2
|
1 /**************************************************************************//**
|
|
2 * @file cmsis_gcc.h
|
|
3 * @brief CMSIS Cortex-M Core Function/Instruction Header File
|
|
4 * @version V4.30
|
|
5 * @date 20. October 2015
|
|
6 ******************************************************************************/
|
|
7 /* Copyright (c) 2009 - 2015 ARM LIMITED
|
|
8
|
|
9 All rights reserved.
|
|
10 Redistribution and use in source and binary forms, with or without
|
|
11 modification, are permitted provided that the following conditions are met:
|
|
12 - Redistributions of source code must retain the above copyright
|
|
13 notice, this list of conditions and the following disclaimer.
|
|
14 - Redistributions in binary form must reproduce the above copyright
|
|
15 notice, this list of conditions and the following disclaimer in the
|
|
16 documentation and/or other materials provided with the distribution.
|
|
17 - Neither the name of ARM nor the names of its contributors may be used
|
|
18 to endorse or promote products derived from this software without
|
|
19 specific prior written permission.
|
|
20 *
|
|
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
24 ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
|
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
31 POSSIBILITY OF SUCH DAMAGE.
|
|
32 ---------------------------------------------------------------------------*/
|
|
33
|
|
34
|
|
35 #ifndef __CMSIS_GCC_H
|
|
36 #define __CMSIS_GCC_H
|
|
37
|
|
38 /* ignore some GCC warnings */
|
|
39 #if defined ( __GNUC__ )
|
|
40 #pragma GCC diagnostic push
|
|
41 #pragma GCC diagnostic ignored "-Wsign-conversion"
|
|
42 #pragma GCC diagnostic ignored "-Wconversion"
|
|
43 #pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
44 #endif
|
|
45
|
|
46
|
|
47 /* ########################### Core Function Access ########################### */
|
|
48 /** \ingroup CMSIS_Core_FunctionInterface
|
|
49 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
|
|
50 @{
|
|
51 */
|
|
52
|
|
53 /**
|
|
54 \brief Enable IRQ Interrupts
|
|
55 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
|
|
56 Can only be executed in Privileged modes.
|
|
57 */
|
|
58 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
|
|
59 {
|
|
60 __ASM volatile ("cpsie i" : : : "memory");
|
|
61 }
|
|
62
|
|
63
|
|
64 /**
|
|
65 \brief Disable IRQ Interrupts
|
|
66 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
|
|
67 Can only be executed in Privileged modes.
|
|
68 */
|
|
69 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
|
|
70 {
|
|
71 __ASM volatile ("cpsid i" : : : "memory");
|
|
72 }
|
|
73
|
|
74
|
|
75 /**
|
|
76 \brief Get Control Register
|
|
77 \details Returns the content of the Control Register.
|
|
78 \return Control Register value
|
|
79 */
|
|
80 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
|
|
81 {
|
|
82 uint32_t result;
|
|
83
|
|
84 __ASM volatile ("MRS %0, control" : "=r" (result) );
|
|
85 return(result);
|
|
86 }
|
|
87
|
|
88
|
|
89 /**
|
|
90 \brief Set Control Register
|
|
91 \details Writes the given value to the Control Register.
|
|
92 \param [in] control Control Register value to set
|
|
93 */
|
|
94 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
|
|
95 {
|
|
96 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
|
|
97 }
|
|
98
|
|
99
|
|
100 /**
|
|
101 \brief Get IPSR Register
|
|
102 \details Returns the content of the IPSR Register.
|
|
103 \return IPSR Register value
|
|
104 */
|
|
105 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
|
|
106 {
|
|
107 uint32_t result;
|
|
108
|
|
109 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
|
|
110 return(result);
|
|
111 }
|
|
112
|
|
113
|
|
114 /**
|
|
115 \brief Get APSR Register
|
|
116 \details Returns the content of the APSR Register.
|
|
117 \return APSR Register value
|
|
118 */
|
|
119 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
|
|
120 {
|
|
121 uint32_t result;
|
|
122
|
|
123 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
|
|
124 return(result);
|
|
125 }
|
|
126
|
|
127
|
|
128 /**
|
|
129 \brief Get xPSR Register
|
|
130 \details Returns the content of the xPSR Register.
|
|
131
|
|
132 \return xPSR Register value
|
|
133 */
|
|
134 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
|
|
135 {
|
|
136 uint32_t result;
|
|
137
|
|
138 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
|
|
139 return(result);
|
|
140 }
|
|
141
|
|
142
|
|
143 /**
|
|
144 \brief Get Process Stack Pointer
|
|
145 \details Returns the current value of the Process Stack Pointer (PSP).
|
|
146 \return PSP Register value
|
|
147 */
|
|
148 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
|
|
149 {
|
|
150 register uint32_t result;
|
|
151
|
|
152 __ASM volatile ("MRS %0, psp\n" : "=r" (result) );
|
|
153 return(result);
|
|
154 }
|
|
155
|
|
156
|
|
157 /**
|
|
158 \brief Set Process Stack Pointer
|
|
159 \details Assigns the given value to the Process Stack Pointer (PSP).
|
|
160 \param [in] topOfProcStack Process Stack Pointer value to set
|
|
161 */
|
|
162 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
|
|
163 {
|
|
164 __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");
|
|
165 }
|
|
166
|
|
167
|
|
168 /**
|
|
169 \brief Get Main Stack Pointer
|
|
170 \details Returns the current value of the Main Stack Pointer (MSP).
|
|
171 \return MSP Register value
|
|
172 */
|
|
173 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
|
|
174 {
|
|
175 register uint32_t result;
|
|
176
|
|
177 __ASM volatile ("MRS %0, msp\n" : "=r" (result) );
|
|
178 return(result);
|
|
179 }
|
|
180
|
|
181
|
|
182 /**
|
|
183 \brief Set Main Stack Pointer
|
|
184 \details Assigns the given value to the Main Stack Pointer (MSP).
|
|
185
|
|
186 \param [in] topOfMainStack Main Stack Pointer value to set
|
|
187 */
|
|
188 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
|
|
189 {
|
|
190 __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");
|
|
191 }
|
|
192
|
|
193
|
|
194 /**
|
|
195 \brief Get Priority Mask
|
|
196 \details Returns the current state of the priority mask bit from the Priority Mask Register.
|
|
197 \return Priority Mask value
|
|
198 */
|
|
199 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
|
|
200 {
|
|
201 uint32_t result;
|
|
202
|
|
203 __ASM volatile ("MRS %0, primask" : "=r" (result) );
|
|
204 return(result);
|
|
205 }
|
|
206
|
|
207
|
|
208 /**
|
|
209 \brief Set Priority Mask
|
|
210 \details Assigns the given value to the Priority Mask Register.
|
|
211 \param [in] priMask Priority Mask
|
|
212 */
|
|
213 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
|
|
214 {
|
|
215 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
|
|
216 }
|
|
217
|
|
218
|
|
219 #if (__CORTEX_M >= 0x03U)
|
|
220
|
|
221 /**
|
|
222 \brief Enable FIQ
|
|
223 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
|
|
224 Can only be executed in Privileged modes.
|
|
225 */
|
|
226 __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
|
|
227 {
|
|
228 __ASM volatile ("cpsie f" : : : "memory");
|
|
229 }
|
|
230
|
|
231
|
|
232 /**
|
|
233 \brief Disable FIQ
|
|
234 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
|
|
235 Can only be executed in Privileged modes.
|
|
236 */
|
|
237 __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
|
|
238 {
|
|
239 __ASM volatile ("cpsid f" : : : "memory");
|
|
240 }
|
|
241
|
|
242
|
|
243 /**
|
|
244 \brief Get Base Priority
|
|
245 \details Returns the current value of the Base Priority register.
|
|
246 \return Base Priority register value
|
|
247 */
|
|
248 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
|
|
249 {
|
|
250 uint32_t result;
|
|
251
|
|
252 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
|
|
253 return(result);
|
|
254 }
|
|
255
|
|
256
|
|
257 /**
|
|
258 \brief Set Base Priority
|
|
259 \details Assigns the given value to the Base Priority register.
|
|
260 \param [in] basePri Base Priority value to set
|
|
261 */
|
|
262 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
|
|
263 {
|
|
264 __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
|
|
265 }
|
|
266
|
|
267
|
|
268 /**
|
|
269 \brief Set Base Priority with condition
|
|
270 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
|
|
271 or the new value increases the BASEPRI priority level.
|
|
272 \param [in] basePri Base Priority value to set
|
|
273 */
|
|
274 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
|
|
275 {
|
|
276 __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
|
|
277 }
|
|
278
|
|
279
|
|
280 /**
|
|
281 \brief Get Fault Mask
|
|
282 \details Returns the current value of the Fault Mask register.
|
|
283 \return Fault Mask register value
|
|
284 */
|
|
285 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
|
|
286 {
|
|
287 uint32_t result;
|
|
288
|
|
289 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
|
|
290 return(result);
|
|
291 }
|
|
292
|
|
293
|
|
294 /**
|
|
295 \brief Set Fault Mask
|
|
296 \details Assigns the given value to the Fault Mask register.
|
|
297 \param [in] faultMask Fault Mask value to set
|
|
298 */
|
|
299 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
|
|
300 {
|
|
301 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
|
|
302 }
|
|
303
|
|
304 #endif /* (__CORTEX_M >= 0x03U) */
|
|
305
|
|
306
|
|
307 #if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U)
|
|
308
|
|
309 /**
|
|
310 \brief Get FPSCR
|
|
311 \details Returns the current value of the Floating Point Status/Control register.
|
|
312 \return Floating Point Status/Control register value
|
|
313 */
|
|
314 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
|
|
315 {
|
|
316 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
|
|
317 uint32_t result;
|
|
318
|
|
319 /* Empty asm statement works as a scheduling barrier */
|
|
320 __ASM volatile ("");
|
|
321 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
|
|
322 __ASM volatile ("");
|
|
323 return(result);
|
|
324 #else
|
|
325 return(0);
|
|
326 #endif
|
|
327 }
|
|
328
|
|
329
|
|
330 /**
|
|
331 \brief Set FPSCR
|
|
332 \details Assigns the given value to the Floating Point Status/Control register.
|
|
333 \param [in] fpscr Floating Point Status/Control value to set
|
|
334 */
|
|
335 __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
|
|
336 {
|
|
337 #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
|
|
338 /* Empty asm statement works as a scheduling barrier */
|
|
339 __ASM volatile ("");
|
|
340 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
|
|
341 __ASM volatile ("");
|
|
342 #endif
|
|
343 }
|
|
344
|
|
345 #endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */
|
|
346
|
|
347
|
|
348
|
|
349 /*@} end of CMSIS_Core_RegAccFunctions */
|
|
350
|
|
351
|
|
352 /* ########################## Core Instruction Access ######################### */
|
|
353 /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
|
|
354 Access to dedicated instructions
|
|
355 @{
|
|
356 */
|
|
357
|
|
358 /* Define macros for porting to both thumb1 and thumb2.
|
|
359 * For thumb1, use low register (r0-r7), specified by constraint "l"
|
|
360 * Otherwise, use general registers, specified by constraint "r" */
|
|
361 #if defined (__thumb__) && !defined (__thumb2__)
|
|
362 #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
|
|
363 #define __CMSIS_GCC_USE_REG(r) "l" (r)
|
|
364 #else
|
|
365 #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
|
|
366 #define __CMSIS_GCC_USE_REG(r) "r" (r)
|
|
367 #endif
|
|
368
|
|
369 /**
|
|
370 \brief No Operation
|
|
371 \details No Operation does nothing. This instruction can be used for code alignment purposes.
|
|
372 */
|
|
373 __attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
|
|
374 {
|
|
375 __ASM volatile ("nop");
|
|
376 }
|
|
377
|
|
378
|
|
379 /**
|
|
380 \brief Wait For Interrupt
|
|
381 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
|
|
382 */
|
|
383 __attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
|
|
384 {
|
|
385 __ASM volatile ("wfi");
|
|
386 }
|
|
387
|
|
388
|
|
389 /**
|
|
390 \brief Wait For Event
|
|
391 \details Wait For Event is a hint instruction that permits the processor to enter
|
|
392 a low-power state until one of a number of events occurs.
|
|
393 */
|
|
394 __attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
|
|
395 {
|
|
396 __ASM volatile ("wfe");
|
|
397 }
|
|
398
|
|
399
|
|
400 /**
|
|
401 \brief Send Event
|
|
402 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
|
403 */
|
|
404 __attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
|
|
405 {
|
|
406 __ASM volatile ("sev");
|
|
407 }
|
|
408
|
|
409
|
|
410 /**
|
|
411 \brief Instruction Synchronization Barrier
|
|
412 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
|
|
413 so that all instructions following the ISB are fetched from cache or memory,
|
|
414 after the instruction has been completed.
|
|
415 */
|
|
416 __attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
|
|
417 {
|
|
418 __ASM volatile ("isb 0xF":::"memory");
|
|
419 }
|
|
420
|
|
421
|
|
422 /**
|
|
423 \brief Data Synchronization Barrier
|
|
424 \details Acts as a special kind of Data Memory Barrier.
|
|
425 It completes when all explicit memory accesses before this instruction complete.
|
|
426 */
|
|
427 __attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
|
|
428 {
|
|
429 __ASM volatile ("dsb 0xF":::"memory");
|
|
430 }
|
|
431
|
|
432
|
|
433 /**
|
|
434 \brief Data Memory Barrier
|
|
435 \details Ensures the apparent order of the explicit memory operations before
|
|
436 and after the instruction, without ensuring their completion.
|
|
437 */
|
|
438 __attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
|
|
439 {
|
|
440 __ASM volatile ("dmb 0xF":::"memory");
|
|
441 }
|
|
442
|
|
443
|
|
444 /**
|
|
445 \brief Reverse byte order (32 bit)
|
|
446 \details Reverses the byte order in integer value.
|
|
447 \param [in] value Value to reverse
|
|
448 \return Reversed value
|
|
449 */
|
|
450 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
|
|
451 {
|
|
452 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
|
|
453 return __builtin_bswap32(value);
|
|
454 #else
|
|
455 uint32_t result;
|
|
456
|
|
457 __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
458 return(result);
|
|
459 #endif
|
|
460 }
|
|
461
|
|
462
|
|
463 /**
|
|
464 \brief Reverse byte order (16 bit)
|
|
465 \details Reverses the byte order in two unsigned short values.
|
|
466 \param [in] value Value to reverse
|
|
467 \return Reversed value
|
|
468 */
|
|
469 __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
|
|
470 {
|
|
471 uint32_t result;
|
|
472
|
|
473 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
474 return(result);
|
|
475 }
|
|
476
|
|
477
|
|
478 /**
|
|
479 \brief Reverse byte order in signed short value
|
|
480 \details Reverses the byte order in a signed short value with sign extension to integer.
|
|
481 \param [in] value Value to reverse
|
|
482 \return Reversed value
|
|
483 */
|
|
484 __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
|
|
485 {
|
|
486 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
487 return (short)__builtin_bswap16(value);
|
|
488 #else
|
|
489 int32_t result;
|
|
490
|
|
491 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
492 return(result);
|
|
493 #endif
|
|
494 }
|
|
495
|
|
496
|
|
497 /**
|
|
498 \brief Rotate Right in unsigned value (32 bit)
|
|
499 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
|
500 \param [in] value Value to rotate
|
|
501 \param [in] value Number of Bits to rotate
|
|
502 \return Rotated value
|
|
503 */
|
|
504 __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
|
|
505 {
|
|
506 return (op1 >> op2) | (op1 << (32U - op2));
|
|
507 }
|
|
508
|
|
509
|
|
510 /**
|
|
511 \brief Breakpoint
|
|
512 \details Causes the processor to enter Debug state.
|
|
513 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
|
|
514 \param [in] value is ignored by the processor.
|
|
515 If required, a debugger can use it to store additional information about the breakpoint.
|
|
516 */
|
|
517 #define __BKPT(value) __ASM volatile ("bkpt "#value)
|
|
518
|
|
519
|
|
520 /**
|
|
521 \brief Reverse bit order of value
|
|
522 \details Reverses the bit order of the given value.
|
|
523 \param [in] value Value to reverse
|
|
524 \return Reversed value
|
|
525 */
|
|
526 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
|
|
527 {
|
|
528 uint32_t result;
|
|
529
|
|
530 #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
|
|
531 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
|
|
532 #else
|
|
533 int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
|
|
534
|
|
535 result = value; /* r will be reversed bits of v; first get LSB of v */
|
|
536 for (value >>= 1U; value; value >>= 1U)
|
|
537 {
|
|
538 result <<= 1U;
|
|
539 result |= value & 1U;
|
|
540 s--;
|
|
541 }
|
|
542 result <<= s; /* shift when v's highest bits are zero */
|
|
543 #endif
|
|
544 return(result);
|
|
545 }
|
|
546
|
|
547
|
|
548 /**
|
|
549 \brief Count leading zeros
|
|
550 \details Counts the number of leading zeros of a data value.
|
|
551 \param [in] value Value to count the leading zeros
|
|
552 \return number of leading zeros in value
|
|
553 */
|
|
554 #define __CLZ __builtin_clz
|
|
555
|
|
556
|
|
557 #if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
|
|
558
|
|
559 /**
|
|
560 \brief LDR Exclusive (8 bit)
|
|
561 \details Executes a exclusive LDR instruction for 8 bit value.
|
|
562 \param [in] ptr Pointer to data
|
|
563 \return value of type uint8_t at (*ptr)
|
|
564 */
|
|
565 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
|
|
566 {
|
|
567 uint32_t result;
|
|
568
|
|
569 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
570 __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
571 #else
|
|
572 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
573 accepted by assembler. So has to use following less efficient pattern.
|
|
574 */
|
|
575 __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
576 #endif
|
|
577 return ((uint8_t) result); /* Add explicit type cast here */
|
|
578 }
|
|
579
|
|
580
|
|
581 /**
|
|
582 \brief LDR Exclusive (16 bit)
|
|
583 \details Executes a exclusive LDR instruction for 16 bit values.
|
|
584 \param [in] ptr Pointer to data
|
|
585 \return value of type uint16_t at (*ptr)
|
|
586 */
|
|
587 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
|
|
588 {
|
|
589 uint32_t result;
|
|
590
|
|
591 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
592 __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
593 #else
|
|
594 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
595 accepted by assembler. So has to use following less efficient pattern.
|
|
596 */
|
|
597 __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
598 #endif
|
|
599 return ((uint16_t) result); /* Add explicit type cast here */
|
|
600 }
|
|
601
|
|
602
|
|
603 /**
|
|
604 \brief LDR Exclusive (32 bit)
|
|
605 \details Executes a exclusive LDR instruction for 32 bit values.
|
|
606 \param [in] ptr Pointer to data
|
|
607 \return value of type uint32_t at (*ptr)
|
|
608 */
|
|
609 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
|
|
610 {
|
|
611 uint32_t result;
|
|
612
|
|
613 __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
614 return(result);
|
|
615 }
|
|
616
|
|
617
|
|
618 /**
|
|
619 \brief STR Exclusive (8 bit)
|
|
620 \details Executes a exclusive STR instruction for 8 bit values.
|
|
621 \param [in] value Value to store
|
|
622 \param [in] ptr Pointer to location
|
|
623 \return 0 Function succeeded
|
|
624 \return 1 Function failed
|
|
625 */
|
|
626 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
|
|
627 {
|
|
628 uint32_t result;
|
|
629
|
|
630 __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
631 return(result);
|
|
632 }
|
|
633
|
|
634
|
|
635 /**
|
|
636 \brief STR Exclusive (16 bit)
|
|
637 \details Executes a exclusive STR instruction for 16 bit values.
|
|
638 \param [in] value Value to store
|
|
639 \param [in] ptr Pointer to location
|
|
640 \return 0 Function succeeded
|
|
641 \return 1 Function failed
|
|
642 */
|
|
643 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
|
|
644 {
|
|
645 uint32_t result;
|
|
646
|
|
647 __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
648 return(result);
|
|
649 }
|
|
650
|
|
651
|
|
652 /**
|
|
653 \brief STR Exclusive (32 bit)
|
|
654 \details Executes a exclusive STR instruction for 32 bit values.
|
|
655 \param [in] value Value to store
|
|
656 \param [in] ptr Pointer to location
|
|
657 \return 0 Function succeeded
|
|
658 \return 1 Function failed
|
|
659 */
|
|
660 __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
|
|
661 {
|
|
662 uint32_t result;
|
|
663
|
|
664 __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
|
|
665 return(result);
|
|
666 }
|
|
667
|
|
668
|
|
669 /**
|
|
670 \brief Remove the exclusive lock
|
|
671 \details Removes the exclusive lock which is created by LDREX.
|
|
672 */
|
|
673 __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
|
|
674 {
|
|
675 __ASM volatile ("clrex" ::: "memory");
|
|
676 }
|
|
677
|
|
678
|
|
679 /**
|
|
680 \brief Signed Saturate
|
|
681 \details Saturates a signed value.
|
|
682 \param [in] value Value to be saturated
|
|
683 \param [in] sat Bit position to saturate to (1..32)
|
|
684 \return Saturated value
|
|
685 */
|
|
686 #define __SSAT(ARG1,ARG2) \
|
|
687 ({ \
|
|
688 uint32_t __RES, __ARG1 = (ARG1); \
|
|
689 __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
690 __RES; \
|
|
691 })
|
|
692
|
|
693
|
|
694 /**
|
|
695 \brief Unsigned Saturate
|
|
696 \details Saturates an unsigned value.
|
|
697 \param [in] value Value to be saturated
|
|
698 \param [in] sat Bit position to saturate to (0..31)
|
|
699 \return Saturated value
|
|
700 */
|
|
701 #define __USAT(ARG1,ARG2) \
|
|
702 ({ \
|
|
703 uint32_t __RES, __ARG1 = (ARG1); \
|
|
704 __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
705 __RES; \
|
|
706 })
|
|
707
|
|
708
|
|
709 /**
|
|
710 \brief Rotate Right with Extend (32 bit)
|
|
711 \details Moves each bit of a bitstring right by one bit.
|
|
712 The carry input is shifted in at the left end of the bitstring.
|
|
713 \param [in] value Value to rotate
|
|
714 \return Rotated value
|
|
715 */
|
|
716 __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
|
|
717 {
|
|
718 uint32_t result;
|
|
719
|
|
720 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
721 return(result);
|
|
722 }
|
|
723
|
|
724
|
|
725 /**
|
|
726 \brief LDRT Unprivileged (8 bit)
|
|
727 \details Executes a Unprivileged LDRT instruction for 8 bit value.
|
|
728 \param [in] ptr Pointer to data
|
|
729 \return value of type uint8_t at (*ptr)
|
|
730 */
|
|
731 __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
|
|
732 {
|
|
733 uint32_t result;
|
|
734
|
|
735 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
736 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
737 #else
|
|
738 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
739 accepted by assembler. So has to use following less efficient pattern.
|
|
740 */
|
|
741 __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
742 #endif
|
|
743 return ((uint8_t) result); /* Add explicit type cast here */
|
|
744 }
|
|
745
|
|
746
|
|
747 /**
|
|
748 \brief LDRT Unprivileged (16 bit)
|
|
749 \details Executes a Unprivileged LDRT instruction for 16 bit values.
|
|
750 \param [in] ptr Pointer to data
|
|
751 \return value of type uint16_t at (*ptr)
|
|
752 */
|
|
753 __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
|
|
754 {
|
|
755 uint32_t result;
|
|
756
|
|
757 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
758 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
759 #else
|
|
760 /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
761 accepted by assembler. So has to use following less efficient pattern.
|
|
762 */
|
|
763 __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
764 #endif
|
|
765 return ((uint16_t) result); /* Add explicit type cast here */
|
|
766 }
|
|
767
|
|
768
|
|
769 /**
|
|
770 \brief LDRT Unprivileged (32 bit)
|
|
771 \details Executes a Unprivileged LDRT instruction for 32 bit values.
|
|
772 \param [in] ptr Pointer to data
|
|
773 \return value of type uint32_t at (*ptr)
|
|
774 */
|
|
775 __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
|
|
776 {
|
|
777 uint32_t result;
|
|
778
|
|
779 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
780 return(result);
|
|
781 }
|
|
782
|
|
783
|
|
784 /**
|
|
785 \brief STRT Unprivileged (8 bit)
|
|
786 \details Executes a Unprivileged STRT instruction for 8 bit values.
|
|
787 \param [in] value Value to store
|
|
788 \param [in] ptr Pointer to location
|
|
789 */
|
|
790 __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
|
|
791 {
|
|
792 __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
793 }
|
|
794
|
|
795
|
|
796 /**
|
|
797 \brief STRT Unprivileged (16 bit)
|
|
798 \details Executes a Unprivileged STRT instruction for 16 bit values.
|
|
799 \param [in] value Value to store
|
|
800 \param [in] ptr Pointer to location
|
|
801 */
|
|
802 __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
|
|
803 {
|
|
804 __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
805 }
|
|
806
|
|
807
|
|
808 /**
|
|
809 \brief STRT Unprivileged (32 bit)
|
|
810 \details Executes a Unprivileged STRT instruction for 32 bit values.
|
|
811 \param [in] value Value to store
|
|
812 \param [in] ptr Pointer to location
|
|
813 */
|
|
814 __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
|
|
815 {
|
|
816 __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );
|
|
817 }
|
|
818
|
|
819 #endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */
|
|
820
|
|
821 /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
|
|
822
|
|
823
|
|
824 /* ################### Compiler specific Intrinsics ########################### */
|
|
825 /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
|
|
826 Access to dedicated SIMD instructions
|
|
827 @{
|
|
828 */
|
|
829
|
|
830 #if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */
|
|
831
|
|
832 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
|
|
833 {
|
|
834 uint32_t result;
|
|
835
|
|
836 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
837 return(result);
|
|
838 }
|
|
839
|
|
840 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
|
|
841 {
|
|
842 uint32_t result;
|
|
843
|
|
844 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
845 return(result);
|
|
846 }
|
|
847
|
|
848 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
|
|
849 {
|
|
850 uint32_t result;
|
|
851
|
|
852 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
853 return(result);
|
|
854 }
|
|
855
|
|
856 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
|
|
857 {
|
|
858 uint32_t result;
|
|
859
|
|
860 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
861 return(result);
|
|
862 }
|
|
863
|
|
864 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
|
|
865 {
|
|
866 uint32_t result;
|
|
867
|
|
868 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
869 return(result);
|
|
870 }
|
|
871
|
|
872 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
|
|
873 {
|
|
874 uint32_t result;
|
|
875
|
|
876 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
877 return(result);
|
|
878 }
|
|
879
|
|
880
|
|
881 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
|
|
882 {
|
|
883 uint32_t result;
|
|
884
|
|
885 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
886 return(result);
|
|
887 }
|
|
888
|
|
889 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
|
|
890 {
|
|
891 uint32_t result;
|
|
892
|
|
893 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
894 return(result);
|
|
895 }
|
|
896
|
|
897 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
|
|
898 {
|
|
899 uint32_t result;
|
|
900
|
|
901 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
902 return(result);
|
|
903 }
|
|
904
|
|
905 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
|
|
906 {
|
|
907 uint32_t result;
|
|
908
|
|
909 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
910 return(result);
|
|
911 }
|
|
912
|
|
913 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
|
|
914 {
|
|
915 uint32_t result;
|
|
916
|
|
917 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
918 return(result);
|
|
919 }
|
|
920
|
|
921 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
|
|
922 {
|
|
923 uint32_t result;
|
|
924
|
|
925 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
926 return(result);
|
|
927 }
|
|
928
|
|
929
|
|
930 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
|
|
931 {
|
|
932 uint32_t result;
|
|
933
|
|
934 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
935 return(result);
|
|
936 }
|
|
937
|
|
938 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
|
|
939 {
|
|
940 uint32_t result;
|
|
941
|
|
942 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
943 return(result);
|
|
944 }
|
|
945
|
|
946 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
|
|
947 {
|
|
948 uint32_t result;
|
|
949
|
|
950 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
951 return(result);
|
|
952 }
|
|
953
|
|
954 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
|
|
955 {
|
|
956 uint32_t result;
|
|
957
|
|
958 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
959 return(result);
|
|
960 }
|
|
961
|
|
962 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
|
|
963 {
|
|
964 uint32_t result;
|
|
965
|
|
966 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
967 return(result);
|
|
968 }
|
|
969
|
|
970 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
|
|
971 {
|
|
972 uint32_t result;
|
|
973
|
|
974 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
975 return(result);
|
|
976 }
|
|
977
|
|
978 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
|
|
979 {
|
|
980 uint32_t result;
|
|
981
|
|
982 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
983 return(result);
|
|
984 }
|
|
985
|
|
986 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
|
|
987 {
|
|
988 uint32_t result;
|
|
989
|
|
990 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
991 return(result);
|
|
992 }
|
|
993
|
|
994 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
|
|
995 {
|
|
996 uint32_t result;
|
|
997
|
|
998 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
999 return(result);
|
|
1000 }
|
|
1001
|
|
1002 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
|
|
1003 {
|
|
1004 uint32_t result;
|
|
1005
|
|
1006 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1007 return(result);
|
|
1008 }
|
|
1009
|
|
1010 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
|
|
1011 {
|
|
1012 uint32_t result;
|
|
1013
|
|
1014 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1015 return(result);
|
|
1016 }
|
|
1017
|
|
1018 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
|
|
1019 {
|
|
1020 uint32_t result;
|
|
1021
|
|
1022 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1023 return(result);
|
|
1024 }
|
|
1025
|
|
1026 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
|
|
1027 {
|
|
1028 uint32_t result;
|
|
1029
|
|
1030 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1031 return(result);
|
|
1032 }
|
|
1033
|
|
1034 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
|
|
1035 {
|
|
1036 uint32_t result;
|
|
1037
|
|
1038 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1039 return(result);
|
|
1040 }
|
|
1041
|
|
1042 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
|
|
1043 {
|
|
1044 uint32_t result;
|
|
1045
|
|
1046 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1047 return(result);
|
|
1048 }
|
|
1049
|
|
1050 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
|
|
1051 {
|
|
1052 uint32_t result;
|
|
1053
|
|
1054 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1055 return(result);
|
|
1056 }
|
|
1057
|
|
1058 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
|
|
1059 {
|
|
1060 uint32_t result;
|
|
1061
|
|
1062 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1063 return(result);
|
|
1064 }
|
|
1065
|
|
1066 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
|
|
1067 {
|
|
1068 uint32_t result;
|
|
1069
|
|
1070 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1071 return(result);
|
|
1072 }
|
|
1073
|
|
1074 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
|
|
1075 {
|
|
1076 uint32_t result;
|
|
1077
|
|
1078 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1079 return(result);
|
|
1080 }
|
|
1081
|
|
1082 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
|
|
1083 {
|
|
1084 uint32_t result;
|
|
1085
|
|
1086 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1087 return(result);
|
|
1088 }
|
|
1089
|
|
1090 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
|
|
1091 {
|
|
1092 uint32_t result;
|
|
1093
|
|
1094 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1095 return(result);
|
|
1096 }
|
|
1097
|
|
1098 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
|
|
1099 {
|
|
1100 uint32_t result;
|
|
1101
|
|
1102 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1103 return(result);
|
|
1104 }
|
|
1105
|
|
1106 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
|
|
1107 {
|
|
1108 uint32_t result;
|
|
1109
|
|
1110 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1111 return(result);
|
|
1112 }
|
|
1113
|
|
1114 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
|
|
1115 {
|
|
1116 uint32_t result;
|
|
1117
|
|
1118 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1119 return(result);
|
|
1120 }
|
|
1121
|
|
1122 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
|
|
1123 {
|
|
1124 uint32_t result;
|
|
1125
|
|
1126 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1127 return(result);
|
|
1128 }
|
|
1129
|
|
1130 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1131 {
|
|
1132 uint32_t result;
|
|
1133
|
|
1134 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1135 return(result);
|
|
1136 }
|
|
1137
|
|
1138 #define __SSAT16(ARG1,ARG2) \
|
|
1139 ({ \
|
|
1140 int32_t __RES, __ARG1 = (ARG1); \
|
|
1141 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
1142 __RES; \
|
|
1143 })
|
|
1144
|
|
1145 #define __USAT16(ARG1,ARG2) \
|
|
1146 ({ \
|
|
1147 uint32_t __RES, __ARG1 = (ARG1); \
|
|
1148 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
1149 __RES; \
|
|
1150 })
|
|
1151
|
|
1152 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
|
|
1153 {
|
|
1154 uint32_t result;
|
|
1155
|
|
1156 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
|
|
1157 return(result);
|
|
1158 }
|
|
1159
|
|
1160 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
|
|
1161 {
|
|
1162 uint32_t result;
|
|
1163
|
|
1164 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1165 return(result);
|
|
1166 }
|
|
1167
|
|
1168 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
|
|
1169 {
|
|
1170 uint32_t result;
|
|
1171
|
|
1172 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
|
|
1173 return(result);
|
|
1174 }
|
|
1175
|
|
1176 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
|
|
1177 {
|
|
1178 uint32_t result;
|
|
1179
|
|
1180 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1181 return(result);
|
|
1182 }
|
|
1183
|
|
1184 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
|
|
1185 {
|
|
1186 uint32_t result;
|
|
1187
|
|
1188 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1189 return(result);
|
|
1190 }
|
|
1191
|
|
1192 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
|
|
1193 {
|
|
1194 uint32_t result;
|
|
1195
|
|
1196 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1197 return(result);
|
|
1198 }
|
|
1199
|
|
1200 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1201 {
|
|
1202 uint32_t result;
|
|
1203
|
|
1204 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1205 return(result);
|
|
1206 }
|
|
1207
|
|
1208 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1209 {
|
|
1210 uint32_t result;
|
|
1211
|
|
1212 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1213 return(result);
|
|
1214 }
|
|
1215
|
|
1216 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1217 {
|
|
1218 union llreg_u{
|
|
1219 uint32_t w32[2];
|
|
1220 uint64_t w64;
|
|
1221 } llr;
|
|
1222 llr.w64 = acc;
|
|
1223
|
|
1224 #ifndef __ARMEB__ /* Little endian */
|
|
1225 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1226 #else /* Big endian */
|
|
1227 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1228 #endif
|
|
1229
|
|
1230 return(llr.w64);
|
|
1231 }
|
|
1232
|
|
1233 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1234 {
|
|
1235 union llreg_u{
|
|
1236 uint32_t w32[2];
|
|
1237 uint64_t w64;
|
|
1238 } llr;
|
|
1239 llr.w64 = acc;
|
|
1240
|
|
1241 #ifndef __ARMEB__ /* Little endian */
|
|
1242 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1243 #else /* Big endian */
|
|
1244 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1245 #endif
|
|
1246
|
|
1247 return(llr.w64);
|
|
1248 }
|
|
1249
|
|
1250 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
|
|
1251 {
|
|
1252 uint32_t result;
|
|
1253
|
|
1254 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1255 return(result);
|
|
1256 }
|
|
1257
|
|
1258 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
|
|
1259 {
|
|
1260 uint32_t result;
|
|
1261
|
|
1262 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1263 return(result);
|
|
1264 }
|
|
1265
|
|
1266 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1267 {
|
|
1268 uint32_t result;
|
|
1269
|
|
1270 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1271 return(result);
|
|
1272 }
|
|
1273
|
|
1274 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1275 {
|
|
1276 uint32_t result;
|
|
1277
|
|
1278 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1279 return(result);
|
|
1280 }
|
|
1281
|
|
1282 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1283 {
|
|
1284 union llreg_u{
|
|
1285 uint32_t w32[2];
|
|
1286 uint64_t w64;
|
|
1287 } llr;
|
|
1288 llr.w64 = acc;
|
|
1289
|
|
1290 #ifndef __ARMEB__ /* Little endian */
|
|
1291 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1292 #else /* Big endian */
|
|
1293 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1294 #endif
|
|
1295
|
|
1296 return(llr.w64);
|
|
1297 }
|
|
1298
|
|
1299 __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1300 {
|
|
1301 union llreg_u{
|
|
1302 uint32_t w32[2];
|
|
1303 uint64_t w64;
|
|
1304 } llr;
|
|
1305 llr.w64 = acc;
|
|
1306
|
|
1307 #ifndef __ARMEB__ /* Little endian */
|
|
1308 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1309 #else /* Big endian */
|
|
1310 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1311 #endif
|
|
1312
|
|
1313 return(llr.w64);
|
|
1314 }
|
|
1315
|
|
1316 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
|
|
1317 {
|
|
1318 uint32_t result;
|
|
1319
|
|
1320 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1321 return(result);
|
|
1322 }
|
|
1323
|
|
1324 __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
|
|
1325 {
|
|
1326 int32_t result;
|
|
1327
|
|
1328 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1329 return(result);
|
|
1330 }
|
|
1331
|
|
1332 __attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
|
|
1333 {
|
|
1334 int32_t result;
|
|
1335
|
|
1336 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1337 return(result);
|
|
1338 }
|
|
1339
|
|
1340 #define __PKHBT(ARG1,ARG2,ARG3) \
|
|
1341 ({ \
|
|
1342 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
|
|
1343 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
|
|
1344 __RES; \
|
|
1345 })
|
|
1346
|
|
1347 #define __PKHTB(ARG1,ARG2,ARG3) \
|
|
1348 ({ \
|
|
1349 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
|
|
1350 if (ARG3 == 0) \
|
|
1351 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
|
|
1352 else \
|
|
1353 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
|
|
1354 __RES; \
|
|
1355 })
|
|
1356
|
|
1357 __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
|
|
1358 {
|
|
1359 int32_t result;
|
|
1360
|
|
1361 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
|
|
1362 return(result);
|
|
1363 }
|
|
1364
|
|
1365 #endif /* (__CORTEX_M >= 0x04) */
|
|
1366 /*@} end of group CMSIS_SIMD_intrinsics */
|
|
1367
|
|
1368
|
|
1369 #if defined ( __GNUC__ )
|
|
1370 #pragma GCC diagnostic pop
|
|
1371 #endif
|
|
1372
|
|
1373 #endif /* __CMSIS_GCC_H */
|