinate in 12.20 format. | |
6967 * @param[in] Y interpolation coordinate in 12.20 format. | |
6968 * @return out interpolated value. | |
6969 */ | |
6970 static __INLINE q7_t arm_bilinear_interp_q7( | |
6971 arm_bilinear_interp_instance_q7 * S, | |
6972 q31_t X, | |
6973 q31_t Y) | |
6974 { | |
6975 q63_t acc = 0; /* output */ | |
6976 q31_t out; /* Temporary output */ | |
6977 q31_t xfract, yfract; /* X, Y fractional parts */ | |
6978 q7_t x1, x2, y1, y2; /* Nearest output values */ | |
6979 int32_t rI, cI; /* Row and column indices */ | |
6980 q7_t *pYData = S->pData; /* pointer to output table values */ | |
6981 uint32_t nCols = S->numCols; /* num of rows */ | |
6982 | |
6983 /* Input is in 12.20 format */ | |
6984 /* 12 bits for the table index */ | |
6985 /* Index value calculation */ | |
6986 rI = ((X & (q31_t)0xFFF00000) >> 20); | |
6987 | |
6988 /* Input is in 12.20 format */ | |
6989 /* 12 bits for the table index */ | |
6990 /* Index value calculation */ | |
6991 cI = ((Y & (q31_t)0xFFF00000) >> 20); | |
6992 | |
6993 /* Care taken for table outside boundary */ | |
6994 /* Returns zero output when values are outside table boundary */ | |
6995 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) | |
6996 { | |
6997 return (0); | |
6998 } | |
6999 | |
7000 /* 20 bits for the fractional part */ | |
7001 /* xfract should be in 12.20 format */ | |
7002 xfract = (X & (q31_t)0x000FFFFF); | |
7003 | |
7004 /* Read two nearest output values from the index */ | |
7005 x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; | |
7006 x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; | |
7007 | |
7008 /* 20 bits for the fractional part */ | |
7009 /* yfract should be in 12.20 format */ | |
7010 yfract = (Y & (q31_t)0x000FFFFF); | |
7011 | |
7012 /* Read two nearest output values from the index */ | |
7013 y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; | |
7014 y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; | |
7015 | |
7016 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ | |
7017 out = ((x1 * (0xFFFFF - xfract))); | |
7018 acc = (((q63_t) out * (0xFFFFF - yfract))); | |
7019 | |
7020 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ | |
7021 out = ((x2 * (0xFFFFF - yfract))); | |
7022 acc += (((q63_t) out * (xfract))); | |
7023 | |
7024 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ | |
7025 out = ((y1 * (0xFFFFF - xfract))); | |
7026 acc += (((q63_t) out * (yfract))); | |
7027 | |
7028 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ | |
7029 out = ((y2 * (yfract))); | |
7030 acc += (((q63_t) out * (xfract))); | |
7031 | |
7032 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ | |
7033 return ((q7_t)(acc >> 40)); | |
7034 } | |
7035 | |
7036 /** | |
7037 * @} end of BilinearInterpolate group | |
7038 */ | |
7039 | |
7040 | |
7041 /* SMMLAR */ | |
7042 #define multAcc_32x32_keep32_R(a, x, y) \ | |
7043 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) | |
7044 | |
7045 /* SMMLSR */ | |
7046 #define multSub_32x32_keep32_R(a, x, y) \ | |
7047 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) | |
7048 | |
7049 /* SMMULR */ | |
7050 #define mult_32x32_keep32_R(a, x, y) \ | |
7051 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) | |
7052 | |
7053 /* SMMLA */ | |
7054 #define multAcc_32x32_keep32(a, x, y) \ | |
7055 a += (q31_t) (((q63_t) x * y) >> 32) | |
7056 | |
7057 /* SMMLS */ | |
7058 #define multSub_32x32_keep32(a, x, y) \ | |
7059 a -= (q31_t) (((q63_t) x * y) >> 32) | |
7060 | |
7061 /* SMMUL */ | |
7062 #define mult_32x32_keep32(a, x, y) \ | |
7063 a = (q31_t) (((q63_t) x * y ) >> 32) | |
7064 | |
7065 | |
7066 #if defined ( __CC_ARM ) | |
7067 /* Enter low optimization region - place directly above function definition */ | |
7068 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
7069 #define LOW_OPTIMIZATION_ENTER \ | |
7070 _Pragma ("push") \ | |
7071 _Pragma ("O1") | |
7072 #else | |
7073 #define LOW_OPTIMIZATION_ENTER | |
7074 #endif | |
7075 | |
7076 /* Exit low optimization region - place directly after end of function definition */ | |
7077 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
7078 #define LOW_OPTIMIZATION_EXIT \ | |
7079 _Pragma ("pop") | |
7080 #else | |
7081 #define LOW_OPTIMIZATION_EXIT | |
7082 #endif | |
7083 | |
7084 /* Enter low optimization region - place directly above function definition */ | |
7085 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
7086 | |
7087 /* Exit low optimization region - place directly after end of function definition */ | |
7088 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
7089 | |
7090 #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) | |
7091 #define LOW_OPTIMIZATION_ENTER | |
7092 #define LOW_OPTIMIZATION_EXIT | |
7093 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
7094 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
7095 | |
7096 #elif defined(__GNUC__) | |
7097 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) | |
7098 #define LOW_OPTIMIZATION_EXIT | |
7099 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
7100 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
7101 | |
7102 #elif defined(__ICCARM__) | |
7103 /* Enter low optimization region - place directly above function definition */ | |
7104 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
7105 #define LOW_OPTIMIZATION_ENTER \ | |
7106 _Pragma ("optimize=low") | |
7107 #else | |
7108 #define LOW_OPTIMIZATION_ENTER | |
7109 #endif | |
7110 | |
7111 /* Exit low optimization region - place directly after end of function definition */ | |
7112 #define LOW_OPTIMIZATION_EXIT | |
7113 | |
7114 /* Enter low optimization region - place directly above function definition */ | |
7115 #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) | |
7116 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ | |
7117 _Pragma ("optimize=low") | |
7118 #else | |
7119 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
7120 #endif | |
7121 | |
7122 /* Exit low optimization region - place directly after end of function definition */ | |
7123 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
7124 | |
7125 #elif defined(__CSMC__) | |
7126 #define LOW_OPTIMIZATION_ENTER | |
7127 #define LOW_OPTIMIZATION_EXIT | |
7128 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
7129 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
7130 | |
7131 #elif defined(__TASKING__) | |
7132 #define LOW_OPTIMIZATION_ENTER | |
7133 #define LOW_OPTIMIZATION_EXIT | |
7134 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER | |
7135 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT | |
7136 | |
7137 #endif | |
7138 | |
7139 | |
7140 #ifdef __cplusplus | |
7141 } | |
7142 #endif | |
7143 | |
7144 | |
7145 #if defined ( __GNUC__ ) | |
7146 #pragma GCC diagnostic pop | |
7147 #endif | |
7148 | |
7149 #endif /* _ARM_MATH_H */ | |
7150 | |
7151 /** | |
7152 * | |
7153 * End of file. | |
7154 */ |