diff l476rg/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc_ex.c @ 0:32a3b1785697

a rough draft of Hardware Abstraction Layer for C++ STM32L476RG drivers
author cin
date Thu, 12 Jan 2017 02:45:43 +0300
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/l476rg/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc_ex.c	Thu Jan 12 02:45:43 2017 +0300
@@ -0,0 +1,2772 @@
+/**
+  ******************************************************************************
+  * @file    stm32l4xx_hal_rcc_ex.c
+  * @author  MCD Application Team
+  * @version V1.6.0
+  * @date    28-October-2016
+  * @brief   Extended RCC HAL module driver.
+  *          This file provides firmware functions to manage the following
+  *          functionalities RCC extended peripheral:
+  *           + Extended Peripheral Control functions
+  *           + Extended Clock management functions
+  *           + Extended Clock Recovery System Control functions
+  *
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l4xx_hal.h"
+
+/** @addtogroup STM32L4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup RCCEx RCCEx
+  * @brief RCC Extended HAL module driver
+  * @{
+  */
+
+#ifdef HAL_RCC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private defines -----------------------------------------------------------*/
+/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
+ * @{
+ */
+#define PLLSAI1_TIMEOUT_VALUE    ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */
+#define PLLSAI2_TIMEOUT_VALUE    ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */
+#define PLL_TIMEOUT_VALUE        ((uint32_t)2U)    /* 2 ms (minimum Tick + 1) */
+
+#define DIVIDER_P_UPDATE          0U
+#define DIVIDER_Q_UPDATE          1U
+#define DIVIDER_R_UPDATE          2U
+
+#define __LSCO_CLK_ENABLE()       __HAL_RCC_GPIOA_CLK_ENABLE()
+#define LSCO_GPIO_PORT            GPIOA
+#define LSCO_PIN                  GPIO_PIN_2
+/**
+  * @}
+  */
+
+/* Private macros ------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @defgroup RCCEx_Private_Functions RCCEx Private Functions
+ * @{
+ */
+static HAL_StatusTypeDef RCCEx_PLLSAI1_Config(RCC_PLLSAI1InitTypeDef *PllSai1, uint32_t Divider);
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+static HAL_StatusTypeDef RCCEx_PLLSAI2_Config(RCC_PLLSAI2InitTypeDef *PllSai2, uint32_t Divider);
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+/**
+  * @}
+  */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
+  * @{
+  */
+
+/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions 
+ *  @brief  Extended Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+                ##### Extended Peripheral Control functions  #####
+ ===============================================================================
+    [..]
+    This subsection provides a set of functions allowing to control the RCC Clocks
+    frequencies.
+    [..]
+    (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
+        select the RTC clock source; in this case the Backup domain will be reset in
+        order to modify the RTC Clock source, as consequence RTC registers (including
+        the backup registers) are set to their reset values.
+
+@endverbatim
+  * @{
+  */
+/**
+  * @brief  Initialize the RCC extended peripherals clocks according to the specified
+  *         parameters in the RCC_PeriphCLKInitTypeDef.
+  * @param  PeriphClkInit  pointer to an RCC_PeriphCLKInitTypeDef structure that
+  *         contains a field PeriphClockSelection which can be a combination of the following values:
+  *            @arg @ref RCC_PERIPHCLK_RTC  RTC peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_ADC  ADC peripheral clock
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM1)
+  @endif
+  @if STM32L462xx
+  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM1)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_I2C1  I2C1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_I2C2  I2C2 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_I2C3  I2C3 peripheral clock
+  @if STM32L462xx
+  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_LPTIM1  LPTIM1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_LPTIM2  LPTIM2 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_LPUART1  LPUART1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_RNG  RNG peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_SAI1  SAI1 peripheral clock
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_SDMMC1  SDMMC1 peripheral clock
+  @if STM32L443xx
+  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
+  @endif
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_USART1  USART1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_USART2  USART1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_USART3  USART1 peripheral clock
+  @if STM32L462xx
+  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
+  @endif
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_UART4  USART1 peripheral clock (only for devices with UART4)
+  *            @arg @ref RCC_PERIPHCLK_UART5  USART1 peripheral clock (only for devices with UART5)
+  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
+  @endif
+  *
+  * @note   Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
+  *         the RTC clock source: in this case the access to Backup domain is enabled.
+  *
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
+{
+  uint32_t tmpregister = 0;
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef ret = HAL_OK;      /* Intermediate status */
+  HAL_StatusTypeDef status = HAL_OK;   /* Final status */
+
+  /* Check the parameters */
+  assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
+
+  /*-------------------------- SAI1 clock source configuration ---------------------*/
+  if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1))
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_SAI1CLK(PeriphClkInit->Sai1ClockSelection));
+
+    switch(PeriphClkInit->Sai1ClockSelection)
+    {
+    case RCC_SAI1CLKSOURCE_PLL:      /* PLL is used as clock source for SAI1*/
+      /* Enable SAI Clock output generated form System PLL . */
+#if defined(RCC_PLLSAI2_SUPPORT)
+      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
+#else
+      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI2CLK);
+#endif /* RCC_PLLSAI2_SUPPORT */
+      /* SAI1 clock source config set later after clock selection check */
+      break;
+
+    case RCC_SAI1CLKSOURCE_PLLSAI1:  /* PLLSAI1 is used as clock source for SAI1*/
+      /* PLLSAI1 input clock, parameters M, N & P configuration and clock output (PLLSAI1ClockOut) */
+      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_P_UPDATE);
+      /* SAI1 clock source config set later after clock selection check */
+      break;
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+    case RCC_SAI1CLKSOURCE_PLLSAI2:  /* PLLSAI2 is used as clock source for SAI1*/
+      /* PLLSAI2 input clock, parameters M, N & P configuration clock output (PLLSAI2ClockOut) */
+      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_P_UPDATE);
+      /* SAI1 clock source config set later after clock selection check */
+      break;
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+    case RCC_SAI1CLKSOURCE_PIN:      /* External clock is used as source of SAI1 clock*/
+      /* SAI1 clock source config set later after clock selection check */
+      break;
+
+    default:
+      ret = HAL_ERROR;
+      break;
+    }
+
+    if(ret == HAL_OK)
+    {
+      /* Set the source of SAI1 clock*/
+      __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection);
+    }
+    else
+    {
+      /* set overall return value */
+      status = ret;
+    }
+  }
+
+#if defined(SAI2)
+
+  /*-------------------------- SAI2 clock source configuration ---------------------*/
+  if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2))
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_SAI2CLK(PeriphClkInit->Sai2ClockSelection));
+
+    switch(PeriphClkInit->Sai2ClockSelection)
+    {
+    case RCC_SAI2CLKSOURCE_PLL:      /* PLL is used as clock source for SAI2*/
+      /* Enable SAI Clock output generated form System PLL . */
+      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SAI3CLK);
+      /* SAI2 clock source config set later after clock selection check */
+      break;
+
+    case RCC_SAI2CLKSOURCE_PLLSAI1: /* PLLSAI1 is used as clock source for SAI2*/
+      /* PLLSAI1 input clock, parameters M, N & P configuration and clock output (PLLSAI1ClockOut) */
+      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_P_UPDATE);
+      /* SAI2 clock source config set later after clock selection check */
+      break;
+
+    case RCC_SAI2CLKSOURCE_PLLSAI2:  /* PLLSAI2 is used as clock source for SAI2*/
+      /* PLLSAI2 input clock, parameters M, N & P configuration and clock output (PLLSAI2ClockOut) */
+      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_P_UPDATE);
+      /* SAI2 clock source config set later after clock selection check */
+      break;
+
+    case RCC_SAI2CLKSOURCE_PIN:      /* External clock is used as source of SAI2 clock*/
+      /* SAI2 clock source config set later after clock selection check */
+      break;
+
+    default:
+      ret = HAL_ERROR;
+      break;
+    }
+
+    if(ret == HAL_OK)
+    {
+      /* Set the source of SAI2 clock*/
+      __HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection);
+    }
+    else
+    {
+      /* set overall return value */
+      status = ret;
+    }
+  }
+#endif /* SAI2 */
+
+  /*-------------------------- RTC clock source configuration ----------------------*/
+  if((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
+  {
+    FlagStatus       pwrclkchanged = RESET;
+    
+    /* Check for RTC Parameters used to output RTCCLK */
+    assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
+
+    /* Enable Power Clock */
+    if(__HAL_RCC_PWR_IS_CLK_DISABLED())
+    {
+      __HAL_RCC_PWR_CLK_ENABLE();
+      pwrclkchanged = SET;
+    }
+      
+    /* Enable write access to Backup domain */
+    SET_BIT(PWR->CR1, PWR_CR1_DBP);
+
+    /* Wait for Backup domain Write protection disable */
+    tickstart = HAL_GetTick();
+
+    while((PWR->CR1 & PWR_CR1_DBP) == RESET)
+    {
+      if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
+      {
+        ret = HAL_TIMEOUT;
+        break;
+      }
+    }
+
+    if(ret == HAL_OK)
+    { 
+      /* Reset the Backup domain only if the RTC Clock source selection is modified from default */
+      tmpregister = READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL);
+      
+      if((tmpregister != RCC_RTCCLKSOURCE_NO_CLK) && (tmpregister != PeriphClkInit->RTCClockSelection))
+      {
+        /* Store the content of BDCR register before the reset of Backup Domain */
+        tmpregister = READ_BIT(RCC->BDCR, ~(RCC_BDCR_RTCSEL));
+        /* RTC Clock selection can be changed only if the Backup Domain is reset */
+        __HAL_RCC_BACKUPRESET_FORCE();
+        __HAL_RCC_BACKUPRESET_RELEASE();
+        /* Restore the Content of BDCR register */
+        RCC->BDCR = tmpregister;
+      }
+
+      /* Wait for LSE reactivation if LSE was enable prior to Backup Domain reset */
+      if (HAL_IS_BIT_SET(tmpregister, RCC_BDCR_LSEON))
+      {
+        /* Get Start Tick*/
+        tickstart = HAL_GetTick();
+
+        /* Wait till LSE is ready */
+        while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == RESET)
+        {
+          if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
+          {
+            ret = HAL_TIMEOUT;
+            break;
+          }
+        }
+      }
+      
+      if(ret == HAL_OK)
+      {
+        /* Apply new RTC clock source selection */
+        __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
+      }
+      else
+      {
+        /* set overall return value */
+        status = ret;
+      }
+    }
+    else
+    {
+      /* set overall return value */
+      status = ret;
+    }
+
+    /* Restore clock configuration if changed */
+    if(pwrclkchanged == SET)
+    {
+      __HAL_RCC_PWR_CLK_DISABLE();
+    }
+  }
+
+  /*-------------------------- USART1 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
+
+    /* Configure the USART1 clock source */
+    __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
+  }
+
+  /*-------------------------- USART2 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
+
+    /* Configure the USART2 clock source */
+    __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
+  }
+
+#if defined(USART3)
+
+  /*-------------------------- USART3 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
+
+    /* Configure the USART3 clock source */
+    __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
+  }
+
+#endif /* USART3 */
+
+#if defined(UART4)
+
+  /*-------------------------- UART4 clock source configuration --------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART4) == RCC_PERIPHCLK_UART4)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_UART4CLKSOURCE(PeriphClkInit->Uart4ClockSelection));
+
+    /* Configure the UART4 clock source */
+    __HAL_RCC_UART4_CONFIG(PeriphClkInit->Uart4ClockSelection);
+  }
+
+#endif /* UART4 */
+
+#if defined(UART5)
+
+  /*-------------------------- UART5 clock source configuration --------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_UART5) == RCC_PERIPHCLK_UART5)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_UART5CLKSOURCE(PeriphClkInit->Uart5ClockSelection));
+
+    /* Configure the UART5 clock source */
+    __HAL_RCC_UART5_CONFIG(PeriphClkInit->Uart5ClockSelection);
+  }
+
+#endif /* UART5 */
+
+  /*-------------------------- LPUART1 clock source configuration ------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPUART1) == RCC_PERIPHCLK_LPUART1)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_LPUART1CLKSOURCE(PeriphClkInit->Lpuart1ClockSelection));
+
+    /* Configure the LPUAR1 clock source */
+    __HAL_RCC_LPUART1_CONFIG(PeriphClkInit->Lpuart1ClockSelection);
+  }
+
+  /*-------------------------- LPTIM1 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM1) == (RCC_PERIPHCLK_LPTIM1))
+  {
+    assert_param(IS_RCC_LPTIM1CLK(PeriphClkInit->Lptim1ClockSelection));
+    __HAL_RCC_LPTIM1_CONFIG(PeriphClkInit->Lptim1ClockSelection);
+  }
+
+  /*-------------------------- LPTIM2 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LPTIM2) == (RCC_PERIPHCLK_LPTIM2))
+  {
+    assert_param(IS_RCC_LPTIM2CLK(PeriphClkInit->Lptim2ClockSelection));
+    __HAL_RCC_LPTIM2_CONFIG(PeriphClkInit->Lptim2ClockSelection);
+  }
+
+  /*-------------------------- I2C1 clock source configuration ---------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
+
+    /* Configure the I2C1 clock source */
+    __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
+  }
+
+#if defined(I2C2)  
+
+  /*-------------------------- I2C2 clock source configuration ---------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C2) == RCC_PERIPHCLK_I2C2)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_I2C2CLKSOURCE(PeriphClkInit->I2c2ClockSelection));
+
+    /* Configure the I2C2 clock source */
+    __HAL_RCC_I2C2_CONFIG(PeriphClkInit->I2c2ClockSelection);
+  }
+
+#endif /* I2C2 */
+
+  /*-------------------------- I2C3 clock source configuration ---------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C3) == RCC_PERIPHCLK_I2C3)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_I2C3CLKSOURCE(PeriphClkInit->I2c3ClockSelection));
+
+    /* Configure the I2C3 clock source */
+    __HAL_RCC_I2C3_CONFIG(PeriphClkInit->I2c3ClockSelection);
+  }
+
+#if defined(I2C4)  
+
+  /*-------------------------- I2C4 clock source configuration ---------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C4) == RCC_PERIPHCLK_I2C4)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_I2C4CLKSOURCE(PeriphClkInit->I2c4ClockSelection));
+
+    /* Configure the I2C4 clock source */
+    __HAL_RCC_I2C4_CONFIG(PeriphClkInit->I2c4ClockSelection);
+  }
+
+#endif /* I2C4 */
+
+#if defined(USB_OTG_FS) || defined(USB)
+
+  /*-------------------------- USB clock source configuration ----------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == (RCC_PERIPHCLK_USB))
+  {
+    assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
+    __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
+
+    if(PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLL)
+    {
+      /* Enable PLL48M1CLK output */
+      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
+    }
+    else
+    {
+      if(PeriphClkInit->UsbClockSelection == RCC_USBCLKSOURCE_PLLSAI1)
+      {
+        /* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
+        ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);
+      
+        if(ret != HAL_OK)
+        {
+          /* set overall return value */
+          status = ret;
+        }
+      }
+    }
+  }
+
+#endif /* USB_OTG_FS || USB */
+
+#if defined(SDMMC1)
+
+  /*-------------------------- SDMMC1 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDMMC1) == (RCC_PERIPHCLK_SDMMC1))
+  {
+    assert_param(IS_RCC_SDMMC1CLKSOURCE(PeriphClkInit->Sdmmc1ClockSelection));
+    __HAL_RCC_SDMMC1_CONFIG(PeriphClkInit->Sdmmc1ClockSelection);
+    
+    if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLL)
+    {
+      /* Enable PLL48M1CLK output */
+      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
+    }
+    else if(PeriphClkInit->Sdmmc1ClockSelection == RCC_SDMMC1CLKSOURCE_PLLSAI1)
+    {
+      /* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
+      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);
+      
+      if(ret != HAL_OK)
+      {
+        /* set overall return value */
+        status = ret;
+      }
+    }
+  }
+
+#endif /* SDMMC1 */
+
+  /*-------------------------- RNG clock source configuration ----------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RNG) == (RCC_PERIPHCLK_RNG))
+  {
+    assert_param(IS_RCC_RNGCLKSOURCE(PeriphClkInit->RngClockSelection));
+    __HAL_RCC_RNG_CONFIG(PeriphClkInit->RngClockSelection);
+
+    if(PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLL)
+    {
+      /* Enable PLL48M1CLK output */
+      __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_48M1CLK);
+    }
+    else if(PeriphClkInit->RngClockSelection == RCC_RNGCLKSOURCE_PLLSAI1)
+    {
+      /* PLLSAI1 input clock, parameters M, N & Q configuration and clock output (PLLSAI1ClockOut) */
+      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_Q_UPDATE);
+      
+      if(ret != HAL_OK)
+      {
+        /* set overall return value */
+        status = ret;
+      }
+    }
+  }
+
+  /*-------------------------- ADC clock source configuration ----------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_ADC) == RCC_PERIPHCLK_ADC)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_ADCCLKSOURCE(PeriphClkInit->AdcClockSelection));
+
+    /* Configure the ADC interface clock source */
+    __HAL_RCC_ADC_CONFIG(PeriphClkInit->AdcClockSelection);
+    
+    if(PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI1)
+    {
+      /* PLLSAI1 input clock, parameters M, N & R configuration and clock output (PLLSAI1ClockOut) */
+      ret = RCCEx_PLLSAI1_Config(&(PeriphClkInit->PLLSAI1), DIVIDER_R_UPDATE);
+
+      if(ret != HAL_OK)
+      {
+        /* set overall return value */
+        status = ret;
+      }
+    }
+
+#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx)
+
+    else if(PeriphClkInit->AdcClockSelection == RCC_ADCCLKSOURCE_PLLSAI2)
+    {
+      /* PLLSAI2 input clock, parameters M, N & R configuration and clock output (PLLSAI2ClockOut) */
+      ret = RCCEx_PLLSAI2_Config(&(PeriphClkInit->PLLSAI2), DIVIDER_R_UPDATE);
+      
+      if(ret != HAL_OK)
+      {
+        /* set overall return value */
+        status = ret;
+      }
+    }
+
+#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx */
+
+  }
+
+#if defined(SWPMI1)
+
+  /*-------------------------- SWPMI1 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SWPMI1) == RCC_PERIPHCLK_SWPMI1)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_SWPMI1CLKSOURCE(PeriphClkInit->Swpmi1ClockSelection));
+
+    /* Configure the SWPMI1 clock source */
+    __HAL_RCC_SWPMI1_CONFIG(PeriphClkInit->Swpmi1ClockSelection);
+  }
+
+#endif /* SWPMI1 */
+
+#if defined(DFSDM1_Filter0)
+
+  /*-------------------------- DFSDM1 clock source configuration -------------------*/
+  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_DFSDM1) == RCC_PERIPHCLK_DFSDM1)
+  {
+    /* Check the parameters */
+    assert_param(IS_RCC_DFSDM1CLKSOURCE(PeriphClkInit->Dfsdm1ClockSelection));
+
+    /* Configure the DFSDM1 interface clock source */
+    __HAL_RCC_DFSDM1_CONFIG(PeriphClkInit->Dfsdm1ClockSelection);
+  }
+
+#endif /* DFSDM1_Filter0 */
+
+  return status;
+}
+
+/**
+  * @brief  Get the RCC_ClkInitStruct according to the internal RCC configuration registers.
+  * @param  PeriphClkInit  pointer to an RCC_PeriphCLKInitTypeDef structure that
+  *         returns the configuration information for the Extended Peripherals
+  *         clocks(SAI1, SAI2, LPTIM1, LPTIM2, I2C1, I2C2, I2C3, I2C4, LPUART,
+  *         USART1, USART2, USART3, UART4, UART5, RTC, ADCx, DFSDMx, SWPMI1, USB, SDMMC1 and RNG).
+  * @retval None
+  */
+void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
+{
+  /* Set all possible values for the extended clock type parameter------------*/
+
+#if defined(STM32L431xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |                                               \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                                               \
+                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 |                        \
+                                        RCC_PERIPHCLK_RTC ;
+
+#elif defined(STM32L432xx) || defined(STM32L442xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 |                                                                      \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   |                        RCC_PERIPHCLK_I2C3   |                        \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                        RCC_PERIPHCLK_USB    | \
+                                                                RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 |                        \
+                                        RCC_PERIPHCLK_RTC ;
+
+#elif defined(STM32L433xx) || defined(STM32L443xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 |                                               \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                        RCC_PERIPHCLK_USB    | \
+                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 |                        \
+                                        RCC_PERIPHCLK_RTC ;
+
+#elif defined(STM32L451xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  |                        \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                                               \
+                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    |                        RCC_PERIPHCLK_DFSDM1 | \
+                                        RCC_PERIPHCLK_RTC ;
+
+#elif defined(STM32L452xx) || defined(STM32L462xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  |                        \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   | RCC_PERIPHCLK_I2C4   | \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   |                        RCC_PERIPHCLK_USB    | \
+                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    |                        RCC_PERIPHCLK_DFSDM1 | \
+                                        RCC_PERIPHCLK_RTC ;
+
+#elif defined(STM32L471xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3                          | \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2                          | \
+                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
+                                        RCC_PERIPHCLK_RTC ;
+  
+#elif defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx)
+
+  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1  | RCC_PERIPHCLK_USART2 | RCC_PERIPHCLK_USART3 | RCC_PERIPHCLK_UART4  | RCC_PERIPHCLK_UART5  | \
+                                        RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_I2C2   | RCC_PERIPHCLK_I2C3   |                        \
+                                        RCC_PERIPHCLK_LPTIM1  | RCC_PERIPHCLK_LPTIM2 | RCC_PERIPHCLK_SAI1   | RCC_PERIPHCLK_SAI2   | RCC_PERIPHCLK_USB    | \
+                                        RCC_PERIPHCLK_SDMMC1  | RCC_PERIPHCLK_RNG    | RCC_PERIPHCLK_ADC    | RCC_PERIPHCLK_SWPMI1 | RCC_PERIPHCLK_DFSDM1 | \
+                                        RCC_PERIPHCLK_RTC ;
+
+#endif /* STM32L431xx */
+
+  /* Get the PLLSAI1 Clock configuration -----------------------------------------------*/
+  
+  PeriphClkInit->PLLSAI1.PLLSAI1Source = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) >> POSITION_VAL(RCC_PLLCFGR_PLLSRC));
+  PeriphClkInit->PLLSAI1.PLLSAI1M = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U;
+  PeriphClkInit->PLLSAI1.PLLSAI1N = (uint32_t)((RCC->PLLSAI1CFGR & RCC_PLLSAI1CFGR_PLLSAI1N) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N));
+  PeriphClkInit->PLLSAI1.PLLSAI1P = (uint32_t)(((RCC->PLLSAI1CFGR & RCC_PLLSAI1CFGR_PLLSAI1P) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1P)) << 4U) + 7U;
+  PeriphClkInit->PLLSAI1.PLLSAI1Q = (uint32_t)(((RCC->PLLSAI1CFGR & RCC_PLLSAI1CFGR_PLLSAI1Q) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1Q))+1U) * 2U;
+  PeriphClkInit->PLLSAI1.PLLSAI1R = (uint32_t)(((RCC->PLLSAI1CFGR & RCC_PLLSAI1CFGR_PLLSAI1R) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1R))+1U) * 2U;
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+  /* Get the PLLSAI2 Clock configuration -----------------------------------------------*/
+
+  PeriphClkInit->PLLSAI2.PLLSAI2Source = PeriphClkInit->PLLSAI1.PLLSAI1Source;
+  PeriphClkInit->PLLSAI2.PLLSAI2M = PeriphClkInit->PLLSAI1.PLLSAI1M;
+  PeriphClkInit->PLLSAI2.PLLSAI2N = (uint32_t)((RCC->PLLSAI2CFGR & RCC_PLLSAI2CFGR_PLLSAI2N) >> POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2N));
+  PeriphClkInit->PLLSAI2.PLLSAI2P = (uint32_t)(((RCC->PLLSAI2CFGR & RCC_PLLSAI2CFGR_PLLSAI2P) >> POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2P)) << 4U) + 7U;
+  PeriphClkInit->PLLSAI2.PLLSAI2R = (uint32_t)(((RCC->PLLSAI2CFGR & RCC_PLLSAI2CFGR_PLLSAI2R)>> POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2R))+1U) * 2U;
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+  /* Get the USART1 clock source ---------------------------------------------*/
+  PeriphClkInit->Usart1ClockSelection  = __HAL_RCC_GET_USART1_SOURCE();
+  /* Get the USART2 clock source ---------------------------------------------*/
+  PeriphClkInit->Usart2ClockSelection  = __HAL_RCC_GET_USART2_SOURCE();
+
+#if defined(USART3)
+  /* Get the USART3 clock source ---------------------------------------------*/
+  PeriphClkInit->Usart3ClockSelection  = __HAL_RCC_GET_USART3_SOURCE();
+#endif /* USART3 */
+
+#if defined(UART4)
+  /* Get the UART4 clock source ----------------------------------------------*/
+  PeriphClkInit->Uart4ClockSelection   = __HAL_RCC_GET_UART4_SOURCE();
+#endif /* UART4 */
+
+#if defined(UART5)
+  /* Get the UART5 clock source ----------------------------------------------*/
+  PeriphClkInit->Uart5ClockSelection   = __HAL_RCC_GET_UART5_SOURCE();
+#endif /* UART5 */
+  
+  /* Get the LPUART1 clock source --------------------------------------------*/
+  PeriphClkInit->Lpuart1ClockSelection = __HAL_RCC_GET_LPUART1_SOURCE();
+
+  /* Get the I2C1 clock source -----------------------------------------------*/
+  PeriphClkInit->I2c1ClockSelection    = __HAL_RCC_GET_I2C1_SOURCE();
+
+#if defined(I2C2)
+   /* Get the I2C2 clock source ----------------------------------------------*/
+  PeriphClkInit->I2c2ClockSelection    = __HAL_RCC_GET_I2C2_SOURCE();
+#endif /* I2C2 */
+
+  /* Get the I2C3 clock source -----------------------------------------------*/
+  PeriphClkInit->I2c3ClockSelection    = __HAL_RCC_GET_I2C3_SOURCE();
+
+#if defined(I2C4)
+  /* Get the I2C4 clock source -----------------------------------------------*/
+  PeriphClkInit->I2c4ClockSelection    = __HAL_RCC_GET_I2C4_SOURCE();
+#endif /* I2C4 */
+
+  /* Get the LPTIM1 clock source ---------------------------------------------*/
+  PeriphClkInit->Lptim1ClockSelection  = __HAL_RCC_GET_LPTIM1_SOURCE();
+
+  /* Get the LPTIM2 clock source ---------------------------------------------*/
+  PeriphClkInit->Lptim2ClockSelection  = __HAL_RCC_GET_LPTIM2_SOURCE();
+
+  /* Get the SAI1 clock source -----------------------------------------------*/
+  PeriphClkInit->Sai1ClockSelection    = __HAL_RCC_GET_SAI1_SOURCE();
+
+#if defined(SAI2)
+  /* Get the SAI2 clock source -----------------------------------------------*/
+  PeriphClkInit->Sai2ClockSelection    = __HAL_RCC_GET_SAI2_SOURCE();
+#endif /* SAI2 */
+
+  /* Get the RTC clock source ------------------------------------------------*/
+  PeriphClkInit->RTCClockSelection     = __HAL_RCC_GET_RTC_SOURCE();
+
+#if defined(USB_OTG_FS) || defined(USB)
+  /* Get the USB clock source ------------------------------------------------*/
+  PeriphClkInit->UsbClockSelection   = __HAL_RCC_GET_USB_SOURCE();
+#endif /* USB_OTG_FS || USB */
+
+#if defined(SDMMC1)
+  /* Get the SDMMC1 clock source ---------------------------------------------*/
+  PeriphClkInit->Sdmmc1ClockSelection   = __HAL_RCC_GET_SDMMC1_SOURCE();
+#endif /* SDMMC1 */
+
+  /* Get the RNG clock source ------------------------------------------------*/
+  PeriphClkInit->RngClockSelection   = __HAL_RCC_GET_RNG_SOURCE();
+
+  /* Get the ADC clock source ------------------------------------------------*/
+  PeriphClkInit->AdcClockSelection     = __HAL_RCC_GET_ADC_SOURCE();
+
+#if defined(SWPMI1)
+  /* Get the SWPMI1 clock source ---------------------------------------------*/
+  PeriphClkInit->Swpmi1ClockSelection  = __HAL_RCC_GET_SWPMI1_SOURCE();
+#endif /* SWPMI1 */
+
+#if defined(DFSDM1_Filter0)
+  /* Get the DFSDM1 clock source ---------------------------------------------*/
+  PeriphClkInit->Dfsdm1ClockSelection  = __HAL_RCC_GET_DFSDM1_SOURCE();
+#endif /* DFSDM1_Filter0 */
+}
+
+/**
+  * @brief  Return the peripheral clock frequency for peripherals with clock source from PLLSAIs 
+  * @note   Return 0 if peripheral clock identifier not managed by this API
+  * @param  PeriphClk  Peripheral clock identifier
+  *         This parameter can be one of the following values:
+  *            @arg @ref RCC_PERIPHCLK_RTC  RTC peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_ADC  ADC peripheral clock
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM)
+  @endif
+  @if STM32L462xx
+  *            @arg @ref RCC_PERIPHCLK_DFSDM1  DFSDM1 peripheral clock (only for devices with DFSDM)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_I2C1  I2C1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_I2C2  I2C2 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_I2C3  I2C3 peripheral clock
+  @if STM32L462xx
+  *            @arg @ref RCC_PERIPHCLK_I2C4  I2C4 peripheral clock (only for devices with I2C4)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_LPTIM1  LPTIM1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_LPTIM2  LPTIM2 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_LPUART1  LPUART1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_RNG  RNG peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_SAI1  SAI1 peripheral clock
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_SAI2  SAI2 peripheral clock (only for devices with SAI2)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_SDMMC1  SDMMC1 peripheral clock
+  @if STM32L443xx
+  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
+  @endif
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_SWPMI1  SWPMI1 peripheral clock (only for devices with SWPMI1)
+  @endif
+  *            @arg @ref RCC_PERIPHCLK_USART1  USART1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_USART2  USART1 peripheral clock
+  *            @arg @ref RCC_PERIPHCLK_USART3  USART1 peripheral clock
+  @if STM32L486xx
+  *            @arg @ref RCC_PERIPHCLK_UART4  UART4 peripheral clock (only for devices with UART4)
+  *            @arg @ref RCC_PERIPHCLK_UART5  UART5 peripheral clock (only for devices with UART5)
+  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
+  @endif
+  @if STM32L462xx
+  *            @arg @ref RCC_PERIPHCLK_UART4  UART4 peripheral clock (only for devices with UART4)
+  *            @arg @ref RCC_PERIPHCLK_USB  USB peripheral clock (only for devices with USB)
+  @endif
+  * @retval Frequency in Hz
+  */
+uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
+{
+  uint32_t frequency = 0U;
+  uint32_t srcclk = 0U;
+  uint32_t pllvco = 0U, plln = 0U, pllp = 0U;
+
+  /* Check the parameters */
+  assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
+
+  if(PeriphClk == RCC_PERIPHCLK_RTC)
+  {
+    /* Get the current RTC source */
+    srcclk = __HAL_RCC_GET_RTC_SOURCE();
+
+    /* Check if LSE is ready and if RTC clock selection is LSE */
+    if ((srcclk == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+    {
+      frequency = LSE_VALUE;
+    }
+    /* Check if LSI is ready and if RTC clock selection is LSI */
+    else if ((srcclk == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
+    {
+      frequency = LSI_VALUE;
+    }
+    /* Check if HSE is ready  and if RTC clock selection is HSI_DIV32*/
+    else if ((srcclk == RCC_RTCCLKSOURCE_HSE_DIV32) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
+    {
+      frequency = HSE_VALUE / 32;
+    }
+    /* Clock not enabled for RTC*/
+    else
+    {
+      frequency = 0U;
+    }
+  }
+  else
+  {
+    /* Other external peripheral clock source than RTC */
+    
+    /* Compute PLL clock input */
+    if(__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_MSI)        /* MSI ? */
+    {
+      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
+      {
+        pllvco = (1U << ((__HAL_RCC_GET_MSI_RANGE() >> 4U) - 4U)) * 1000000U;
+      }
+      else
+      {
+        pllvco = 0U;
+      }
+    }
+    else if(__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)   /* HSI ? */
+    {
+      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
+      {
+        pllvco = HSI_VALUE;
+      }
+      else
+      {
+        pllvco = 0U;
+      }
+    }
+    else if(__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)   /* HSE ? */
+    {
+      if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))
+      {
+        pllvco = HSE_VALUE;
+      }
+      else
+      {
+        pllvco = 0U;
+      }
+    }
+    else /* No source */
+    {
+      pllvco = 0U;
+    }
+
+    /* f(PLL Source) / PLLM */
+    pllvco = (pllvco / ((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U));
+
+    switch(PeriphClk)
+    {
+#if defined(SAI2)
+
+    case RCC_PERIPHCLK_SAI1:
+    case RCC_PERIPHCLK_SAI2:
+
+      if(PeriphClk == RCC_PERIPHCLK_SAI1)
+      {
+        srcclk = __HAL_RCC_GET_SAI1_SOURCE();
+          
+        if(srcclk == RCC_SAI1CLKSOURCE_PIN)
+        {
+          frequency = EXTERNAL_SAI1_CLOCK_VALUE;
+        }
+        /* Else, PLL clock output to check below */
+      }
+      else /* RCC_PERIPHCLK_SAI2 */
+      {
+        srcclk = __HAL_RCC_GET_SAI2_SOURCE();
+          
+        if(srcclk == RCC_SAI2CLKSOURCE_PIN)
+        {
+          frequency = EXTERNAL_SAI2_CLOCK_VALUE;
+        }
+        /* Else, PLL clock output to check below */
+      }
+  
+#else
+
+    case RCC_PERIPHCLK_SAI1:
+
+      if(PeriphClk == RCC_PERIPHCLK_SAI1)
+      {
+        srcclk = READ_BIT(RCC->CCIPR, RCC_CCIPR_SAI1SEL);
+          
+        if(srcclk == RCC_SAI1CLKSOURCE_PIN)
+        {
+          frequency = EXTERNAL_SAI1_CLOCK_VALUE;
+        }
+        /* Else, PLL clock output to check below */
+      }
+      
+#endif /* SAI2 */
+
+      if(frequency == 0U)
+      {
+#if defined(SAI2)
+        if((srcclk == RCC_SAI1CLKSOURCE_PLL) || (srcclk == RCC_SAI2CLKSOURCE_PLL))
+        {
+          if(__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_SAI3CLK) != RESET)
+          {
+            /* f(PLLSAI3CLK) = f(VCO input) * PLLN / PLLP */
+            plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN);
+#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
+            pllp = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> POSITION_VAL(RCC_PLLCFGR_PLLPDIV);
+#endif             
+            if(pllp == 0U)
+            {
+              if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != RESET)
+              {
+                pllp = 17U;
+              }
+              else
+              {
+                pllp = 7U;
+              }
+            }
+            frequency = (pllvco * plln) / pllp;
+          }
+        }
+        else if(srcclk == 0U)  /* RCC_SAI1CLKSOURCE_PLLSAI1 || RCC_SAI2CLKSOURCE_PLLSAI1 */
+        {
+          if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_SAI1CLK) != RESET)
+          {
+            /* f(PLLSAI1CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1P */
+            plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N);
+#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
+            pllp = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1PDIV) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1PDIV);
+#endif             
+            if(pllp == 0U)
+            {
+              if(READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1P) != RESET)
+              {
+                pllp = 17U;
+              }
+              else
+              {
+                pllp = 7U;
+              }
+            }
+            frequency = (pllvco * plln) / pllp;
+          }
+        }
+#else
+        if(srcclk == RCC_SAI1CLKSOURCE_PLL)
+        {
+          if(__HAL_RCC_GET_PLLCLKOUT_CONFIG(RCC_PLL_SAI2CLK) != RESET)
+          {
+            /* f(PLLSAI2CLK) = f(VCO input) * PLLN / PLLP */
+            plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN);
+#if defined(RCC_PLLP_DIV_2_31_SUPPORT)
+            pllp = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPDIV) >> POSITION_VAL(RCC_PLLCFGR_PLLPDIV);
+#endif             
+            if(pllp == 0U)
+            {
+              if(READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLP) != RESET)
+              {
+                pllp = 17U;
+              }
+              else
+              {
+                pllp = 7U;
+              }
+            }
+        
+            frequency = (pllvco * plln) / pllp;
+          }
+          else if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
+          {
+            /* HSI automatically selected as clock source if PLLs not enabled */
+            frequency = HSI_VALUE;
+          }
+          else
+          {
+            /* No clock source */
+            frequency = 0U;
+          }          
+        }
+        else if(srcclk == RCC_SAI1CLKSOURCE_PLLSAI1)
+        {
+          if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_SAI1CLK) != RESET)
+          {
+            /* f(PLLSAI1CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1P */
+            plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N);
+#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
+            pllp = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1PDIV) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1PDIV);
+#endif             
+            if(pllp == 0U)
+            {
+              if(READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1P) != RESET)
+              {
+                pllp = 17U;
+              }
+              else
+              {
+                pllp = 7U;
+              }
+            }
+        
+           frequency = (pllvco * plln) / pllp;
+          }
+          else if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY))
+          {
+            /* HSI automatically selected as clock source if PLLs not enabled */
+            frequency = HSI_VALUE;
+          }
+          else
+          {
+            /* No clock source */
+            frequency = 0U;
+          }                     
+        }
+#endif /* SAI2 */
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+        else if((srcclk == RCC_SAI1CLKSOURCE_PLLSAI2) || (srcclk == RCC_SAI2CLKSOURCE_PLLSAI2))
+        {
+          if(__HAL_RCC_GET_PLLSAI2CLKOUT_CONFIG(RCC_PLLSAI2_SAI2CLK) != RESET)
+          {
+            /* f(PLLSAI2CLK) = f(VCOSAI2 input) * PLLSAI2N / PLLSAI2P */
+            plln = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2N);
+            if(pllp == 0U)
+            {
+              if(READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2P) != RESET)
+              {
+                pllp = 17U;
+              }
+              else
+              {
+                pllp = 7U;
+              }
+            }
+            frequency = (pllvco * plln) / pllp;
+          }
+        }
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+        else
+        {
+          /* No clock source */
+          frequency = 0U;
+        }
+      }
+      break;
+    
+#if defined(USB_OTG_FS) || defined(USB)
+    
+    case RCC_PERIPHCLK_USB:
+
+#endif /* USB_OTG_FS || USB */
+
+    case RCC_PERIPHCLK_RNG:
+
+#if defined(SDMMC1)
+
+    case RCC_PERIPHCLK_SDMMC1:
+
+#endif /* SDMMC1 */
+
+      srcclk = READ_BIT(RCC->CCIPR, RCC_CCIPR_CLK48SEL);
+      
+      if(srcclk == RCC_CCIPR_CLK48SEL)   /* MSI ? */
+      {
+        if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_MSIRDY))
+        {
+          frequency = (1U << ((__HAL_RCC_GET_MSI_RANGE() >> 4U) - 4U)) * 1000000U;
+        }
+        else
+        {
+          frequency = 0U;
+        }
+      }
+      else if(srcclk == RCC_CCIPR_CLK48SEL_1)  /* PLL ? */
+      {
+        if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY) && HAL_IS_BIT_SET(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN))
+        {
+          /* f(PLL48M1CLK) = f(VCO input) * PLLN / PLLQ */
+          plln = READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN);
+          frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)) + 1U) << 1U);
+        }
+        else
+        {
+          frequency = 0U;
+        }
+      }
+      else if(srcclk == RCC_CCIPR_CLK48SEL_0)  /* PLLSAI1 ? */
+      {
+        if(HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLSAI1RDY) && HAL_IS_BIT_SET(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1QEN))
+        {
+          /* f(PLL48M2CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1Q */
+          plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N);
+          frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1Q) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1Q)) + 1U) << 1U);
+        }
+        else
+        {
+          frequency = 0U;
+        }
+      }
+#if defined(RCC_HSI48_SUPPORT)
+      else if((srcclk == 0U) && (HAL_IS_BIT_SET(RCC->CRRCR, RCC_CRRCR_HSI48RDY))) /* HSI48 ? */
+      {
+        frequency = HSI48_VALUE;
+      }
+      else /* No clock source */
+      {
+        frequency = 0U;
+      }
+#else
+      else /* No clock source */
+      {
+        frequency = 0U;
+      }
+#endif /* RCC_HSI48_SUPPORT */
+      break;
+      
+    case RCC_PERIPHCLK_USART1:
+      /* Get the current USART1 source */
+      srcclk = __HAL_RCC_GET_USART1_SOURCE();
+      
+      if(srcclk == RCC_USART1CLKSOURCE_PCLK2)
+      {
+        frequency = HAL_RCC_GetPCLK2Freq();
+      }
+      else if(srcclk == RCC_USART1CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_USART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if((srcclk == RCC_USART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for USART1 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+    case RCC_PERIPHCLK_USART2:
+      /* Get the current USART2 source */
+      srcclk = __HAL_RCC_GET_USART2_SOURCE();
+      
+      if(srcclk == RCC_USART2CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_USART2CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_USART2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if((srcclk == RCC_USART2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for USART2 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#if defined(USART3)
+
+    case RCC_PERIPHCLK_USART3:
+      /* Get the current USART3 source */
+      srcclk = __HAL_RCC_GET_USART3_SOURCE();
+      
+      if(srcclk == RCC_USART3CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_USART3CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_USART3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if((srcclk == RCC_USART3CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for USART3 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#endif /* USART3 */
+
+#if defined(UART4)
+
+    case RCC_PERIPHCLK_UART4:
+      /* Get the current UART4 source */
+      srcclk = __HAL_RCC_GET_UART4_SOURCE();
+      
+      if(srcclk == RCC_UART4CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_UART4CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_UART4CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if((srcclk == RCC_UART4CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for UART4 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#endif /* UART4 */
+
+#if defined(UART5)
+
+    case RCC_PERIPHCLK_UART5:
+      /* Get the current UART5 source */
+      srcclk = __HAL_RCC_GET_UART5_SOURCE();
+      
+      if(srcclk == RCC_UART5CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_UART5CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_UART5CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if((srcclk == RCC_UART5CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for UART5 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#endif /* UART5 */
+      
+    case RCC_PERIPHCLK_LPUART1:
+      /* Get the current LPUART1 source */
+      srcclk = __HAL_RCC_GET_LPUART1_SOURCE();
+      
+      if(srcclk == RCC_LPUART1CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_LPUART1CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_LPUART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if((srcclk == RCC_LPUART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for LPUART1 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+    case RCC_PERIPHCLK_ADC:
+    
+      srcclk = __HAL_RCC_GET_ADC_SOURCE();
+      
+      if(srcclk == RCC_ADCCLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if(srcclk == RCC_ADCCLKSOURCE_PLLSAI1)
+      {
+        if(__HAL_RCC_GET_PLLSAI1CLKOUT_CONFIG(RCC_PLLSAI1_ADC1CLK) != RESET)
+        {
+          /* f(PLLADC1CLK) = f(VCOSAI1 input) * PLLSAI1N / PLLSAI1R */
+          plln = READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N);
+          frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1R) >> POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1R)) + 1U) << 1U);
+        }
+      }
+#if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx)
+      else if(srcclk == RCC_ADCCLKSOURCE_PLLSAI2)
+      {
+        if(__HAL_RCC_GET_PLLSAI2CLKOUT_CONFIG(RCC_PLLSAI2_ADC2CLK) != RESET)
+        {
+          /* f(PLLADC2CLK) = f(VCOSAI2 input) * PLLSAI2N / PLLSAI2R */
+          plln = READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N) >> POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2N);
+          frequency = (pllvco * plln) / (((READ_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2R) >> POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2R)) + 1U) << 1U);
+        }
+      }
+#endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx */
+      /* Clock not enabled for ADC */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#if defined(DFSDM1_Filter0)
+
+    case RCC_PERIPHCLK_DFSDM1:
+      /* Get the current DFSDM1 source */
+      srcclk = __HAL_RCC_GET_DFSDM1_SOURCE();
+      
+      if(srcclk == RCC_DFSDM1CLKSOURCE_PCLK)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      break;
+
+#endif /* DFSDM1_Filter0 */
+
+    case RCC_PERIPHCLK_I2C1:
+      /* Get the current I2C1 source */
+      srcclk = __HAL_RCC_GET_I2C1_SOURCE();
+      
+      if(srcclk == RCC_I2C1CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_I2C1CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_I2C1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      /* Clock not enabled for I2C1 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#if defined(I2C2)
+
+    case RCC_PERIPHCLK_I2C2:
+      /* Get the current I2C2 source */
+      srcclk = __HAL_RCC_GET_I2C2_SOURCE();
+      
+      if(srcclk == RCC_I2C2CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_I2C2CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_I2C2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      /* Clock not enabled for I2C2 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#endif /* I2C2 */
+
+    case RCC_PERIPHCLK_I2C3:
+      /* Get the current I2C3 source */
+      srcclk = __HAL_RCC_GET_I2C3_SOURCE();
+      
+      if(srcclk == RCC_I2C3CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_I2C3CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_I2C3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      /* Clock not enabled for I2C3 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#if defined(I2C4)
+
+    case RCC_PERIPHCLK_I2C4:
+      /* Get the current I2C4 source */
+      srcclk = __HAL_RCC_GET_I2C4_SOURCE();
+      
+      if(srcclk == RCC_I2C4CLKSOURCE_PCLK1)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if(srcclk == RCC_I2C4CLKSOURCE_SYSCLK)
+      {
+        frequency = HAL_RCC_GetSysClockFreq();
+      }
+      else if((srcclk == RCC_I2C4CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      /* Clock not enabled for I2C4 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#endif /* I2C4 */
+
+    case RCC_PERIPHCLK_LPTIM1:
+      /* Get the current LPTIM1 source */
+      srcclk = __HAL_RCC_GET_LPTIM1_SOURCE();
+      
+      if(srcclk == RCC_LPTIM1CLKSOURCE_PCLK)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if((srcclk == RCC_LPTIM1CLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
+      {
+        frequency = LSI_VALUE;
+      }
+      else if((srcclk == RCC_LPTIM1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if ((srcclk == RCC_LPTIM1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for LPTIM1 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+    case RCC_PERIPHCLK_LPTIM2:
+      /* Get the current LPTIM2 source */
+      srcclk = __HAL_RCC_GET_LPTIM2_SOURCE();
+      
+      if(srcclk == RCC_LPTIM2CLKSOURCE_PCLK)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if((srcclk == RCC_LPTIM2CLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
+      {
+        frequency = LSI_VALUE;
+      }
+      else if((srcclk == RCC_LPTIM2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      else if ((srcclk == RCC_LPTIM2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
+      {
+        frequency = LSE_VALUE;
+      }
+      /* Clock not enabled for LPTIM2 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#if defined(SWPMI1)
+
+    case RCC_PERIPHCLK_SWPMI1:
+      /* Get the current SWPMI1 source */
+      srcclk = __HAL_RCC_GET_SWPMI1_SOURCE();
+      
+      if(srcclk == RCC_SWPMI1CLKSOURCE_PCLK)
+      {
+        frequency = HAL_RCC_GetPCLK1Freq();
+      }
+      else if((srcclk == RCC_SWPMI1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
+      {
+        frequency = HSI_VALUE;
+      }
+      /* Clock not enabled for SWPMI1 */
+      else
+      {
+        frequency = 0U;
+      }
+      break;
+
+#endif /* SWPMI1 */
+
+    default:
+      break;
+    }
+  }
+
+  return(frequency);
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup RCCEx_Exported_Functions_Group2 Extended Clock management functions
+ *  @brief  Extended Clock management functions
+ *
+@verbatim   
+ ===============================================================================
+                ##### Extended clock management functions  #####
+ ===============================================================================
+    [..]
+    This subsection provides a set of functions allowing to control the 
+    activation or deactivation of MSI PLL-mode, PLLSAI1, PLLSAI2, LSE CSS,
+    Low speed clock output and clock after wake-up from STOP mode.
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Enable PLLSAI1.
+  * @param  PLLSAI1Init  pointer to an RCC_PLLSAI1InitTypeDef structure that
+  *         contains the configuration information for the PLLSAI1
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI1(RCC_PLLSAI1InitTypeDef  *PLLSAI1Init)
+{
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
+  assert_param(IS_RCC_PLLSAI1SOURCE(PLLSAI1Init->PLLSAI1Source));
+  assert_param(IS_RCC_PLLSAI1M_VALUE(PLLSAI1Init->PLLSAI1M));
+  assert_param(IS_RCC_PLLSAI1N_VALUE(PLLSAI1Init->PLLSAI1N));
+  assert_param(IS_RCC_PLLSAI1P_VALUE(PLLSAI1Init->PLLSAI1P));
+  assert_param(IS_RCC_PLLSAI1Q_VALUE(PLLSAI1Init->PLLSAI1Q));
+  assert_param(IS_RCC_PLLSAI1R_VALUE(PLLSAI1Init->PLLSAI1R));
+  assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PLLSAI1Init->PLLSAI1ClockOut));
+
+  /* Disable the PLLSAI1 */
+  __HAL_RCC_PLLSAI1_DISABLE();
+
+  /* Get Start Tick*/
+  tickstart = HAL_GetTick();
+
+  /* Wait till PLLSAI1 is ready to be updated */
+  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != RESET)
+  {
+    if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+    {
+      status = HAL_TIMEOUT;
+      break;
+    }
+  }
+
+  if(status == HAL_OK)    
+  {
+    /* Configure the PLLSAI1 Multiplication factor N */
+    /* Configure the PLLSAI1 Division factors P, Q and R */
+    __HAL_RCC_PLLSAI1_CONFIG(PLLSAI1Init->PLLSAI1N, PLLSAI1Init->PLLSAI1P, PLLSAI1Init->PLLSAI1Q, PLLSAI1Init->PLLSAI1R);
+    /* Configure the PLLSAI1 Clock output(s) */    
+    __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PLLSAI1Init->PLLSAI1ClockOut);
+
+    /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
+    __HAL_RCC_PLLSAI1_ENABLE();
+
+    /* Get Start Tick*/
+    tickstart = HAL_GetTick();
+
+    /* Wait till PLLSAI1 is ready */
+    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == RESET)
+    {
+      if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+      {
+        status = HAL_TIMEOUT;
+        break;
+      }
+    }
+  }
+  
+  return status;
+}
+
+/**
+  * @brief  Disable PLLSAI1.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI1(void)
+{
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* Disable the PLLSAI1 */
+  __HAL_RCC_PLLSAI1_DISABLE();
+
+  /* Get Start Tick*/
+  tickstart = HAL_GetTick();
+
+  /* Wait till PLLSAI1 is ready */
+  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != RESET)
+  {
+    if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+    {
+      status = HAL_TIMEOUT;
+      break;
+    }
+  }
+  
+  /* Disable the PLLSAI1 Clock outputs */    
+  __HAL_RCC_PLLSAI1CLKOUT_DISABLE(RCC_PLLSAI1CFGR_PLLSAI1PEN|RCC_PLLSAI1CFGR_PLLSAI1QEN|RCC_PLLSAI1CFGR_PLLSAI1REN);
+
+  /* Reset PLL source to save power if no PLLs on */
+  if((READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET)
+#if defined(RCC_PLLSAI2_SUPPORT)
+      && 
+     (READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == RESET)
+#endif /* RCC_PLLSAI2_SUPPORT */
+    )
+  {  
+    MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
+  }
+  
+  return status;
+}
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+/**
+  * @brief  Enable PLLSAI2.
+  * @param  PLLSAI2Init  pointer to an RCC_PLLSAI2InitTypeDef structure that
+  *         contains the configuration information for the PLLSAI2
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_RCCEx_EnablePLLSAI2(RCC_PLLSAI2InitTypeDef  *PLLSAI2Init)
+{
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* check for PLLSAI2 Parameters used to output PLLSAI2CLK */
+  assert_param(IS_RCC_PLLSAI2SOURCE(PLLSAI2Init->PLLSAI2Source));
+  assert_param(IS_RCC_PLLSAI2M_VALUE(PLLSAI2Init->PLLSAI2M));
+  assert_param(IS_RCC_PLLSAI2N_VALUE(PLLSAI2Init->PLLSAI2N));
+  assert_param(IS_RCC_PLLSAI2P_VALUE(PLLSAI2Init->PLLSAI2P));
+  assert_param(IS_RCC_PLLSAI2R_VALUE(PLLSAI2Init->PLLSAI2R));
+  assert_param(IS_RCC_PLLSAI2CLOCKOUT_VALUE(PLLSAI2Init->PLLSAI2ClockOut));
+
+  /* Disable the PLLSAI2 */
+  __HAL_RCC_PLLSAI2_DISABLE();
+
+  /* Get Start Tick*/
+  tickstart = HAL_GetTick();
+
+  /* Wait till PLLSAI2 is ready to be updated */
+  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != RESET)
+  {
+    if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
+    {
+      status = HAL_TIMEOUT;
+      break;
+    }
+  }
+
+  if(status == HAL_OK)    
+  {
+    /* Configure the PLLSAI2 Multiplication factor N */
+    /* Configure the PLLSAI2 Division factors P and R */
+    __HAL_RCC_PLLSAI2_CONFIG(PLLSAI2Init->PLLSAI2N, PLLSAI2Init->PLLSAI2P, PLLSAI2Init->PLLSAI2R);
+    /* Configure the PLLSAI2 Clock output(s) */    
+    __HAL_RCC_PLLSAI2CLKOUT_ENABLE(PLLSAI2Init->PLLSAI2ClockOut);
+
+    /* Enable the PLLSAI2 again by setting PLLSAI2ON to 1*/
+    __HAL_RCC_PLLSAI2_ENABLE();
+
+    /* Get Start Tick*/
+    tickstart = HAL_GetTick();
+
+    /* Wait till PLLSAI2 is ready */
+    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == RESET)
+    {
+      if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
+      {
+        status = HAL_TIMEOUT;
+        break;
+      }
+    }
+  }
+  
+  return status;
+}
+
+/**
+  * @brief  Disable PLLISAI2.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_RCCEx_DisablePLLSAI2(void)
+{
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* Disable the PLLSAI2 */
+  __HAL_RCC_PLLSAI2_DISABLE();
+
+  /* Get Start Tick*/
+  tickstart = HAL_GetTick();
+
+  /* Wait till PLLSAI2 is ready */
+  while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != RESET)
+  {
+    if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
+    {
+      status = HAL_TIMEOUT;
+      break;
+    }
+  }
+  
+  /* Disable the PLLSAI2 Clock outputs */    
+  __HAL_RCC_PLLSAI2CLKOUT_DISABLE(RCC_PLLSAI2CFGR_PLLSAI2PEN|RCC_PLLSAI2CFGR_PLLSAI2REN);
+
+  /* Reset PLL source to save power if no PLLs on */
+  if((READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET)
+      && 
+     (READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == RESET)
+    )
+  {  
+    MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
+  }
+  
+  return status;
+}
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+/**
+  * @brief  Configure the oscillator clock source for wakeup from Stop and CSS backup clock.
+  * @param  WakeUpClk  Wakeup clock 
+  *         This parameter can be one of the following values:
+  *            @arg @ref RCC_STOP_WAKEUPCLOCK_MSI  MSI oscillator selection
+  *            @arg @ref RCC_STOP_WAKEUPCLOCK_HSI  HSI oscillator selection
+  * @note   This function shall not be called after the Clock Security System on HSE has been
+  *         enabled.
+  * @retval None
+  */
+void HAL_RCCEx_WakeUpStopCLKConfig(uint32_t WakeUpClk)
+{
+  assert_param(IS_RCC_STOP_WAKEUPCLOCK(WakeUpClk));
+  
+  __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(WakeUpClk);
+}
+
+/**
+  * @brief  Configure the MSI range after standby mode.
+  * @note   After Standby its frequency can be selected between 4 possible values (1, 2, 4 or 8 MHz).
+  * @param  MSIRange  MSI range 
+  *         This parameter can be one of the following values:
+  *            @arg @ref RCC_MSIRANGE_4  Range 4 around 1 MHz
+  *            @arg @ref RCC_MSIRANGE_5  Range 5 around 2 MHz
+  *            @arg @ref RCC_MSIRANGE_6  Range 6 around 4 MHz (reset value)
+  *            @arg @ref RCC_MSIRANGE_7  Range 7 around 8 MHz
+  * @retval None
+  */
+void HAL_RCCEx_StandbyMSIRangeConfig(uint32_t MSIRange)
+{
+  assert_param(IS_RCC_MSI_STANDBY_CLOCK_RANGE(MSIRange));
+  
+  __HAL_RCC_MSI_STANDBY_RANGE_CONFIG(MSIRange);
+}
+
+/**
+  * @brief  Enable the LSE Clock Security System.
+  * @note   Prior to enable the LSE Clock Security System, LSE oscillator is to be enabled
+  *         with HAL_RCC_OscConfig() and the LSE oscillator clock is to be selected as RTC
+  *         clock with HAL_RCCEx_PeriphCLKConfig().
+  * @retval None
+  */
+void HAL_RCCEx_EnableLSECSS(void)
+{
+  SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
+}
+
+/**
+  * @brief  Disable the LSE Clock Security System.
+  * @note   LSE Clock Security System can only be disabled after a LSE failure detection.
+  * @retval None
+  */
+void HAL_RCCEx_DisableLSECSS(void)
+{
+  CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
+  
+  /* Disable LSE CSS IT if any */
+  __HAL_RCC_DISABLE_IT(RCC_IT_LSECSS);
+}
+
+/**
+  * @brief  Enable the LSE Clock Security System Interrupt & corresponding EXTI line.
+  * @note   LSE Clock Security System Interrupt is mapped on RTC EXTI line 19
+  * @retval None
+  */
+void HAL_RCCEx_EnableLSECSS_IT(void)
+{
+  /* Enable LSE CSS */
+  SET_BIT(RCC->BDCR, RCC_BDCR_LSECSSON) ;
+
+  /* Enable LSE CSS IT */
+  __HAL_RCC_ENABLE_IT(RCC_IT_LSECSS);
+  
+  /* Enable IT on EXTI Line 19 */
+  __HAL_RCC_LSECSS_EXTI_ENABLE_IT();
+  __HAL_RCC_LSECSS_EXTI_ENABLE_RISING_EDGE();
+}
+
+/**
+  * @brief Handle the RCC LSE Clock Security System interrupt request.
+  * @retval None
+  */
+void HAL_RCCEx_LSECSS_IRQHandler(void)
+{
+  /* Check RCC LSE CSSF flag  */
+  if(__HAL_RCC_GET_IT(RCC_IT_LSECSS))
+  {
+    /* RCC LSE Clock Security System interrupt user callback */
+    HAL_RCCEx_LSECSS_Callback();
+
+    /* Clear RCC LSE CSS pending bit */
+    __HAL_RCC_CLEAR_IT(RCC_IT_LSECSS);
+  }
+}                                                                            
+
+/**
+  * @brief  RCCEx LSE Clock Security System interrupt callback.
+  * @retval none
+  */
+__weak void HAL_RCCEx_LSECSS_Callback(void)
+{
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the @ref HAL_RCCEx_LSECSS_Callback should be implemented in the user file
+   */
+}
+
+/**
+  * @brief  Select the Low Speed clock source to output on LSCO pin (PA2).
+  * @param  LSCOSource  specifies the Low Speed clock source to output.
+  *          This parameter can be one of the following values:
+  *            @arg @ref RCC_LSCOSOURCE_LSI  LSI clock selected as LSCO source
+  *            @arg @ref RCC_LSCOSOURCE_LSE  LSE clock selected as LSCO source
+  * @retval None
+  */
+void HAL_RCCEx_EnableLSCO(uint32_t LSCOSource)
+{
+  GPIO_InitTypeDef GPIO_InitStruct;
+  FlagStatus       pwrclkchanged = RESET;
+  FlagStatus       backupchanged = RESET;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_LSCOSOURCE(LSCOSource));
+
+  /* LSCO Pin Clock Enable */
+  __LSCO_CLK_ENABLE();
+
+  /* Configue the LSCO pin in analog mode */
+  GPIO_InitStruct.Pin = LSCO_PIN;
+  GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
+  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
+  GPIO_InitStruct.Pull = GPIO_NOPULL;
+  HAL_GPIO_Init(LSCO_GPIO_PORT, &GPIO_InitStruct);
+
+  /* Update LSCOSEL clock source in Backup Domain control register */
+  if(__HAL_RCC_PWR_IS_CLK_DISABLED())
+  {
+    __HAL_RCC_PWR_CLK_ENABLE();
+    pwrclkchanged = SET;
+  }
+  if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
+  {
+    HAL_PWR_EnableBkUpAccess();
+    backupchanged = SET;
+  }
+  
+  MODIFY_REG(RCC->BDCR, RCC_BDCR_LSCOSEL | RCC_BDCR_LSCOEN, LSCOSource | RCC_BDCR_LSCOEN);
+  
+  if(backupchanged == SET)
+  {
+    HAL_PWR_DisableBkUpAccess();
+  }
+  if(pwrclkchanged == SET)
+  {
+    __HAL_RCC_PWR_CLK_DISABLE();
+  }
+}
+
+/**
+  * @brief  Disable the Low Speed clock output.
+  * @retval None
+  */
+void HAL_RCCEx_DisableLSCO(void)
+{
+  FlagStatus       pwrclkchanged = RESET;
+  FlagStatus       backupchanged = RESET;
+  
+  /* Update LSCOEN bit in Backup Domain control register */
+  if(__HAL_RCC_PWR_IS_CLK_DISABLED())
+  {
+    __HAL_RCC_PWR_CLK_ENABLE();
+    pwrclkchanged = SET;
+  }
+  if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
+  {
+    /* Enable access to the backup domain */
+    HAL_PWR_EnableBkUpAccess();
+    backupchanged = SET;
+  }
+  
+  CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSCOEN);
+  
+  /* Restore previous configuration */
+  if(backupchanged == SET)
+  {
+    /* Disable access to the backup domain */
+    HAL_PWR_DisableBkUpAccess();
+  }
+  if(pwrclkchanged == SET)
+  {
+    __HAL_RCC_PWR_CLK_DISABLE();
+  }
+}
+
+/**
+  * @brief  Enable the PLL-mode of the MSI.
+  * @note   Prior to enable the PLL-mode of the MSI for automatic hardware
+  *         calibration LSE oscillator is to be enabled with HAL_RCC_OscConfig().
+  * @retval None
+  */
+void HAL_RCCEx_EnableMSIPLLMode(void)
+{
+  SET_BIT(RCC->CR, RCC_CR_MSIPLLEN) ;
+}
+
+/**
+  * @brief  Disable the PLL-mode of the MSI.
+  * @note   PLL-mode of the MSI is automatically reset when LSE oscillator is disabled.
+  * @retval None
+  */
+void HAL_RCCEx_DisableMSIPLLMode(void)
+{
+  CLEAR_BIT(RCC->CR, RCC_CR_MSIPLLEN) ;
+}
+
+/**
+  * @}
+  */
+
+#if defined(CRS)
+
+/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions 
+ *  @brief  Extended Clock Recovery System Control functions
+ *
+@verbatim
+ ===============================================================================
+                ##### Extended Clock Recovery System Control functions  #####
+ ===============================================================================
+    [..]
+      For devices with Clock Recovery System feature (CRS), RCC Extention HAL driver can be used as follows:
+
+      (#) In System clock config, HSI48 needs to be enabled
+
+      (#) Enable CRS clock in IP MSP init which will use CRS functions
+
+      (#) Call CRS functions as follows:
+          (##) Prepare synchronization configuration necessary for HSI48 calibration
+              (+++) Default values can be set for frequency Error Measurement (reload and error limit)
+                        and also HSI48 oscillator smooth trimming.
+              (+++) Macro __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate 
+                        directly reload value with target and sychronization frequencies values
+          (##) Call function HAL_RCCEx_CRSConfig which
+              (+++) Resets CRS registers to their default values.
+              (+++) Configures CRS registers with synchronization configuration 
+              (+++) Enables automatic calibration and frequency error counter feature
+           Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
+           periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
+           provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
+           precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
+           should be used as SYNC signal.
+
+          (##) A polling function is provided to wait for complete synchronization
+              (+++) Call function HAL_RCCEx_CRSWaitSynchronization()
+              (+++) According to CRS status, user can decide to adjust again the calibration or continue
+                        application if synchronization is OK
+              
+      (#) User can retrieve information related to synchronization in calling function
+            HAL_RCCEx_CRSGetSynchronizationInfo()
+
+      (#) Regarding synchronization status and synchronization information, user can try a new calibration
+           in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
+           Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), 
+           it means that the actual frequency is lower than the target (and so, that the TRIM value should be 
+           incremented), while when it is detected during the upcounting phase it means that the actual frequency 
+           is higher (and that the TRIM value should be decremented).
+
+      (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go 
+          through CRS Handler (CRS_IRQn/CRS_IRQHandler)
+              (++) Call function HAL_RCCEx_CRSConfig()
+              (++) Enable CRS_IRQn (thanks to NVIC functions)
+              (++) Enable CRS interrupt (__HAL_RCC_CRS_ENABLE_IT)
+              (++) Implement CRS status management in the following user callbacks called from 
+                   HAL_RCCEx_CRS_IRQHandler():
+                   (+++) HAL_RCCEx_CRS_SyncOkCallback()
+                   (+++) HAL_RCCEx_CRS_SyncWarnCallback()
+                   (+++) HAL_RCCEx_CRS_ExpectedSyncCallback()
+                   (+++) HAL_RCCEx_CRS_ErrorCallback()
+
+      (#) To force a SYNC EVENT, user can use the function HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
+          This function can be called before calling HAL_RCCEx_CRSConfig (for instance in Systick handler)
+            
+@endverbatim
+ * @{
+ */
+
+/**
+  * @brief  Start automatic synchronization for polling mode
+  * @param  pInit Pointer on RCC_CRSInitTypeDef structure
+  * @retval None
+  */
+void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
+{
+  uint32_t value = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
+  assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
+  assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
+  assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
+  assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
+  assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
+
+  /* CONFIGURATION */
+
+  /* Before configuration, reset CRS registers to their default values*/
+  __HAL_RCC_CRS_FORCE_RESET();
+  __HAL_RCC_CRS_RELEASE_RESET();
+
+  /* Set the SYNCDIV[2:0] bits according to Prescaler value */
+  /* Set the SYNCSRC[1:0] bits according to Source value */
+  /* Set the SYNCSPOL bit according to Polarity value */
+  value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
+  /* Set the RELOAD[15:0] bits according to ReloadValue value */
+  value |= pInit->ReloadValue;
+  /* Set the FELIM[7:0] bits according to ErrorLimitValue value */
+  value |= (pInit->ErrorLimitValue << POSITION_VAL(CRS_CFGR_FELIM));
+  WRITE_REG(CRS->CFGR, value);
+
+  /* Adjust HSI48 oscillator smooth trimming */
+  /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
+  MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << POSITION_VAL(CRS_CR_TRIM)));
+  
+  /* START AUTOMATIC SYNCHRONIZATION*/
+  
+  /* Enable Automatic trimming & Frequency error counter */
+  SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
+}
+
+/**
+  * @brief  Generate the software synchronization event
+  * @retval None
+  */
+void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
+{
+  SET_BIT(CRS->CR, CRS_CR_SWSYNC);
+}
+
+/**
+  * @brief  Return synchronization info 
+  * @param  pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
+  * @retval None
+  */
+void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
+{
+  /* Check the parameter */
+  assert_param(pSynchroInfo != NULL);
+  
+  /* Get the reload value */
+  pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
+  
+  /* Get HSI48 oscillator smooth trimming */
+  pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> POSITION_VAL(CRS_CR_TRIM));
+
+  /* Get Frequency error capture */
+  pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> POSITION_VAL(CRS_ISR_FECAP));
+
+  /* Get Frequency error direction */
+  pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
+}
+
+/**
+* @brief Wait for CRS Synchronization status.
+* @param Timeout  Duration of the timeout
+* @note  Timeout is based on the maximum time to receive a SYNC event based on synchronization
+*        frequency.
+* @note    If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
+* @retval Combination of Synchronization status
+*          This parameter can be a combination of the following values:
+*            @arg @ref RCC_CRS_TIMEOUT
+*            @arg @ref RCC_CRS_SYNCOK
+*            @arg @ref RCC_CRS_SYNCWARN
+*            @arg @ref RCC_CRS_SYNCERR
+*            @arg @ref RCC_CRS_SYNCMISS
+*            @arg @ref RCC_CRS_TRIMOVF
+*/
+uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
+{
+  uint32_t crsstatus = RCC_CRS_NONE;
+  uint32_t tickstart = 0U;
+  
+  /* Get timeout */
+  tickstart = HAL_GetTick();
+  
+  /* Wait for CRS flag or timeout detection */
+  do
+  {
+    if(Timeout != HAL_MAX_DELAY)
+    {
+      if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
+      {
+        crsstatus = RCC_CRS_TIMEOUT;
+      }
+    }
+    /* Check CRS SYNCOK flag  */
+    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
+    {
+      /* CRS SYNC event OK */
+      crsstatus |= RCC_CRS_SYNCOK;
+    
+      /* Clear CRS SYNC event OK bit */
+      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
+    }
+    
+    /* Check CRS SYNCWARN flag  */
+    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
+    {
+      /* CRS SYNC warning */
+      crsstatus |= RCC_CRS_SYNCWARN;
+    
+      /* Clear CRS SYNCWARN bit */
+      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
+    }
+    
+    /* Check CRS TRIM overflow flag  */
+    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
+    {
+      /* CRS SYNC Error */
+      crsstatus |= RCC_CRS_TRIMOVF;
+    
+      /* Clear CRS Error bit */
+      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
+    }
+    
+    /* Check CRS Error flag  */
+    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
+    {
+      /* CRS SYNC Error */
+      crsstatus |= RCC_CRS_SYNCERR;
+    
+      /* Clear CRS Error bit */
+      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
+    }
+    
+    /* Check CRS SYNC Missed flag  */
+    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
+    {
+      /* CRS SYNC Missed */
+      crsstatus |= RCC_CRS_SYNCMISS;
+    
+      /* Clear CRS SYNC Missed bit */
+      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
+    }
+    
+    /* Check CRS Expected SYNC flag  */
+    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
+    {
+      /* frequency error counter reached a zero value */
+      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
+    }
+  } while(RCC_CRS_NONE == crsstatus);
+
+  return crsstatus;
+}
+
+/**
+  * @brief Handle the Clock Recovery System interrupt request.
+  * @retval None
+  */
+void HAL_RCCEx_CRS_IRQHandler(void)
+{
+  uint32_t crserror = RCC_CRS_NONE;
+  /* Get current IT flags and IT sources values */
+  uint32_t itflags = READ_REG(CRS->ISR);
+  uint32_t itsources = READ_REG(CRS->CR);
+
+  /* Check CRS SYNCOK flag  */
+  if(((itflags & RCC_CRS_FLAG_SYNCOK) != RESET) && ((itsources & RCC_CRS_IT_SYNCOK) != RESET))
+  {
+    /* Clear CRS SYNC event OK flag */
+    WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
+
+    /* user callback */
+    HAL_RCCEx_CRS_SyncOkCallback();
+  }
+  /* Check CRS SYNCWARN flag  */
+  else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != RESET) && ((itsources & RCC_CRS_IT_SYNCWARN) != RESET))
+  {
+    /* Clear CRS SYNCWARN flag */
+    WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
+
+    /* user callback */
+    HAL_RCCEx_CRS_SyncWarnCallback();
+  }
+  /* Check CRS Expected SYNC flag  */
+  else if(((itflags & RCC_CRS_FLAG_ESYNC) != RESET) && ((itsources & RCC_CRS_IT_ESYNC) != RESET))
+  {
+    /* frequency error counter reached a zero value */
+    WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
+
+    /* user callback */
+    HAL_RCCEx_CRS_ExpectedSyncCallback();
+  }
+  /* Check CRS Error flags  */
+  else
+  {
+    if(((itflags & RCC_CRS_FLAG_ERR) != RESET) && ((itsources & RCC_CRS_IT_ERR) != RESET))
+    {
+      if((itflags & RCC_CRS_FLAG_SYNCERR) != RESET)
+      {
+        crserror |= RCC_CRS_SYNCERR;
+      }
+      if((itflags & RCC_CRS_FLAG_SYNCMISS) != RESET)
+      {
+        crserror |= RCC_CRS_SYNCMISS;
+      }
+      if((itflags & RCC_CRS_FLAG_TRIMOVF) != RESET)
+      {
+        crserror |= RCC_CRS_TRIMOVF;
+      }
+
+      /* Clear CRS Error flags */
+      WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
+    
+      /* user error callback */
+      HAL_RCCEx_CRS_ErrorCallback(crserror);
+    }
+  }
+}
+
+/**
+  * @brief  RCCEx Clock Recovery System SYNCOK interrupt callback.
+  * @retval none
+  */
+__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
+{
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
+   */
+}
+
+/**
+  * @brief  RCCEx Clock Recovery System SYNCWARN interrupt callback.
+  * @retval none
+  */
+__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
+{
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
+   */
+}
+
+/**
+  * @brief  RCCEx Clock Recovery System Expected SYNC interrupt callback.
+  * @retval none
+  */
+__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
+{
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
+   */
+}
+
+/**
+  * @brief  RCCEx Clock Recovery System Error interrupt callback.
+  * @param  Error Combination of Error status. 
+  *         This parameter can be a combination of the following values:
+  *           @arg @ref RCC_CRS_SYNCERR
+  *           @arg @ref RCC_CRS_SYNCMISS
+  *           @arg @ref RCC_CRS_TRIMOVF
+  * @retval none
+  */
+__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(Error);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
+   */
+}
+
+/**
+  * @}
+  */
+  
+#endif /* CRS */
+
+/**
+  * @}
+  */
+
+/** @addtogroup RCCEx_Private_Functions
+ * @{
+ */
+
+/**
+  * @brief  Configure the parameters N & P & optionally M of PLLSAI1 and enable PLLSAI1 output clock(s).
+  * @param  PllSai1  pointer to an RCC_PLLSAI1InitTypeDef structure that
+  *         contains the configuration parameters N & P & optionally M as well as PLLSAI1 output clock(s)
+  * @param  Divider  divider parameter to be updated
+  *
+  * @note   PLLSAI1 is temporary disable to apply new parameters
+  *
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef RCCEx_PLLSAI1_Config(RCC_PLLSAI1InitTypeDef *PllSai1, uint32_t Divider)
+{
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* check for PLLSAI1 Parameters used to output PLLSAI1CLK */
+  /* P, Q and R dividers are verified in each specific divider case below */
+  assert_param(IS_RCC_PLLSAI1SOURCE(PllSai1->PLLSAI1Source));
+  assert_param(IS_RCC_PLLSAI1M_VALUE(PllSai1->PLLSAI1M));
+  assert_param(IS_RCC_PLLSAI1N_VALUE(PllSai1->PLLSAI1N));
+  assert_param(IS_RCC_PLLSAI1CLOCKOUT_VALUE(PllSai1->PLLSAI1ClockOut));
+  
+  /* Check that PLLSAI1 clock source and divider M can be applied */
+  if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_NONE)
+  {
+    /* PLL clock source and divider M already set, check that no request for change  */ 
+    if((__HAL_RCC_GET_PLL_OSCSOURCE() != PllSai1->PLLSAI1Source)
+       || 
+       (PllSai1->PLLSAI1Source == RCC_PLLSOURCE_NONE)
+       || 
+       (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U) != PllSai1->PLLSAI1M)
+      )
+    {
+      status = HAL_ERROR;
+    }
+  }
+  else
+  {
+    /* Check PLLSAI1 clock source availability */
+    switch(PllSai1->PLLSAI1Source)
+    {
+    case RCC_PLLSOURCE_MSI:
+      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_MSIRDY))
+      {
+        status = HAL_ERROR;
+      }
+      break;
+    case RCC_PLLSOURCE_HSI:
+      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSIRDY))
+      {
+        status = HAL_ERROR;
+      }
+      break;
+    case RCC_PLLSOURCE_HSE:
+      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSERDY) && HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSEBYP))
+      {
+        status = HAL_ERROR;
+      }
+      break;
+    default:
+      status = HAL_ERROR;
+      break;
+    }
+    
+    if(status == HAL_OK)
+    {
+      /* Set PLLSAI1 clock source and divider M */
+      MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM, PllSai1->PLLSAI1Source | (PllSai1->PLLSAI1M - 1U) << POSITION_VAL(RCC_PLLCFGR_PLLM));
+    }
+  }
+  
+  if(status == HAL_OK)
+  {
+    /* Disable the PLLSAI1 */
+    __HAL_RCC_PLLSAI1_DISABLE();
+
+    /* Get Start Tick*/
+    tickstart = HAL_GetTick();
+
+    /* Wait till PLLSAI1 is ready to be updated */
+    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) != RESET)
+    {
+      if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+      {
+        status = HAL_TIMEOUT;
+        break;
+      }
+    }
+
+    if(status == HAL_OK)    
+    {
+      if(Divider == DIVIDER_P_UPDATE)
+      {
+        assert_param(IS_RCC_PLLSAI1P_VALUE(PllSai1->PLLSAI1P));
+        /* Configure the PLLSAI1 Division factor P and Multiplication factor N*/
+#if defined(RCC_PLLSAI1P_DIV_2_31_SUPPORT)
+        MODIFY_REG(RCC->PLLSAI1CFGR, 
+                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1PDIV, 
+                   (PllSai1->PLLSAI1N << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N)) | 
+                   (PllSai1->PLLSAI1P << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1PDIV)));
+#else
+        MODIFY_REG(RCC->PLLSAI1CFGR, 
+                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1P, 
+                   (PllSai1->PLLSAI1N << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N)) | 
+                   ((PllSai1->PLLSAI1P >> 4U) << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1P)));
+#endif /* RCC_PLLSAI1P_DIV_2_31_SUPPORT */
+      }
+      else if(Divider == DIVIDER_Q_UPDATE)
+      {
+        assert_param(IS_RCC_PLLSAI1Q_VALUE(PllSai1->PLLSAI1Q));
+        /* Configure the PLLSAI1 Division factor Q and Multiplication factor N*/
+        MODIFY_REG(RCC->PLLSAI1CFGR, 
+                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1Q, 
+                   (PllSai1->PLLSAI1N << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N)) | 
+                   (((PllSai1->PLLSAI1Q >> 1U) - 1U) << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1Q)));
+      }
+      else
+      {
+        assert_param(IS_RCC_PLLSAI1R_VALUE(PllSai1->PLLSAI1R));
+        /* Configure the PLLSAI1 Division factor R and Multiplication factor N*/
+        MODIFY_REG(RCC->PLLSAI1CFGR, 
+                   RCC_PLLSAI1CFGR_PLLSAI1N | RCC_PLLSAI1CFGR_PLLSAI1R, 
+                   (PllSai1->PLLSAI1N << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1N)) | 
+                   (((PllSai1->PLLSAI1R >> 1U) - 1U) << POSITION_VAL(RCC_PLLSAI1CFGR_PLLSAI1R)));
+      }
+
+      /* Enable the PLLSAI1 again by setting PLLSAI1ON to 1*/
+      __HAL_RCC_PLLSAI1_ENABLE();
+
+      /* Get Start Tick*/
+      tickstart = HAL_GetTick();
+
+      /* Wait till PLLSAI1 is ready */
+      while(READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == RESET)
+      {
+        if((HAL_GetTick() - tickstart) > PLLSAI1_TIMEOUT_VALUE)
+        {
+          status = HAL_TIMEOUT;
+          break;
+        }
+      }
+
+      if(status == HAL_OK)    
+      {
+        /* Configure the PLLSAI1 Clock output(s) */
+        __HAL_RCC_PLLSAI1CLKOUT_ENABLE(PllSai1->PLLSAI1ClockOut);
+      }
+    }
+  }
+  
+  return status;
+}
+
+#if defined(RCC_PLLSAI2_SUPPORT)
+
+/**
+  * @brief  Configure the parameters N & P & optionally M of PLLSAI2 and enable PLLSAI2 output clock(s).
+  * @param  PllSai2  pointer to an RCC_PLLSAI2InitTypeDef structure that
+  *         contains the configuration parameters N & P & optionally M as well as PLLSAI2 output clock(s)
+  * @param  Divider  divider parameter to be updated
+  *
+  * @note   PLLSAI2 is temporary disable to apply new parameters
+  *
+  * @retval HAL status
+  */
+static HAL_StatusTypeDef RCCEx_PLLSAI2_Config(RCC_PLLSAI2InitTypeDef *PllSai2, uint32_t Divider)
+{
+  uint32_t tickstart = 0U;
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* check for PLLSAI2 Parameters used to output PLLSAI2CLK */
+  /* P, Q and R dividers are verified in each specific divider case below */
+  assert_param(IS_RCC_PLLSAI2SOURCE(PllSai2->PLLSAI2Source));
+  assert_param(IS_RCC_PLLSAI2M_VALUE(PllSai2->PLLSAI2M));
+  assert_param(IS_RCC_PLLSAI2N_VALUE(PllSai2->PLLSAI2N));
+  assert_param(IS_RCC_PLLSAI2CLOCKOUT_VALUE(PllSai2->PLLSAI2ClockOut));
+  
+  /* Check that PLLSAI2 clock source and divider M can be applied */
+  if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_NONE)
+  {
+    /* PLL clock source and divider M already set, check that no request for change  */ 
+    if((__HAL_RCC_GET_PLL_OSCSOURCE() != PllSai2->PLLSAI2Source)
+       || 
+       (PllSai2->PLLSAI2Source == RCC_PLLSOURCE_NONE)
+       || 
+       (((READ_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U) != PllSai2->PLLSAI2M)
+      )
+    {
+      status = HAL_ERROR;
+    }
+  }
+  else
+  {
+    /* Check PLLSAI2 clock source availability */
+    switch(PllSai2->PLLSAI2Source)
+    {
+    case RCC_PLLSOURCE_MSI:
+      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_MSIRDY))
+      {
+        status = HAL_ERROR;
+      }
+      break;
+    case RCC_PLLSOURCE_HSI:
+      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSIRDY))
+      {
+        status = HAL_ERROR;
+      }
+      break;
+    case RCC_PLLSOURCE_HSE:
+      if(HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSERDY) && HAL_IS_BIT_CLR(RCC->CR, RCC_CR_HSEBYP))
+      {
+        status = HAL_ERROR;
+      }
+      break;
+    default:
+      status = HAL_ERROR;
+      break;
+    }
+    
+    if(status == HAL_OK)
+    {
+      /* Set PLLSAI2 clock source and divider M */
+      MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC | RCC_PLLCFGR_PLLM, PllSai2->PLLSAI2Source | (PllSai2->PLLSAI2M - 1U) << POSITION_VAL(RCC_PLLCFGR_PLLM));
+    }
+  }
+  
+  if(status == HAL_OK)
+  {
+    /* Disable the PLLSAI2 */
+    __HAL_RCC_PLLSAI2_DISABLE();
+
+    /* Get Start Tick*/
+    tickstart = HAL_GetTick();
+
+    /* Wait till PLLSAI2 is ready to be updated */
+    while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) != RESET)
+    {
+      if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
+      {
+        status = HAL_TIMEOUT;
+        break;
+      }
+    }
+
+    if(status == HAL_OK)    
+    {
+      if(Divider == DIVIDER_P_UPDATE)
+      {
+        assert_param(IS_RCC_PLLSAI2P_VALUE(PllSai2->PLLSAI2P));
+        /* Configure the PLLSAI2 Division factor P and Multiplication factor N*/
+        MODIFY_REG(RCC->PLLSAI2CFGR, 
+                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2P, 
+                   (PllSai2->PLLSAI2N << POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2N)) | 
+                   ((PllSai2->PLLSAI2P >> 4U) << POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2P)));
+      }
+      else
+      {
+        assert_param(IS_RCC_PLLSAI2R_VALUE(PllSai2->PLLSAI2R));
+        /* Configure the PLLSAI2 Division factor R and Multiplication factor N*/
+        MODIFY_REG(RCC->PLLSAI2CFGR, 
+                   RCC_PLLSAI2CFGR_PLLSAI2N | RCC_PLLSAI2CFGR_PLLSAI2R, 
+                   (PllSai2->PLLSAI2N << POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2N)) | 
+                   (((PllSai2->PLLSAI2R >> 1U) - 1U) << POSITION_VAL(RCC_PLLSAI2CFGR_PLLSAI2R)));
+      }
+
+      /* Enable the PLLSAI2 again by setting PLLSAI2ON to 1*/
+      __HAL_RCC_PLLSAI2_ENABLE();
+
+      /* Get Start Tick*/
+      tickstart = HAL_GetTick();
+
+      /* Wait till PLLSAI2 is ready */
+      while(READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == RESET)
+      {
+        if((HAL_GetTick() - tickstart) > PLLSAI2_TIMEOUT_VALUE)
+        {
+          status = HAL_TIMEOUT;
+          break;
+        }
+      }
+
+      if(status == HAL_OK)    
+      {
+        /* Configure the PLLSAI2 Clock output(s) */
+        __HAL_RCC_PLLSAI2CLKOUT_ENABLE(PllSai2->PLLSAI2ClockOut);
+      }
+    }
+  }
+  
+  return status;
+}
+
+#endif /* RCC_PLLSAI2_SUPPORT */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+#endif /* HAL_RCC_MODULE_ENABLED */
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
+