Mercurial > pub > halpp
comparison l476rg/Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c @ 0:32a3b1785697
a rough draft of Hardware Abstraction Layer for C++
STM32L476RG drivers
| author | cin |
|---|---|
| date | Thu, 12 Jan 2017 02:45:43 +0300 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:32a3b1785697 |
|---|---|
| 1 /** | |
| 2 ****************************************************************************** | |
| 3 * @file stm32l4xx_hal_rcc.c | |
| 4 * @author MCD Application Team | |
| 5 * @version V1.6.0 | |
| 6 * @date 28-October-2016 | |
| 7 * @brief RCC HAL module driver. | |
| 8 * This file provides firmware functions to manage the following | |
| 9 * functionalities of the Reset and Clock Control (RCC) peripheral: | |
| 10 * + Initialization and de-initialization functions | |
| 11 * + Peripheral Control functions | |
| 12 * | |
| 13 @verbatim | |
| 14 ============================================================================== | |
| 15 ##### RCC specific features ##### | |
| 16 ============================================================================== | |
| 17 [..] | |
| 18 After reset the device is running from Multiple Speed Internal oscillator | |
| 19 (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache | |
| 20 and I-Cache are disabled, and all peripherals are off except internal | |
| 21 SRAM, Flash and JTAG. | |
| 22 | |
| 23 (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses: | |
| 24 all peripherals mapped on these busses are running at MSI speed. | |
| 25 (+) The clock for all peripherals is switched off, except the SRAM and FLASH. | |
| 26 (+) All GPIOs are in analog mode, except the JTAG pins which | |
| 27 are assigned to be used for debug purpose. | |
| 28 | |
| 29 [..] | |
| 30 Once the device started from reset, the user application has to: | |
| 31 (+) Configure the clock source to be used to drive the System clock | |
| 32 (if the application needs higher frequency/performance) | |
| 33 (+) Configure the System clock frequency and Flash settings | |
| 34 (+) Configure the AHB and APB busses prescalers | |
| 35 (+) Enable the clock for the peripheral(s) to be used | |
| 36 (+) Configure the clock source(s) for peripherals which clocks are not | |
| 37 derived from the System clock (SAIx, RTC, ADC, USB OTG FS/SDMMC1/RNG) | |
| 38 | |
| 39 @endverbatim | |
| 40 ****************************************************************************** | |
| 41 * @attention | |
| 42 * | |
| 43 * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2> | |
| 44 * | |
| 45 * Redistribution and use in source and binary forms, with or without modification, | |
| 46 * are permitted provided that the following conditions are met: | |
| 47 * 1. Redistributions of source code must retain the above copyright notice, | |
| 48 * this list of conditions and the following disclaimer. | |
| 49 * 2. Redistributions in binary form must reproduce the above copyright notice, | |
| 50 * this list of conditions and the following disclaimer in the documentation | |
| 51 * and/or other materials provided with the distribution. | |
| 52 * 3. Neither the name of STMicroelectronics nor the names of its contributors | |
| 53 * may be used to endorse or promote products derived from this software | |
| 54 * without specific prior written permission. | |
| 55 * | |
| 56 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
| 57 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
| 59 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
| 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
| 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
| 62 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
| 63 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
| 64 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 65 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 66 * | |
| 67 ****************************************************************************** | |
| 68 */ | |
| 69 | |
| 70 /* Includes ------------------------------------------------------------------*/ | |
| 71 #include "stm32l4xx_hal.h" | |
| 72 | |
| 73 /** @addtogroup STM32L4xx_HAL_Driver | |
| 74 * @{ | |
| 75 */ | |
| 76 | |
| 77 /** @defgroup RCC RCC | |
| 78 * @brief RCC HAL module driver | |
| 79 * @{ | |
| 80 */ | |
| 81 | |
| 82 #ifdef HAL_RCC_MODULE_ENABLED | |
| 83 | |
| 84 /* Private typedef -----------------------------------------------------------*/ | |
| 85 /* Private define ------------------------------------------------------------*/ | |
| 86 /** @defgroup RCC_Private_Constants RCC Private Constants | |
| 87 * @{ | |
| 88 */ | |
| 89 #define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT | |
| 90 #define HSI_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ | |
| 91 #define MSI_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ | |
| 92 #define LSI_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ | |
| 93 #define HSI48_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ | |
| 94 #define PLL_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */ | |
| 95 #define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000U) /* 5 s */ | |
| 96 /** | |
| 97 * @} | |
| 98 */ | |
| 99 | |
| 100 /* Private macro -------------------------------------------------------------*/ | |
| 101 /** @defgroup RCC_Private_Macros RCC Private Macros | |
| 102 * @{ | |
| 103 */ | |
| 104 #define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() | |
| 105 #define MCO1_GPIO_PORT GPIOA | |
| 106 #define MCO1_PIN GPIO_PIN_8 | |
| 107 | |
| 108 #define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \ | |
| 109 (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__))) | |
| 110 /** | |
| 111 * @} | |
| 112 */ | |
| 113 | |
| 114 /* Private variables ---------------------------------------------------------*/ | |
| 115 /** @defgroup RCC_Private_Variables RCC Private Variables | |
| 116 * @{ | |
| 117 */ | |
| 118 | |
| 119 /** | |
| 120 * @} | |
| 121 */ | |
| 122 | |
| 123 /* Private function prototypes -----------------------------------------------*/ | |
| 124 /** @defgroup RCC_Private_Functions RCC Private Functions | |
| 125 * @{ | |
| 126 */ | |
| 127 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange); | |
| 128 /** | |
| 129 * @} | |
| 130 */ | |
| 131 | |
| 132 /* Exported functions --------------------------------------------------------*/ | |
| 133 | |
| 134 /** @defgroup RCC_Exported_Functions RCC Exported Functions | |
| 135 * @{ | |
| 136 */ | |
| 137 | |
| 138 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions | |
| 139 * @brief Initialization and Configuration functions | |
| 140 * | |
| 141 @verbatim | |
| 142 =============================================================================== | |
| 143 ##### Initialization and de-initialization functions ##### | |
| 144 =============================================================================== | |
| 145 [..] | |
| 146 This section provides functions allowing to configure the internal and external oscillators | |
| 147 (HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1 | |
| 148 and APB2). | |
| 149 | |
| 150 [..] Internal/external clock and PLL configuration | |
| 151 (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through | |
| 152 the PLL as System clock source. | |
| 153 | |
| 154 (+) MSI (Mutiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ. | |
| 155 It can be used to generate the clock for the USB OTG FS (48 MHz). | |
| 156 The number of flash wait states is automatically adjusted when MSI range is updated with | |
| 157 HAL_RCC_OscConfig() and the MSI is used as System clock source. | |
| 158 | |
| 159 (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC | |
| 160 clock source. | |
| 161 | |
| 162 (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or | |
| 163 through the PLL as System clock source. Can be used also optionally as RTC clock source. | |
| 164 | |
| 165 (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source. | |
| 166 | |
| 167 (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks: | |
| 168 (++) The first output is used to generate the high speed system clock (up to 80MHz). | |
| 169 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), | |
| 170 the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz). | |
| 171 (++) The third output is used to generate an accurate clock to achieve | |
| 172 high-quality audio performance on SAI interface. | |
| 173 | |
| 174 (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks: | |
| 175 (++) The first output is used to generate SAR ADC1 clock. | |
| 176 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), | |
| 177 the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz). | |
| 178 (++) The Third output is used to generate an accurate clock to achieve | |
| 179 high-quality audio performance on SAI interface. | |
| 180 | |
| 181 (+) PLLSAI2 (clocked by HSI , HSE or MSI) providing up to two independent output clocks: | |
| 182 (++) The first output is used to generate SAR ADC2 clock. | |
| 183 (++) The second output is used to generate an accurate clock to achieve | |
| 184 high-quality audio performance on SAI interface. | |
| 185 | |
| 186 (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs | |
| 187 (HSE used directly or through PLL as System clock source), the System clock | |
| 188 is automatically switched to HSI and an interrupt is generated if enabled. | |
| 189 The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) | |
| 190 exception vector. | |
| 191 | |
| 192 (+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or | |
| 193 main PLL clock (through a configurable prescaler) on PA8 pin. | |
| 194 | |
| 195 [..] System, AHB and APB busses clocks configuration | |
| 196 (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, | |
| 197 HSE and main PLL. | |
| 198 The AHB clock (HCLK) is derived from System clock through configurable | |
| 199 prescaler and used to clock the CPU, memory and peripherals mapped | |
| 200 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived | |
| 201 from AHB clock through configurable prescalers and used to clock | |
| 202 the peripherals mapped on these busses. You can use | |
| 203 "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. | |
| 204 | |
| 205 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: | |
| 206 | |
| 207 (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSAI2) or | |
| 208 from an external clock mapped on the SAI_CKIN pin. | |
| 209 You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock. | |
| 210 (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock | |
| 211 divided by 2 to 31. | |
| 212 You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function | |
| 213 to configure this clock. | |
| 214 (+@) USB OTG FS, SDMMC1 and RNG: USB OTG FS requires a frequency equal to 48 MHz | |
| 215 to work correctly, while the SDMMC1 and RNG peripherals require a frequency | |
| 216 equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1 | |
| 217 through PLLQ divider. You have to enable the peripheral clock and use | |
| 218 HAL_RCCEx_PeriphCLKConfig() function to configure this clock. | |
| 219 (+@) IWDG clock which is always the LSI clock. | |
| 220 | |
| 221 | |
| 222 (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 80 MHz. | |
| 223 The clock source frequency should be adapted depending on the device voltage range | |
| 224 as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter. | |
| 225 | |
| 226 @endverbatim | |
| 227 | |
| 228 Table 1. HCLK clock frequency. | |
| 229 +-------------------------------------------------------+ | |
| 230 | Latency | HCLK clock frequency (MHz) | | |
| 231 | |-------------------------------------| | |
| 232 | | voltage range 1 | voltage range 2 | | |
| 233 | | 1.2 V | 1.0 V | | |
| 234 |-----------------|------------------|------------------| | |
| 235 |0WS(1 CPU cycles)| 0 < HCLK <= 16 | 0 < HCLK <= 6 | | |
| 236 |-----------------|------------------|------------------| | |
| 237 |1WS(2 CPU cycles)| 16 < HCLK <= 32 | 6 < HCLK <= 12 | | |
| 238 |-----------------|------------------|------------------| | |
| 239 |2WS(3 CPU cycles)| 32 < HCLK <= 48 | 12 < HCLK <= 18 | | |
| 240 |-----------------|------------------|------------------| | |
| 241 |3WS(4 CPU cycles)| 48 < HCLK <= 64 | 18 < HCLK <= 26 | | |
| 242 |-----------------|------------------|------------------| | |
| 243 |4WS(5 CPU cycles)| 64 < HCLK <= 80 | 18 < HCLK <= 26 | | |
| 244 +-------------------------------------------------------+ | |
| 245 * @{ | |
| 246 */ | |
| 247 | |
| 248 /** | |
| 249 * @brief Reset the RCC clock configuration to the default reset state. | |
| 250 * @note The default reset state of the clock configuration is given below: | |
| 251 * - MSI ON and used as system clock source | |
| 252 * - HSE, HSI, PLL, PLLSAI1 and PLLISAI2 OFF | |
| 253 * - AHB, APB1 and APB2 prescaler set to 1. | |
| 254 * - CSS, MCO1 OFF | |
| 255 * - All interrupts disabled | |
| 256 * @note This function doesn't modify the configuration of the | |
| 257 * - Peripheral clocks | |
| 258 * - LSI, LSE and RTC clocks | |
| 259 * @retval None | |
| 260 */ | |
| 261 void HAL_RCC_DeInit(void) | |
| 262 { | |
| 263 /* Set MSION bit */ | |
| 264 SET_BIT(RCC->CR, RCC_CR_MSION); | |
| 265 | |
| 266 /* Insure MSIRDY bit is set before writing default MSIRANGE value */ | |
| 267 while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET) { __NOP(); } | |
| 268 | |
| 269 /* Set MSIRANGE default value */ | |
| 270 MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6); | |
| 271 | |
| 272 /* Reset CFGR register (MSI is selected as system clock source) */ | |
| 273 CLEAR_REG(RCC->CFGR); | |
| 274 | |
| 275 /* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON, PLLSAIxON bits */ | |
| 276 #if defined(RCC_PLLSAI2_SUPPORT) | |
| 277 | |
| 278 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON); | |
| 279 | |
| 280 #else | |
| 281 | |
| 282 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON); | |
| 283 | |
| 284 #endif /* RCC_PLLSAI2_SUPPORT */ | |
| 285 | |
| 286 /* Reset PLLCFGR register */ | |
| 287 CLEAR_REG(RCC->PLLCFGR); | |
| 288 SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4 ); | |
| 289 | |
| 290 /* Reset PLLSAI1CFGR register */ | |
| 291 CLEAR_REG(RCC->PLLSAI1CFGR); | |
| 292 SET_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N_4 ); | |
| 293 | |
| 294 #if defined(RCC_PLLSAI2_SUPPORT) | |
| 295 | |
| 296 /* Reset PLLSAI2CFGR register */ | |
| 297 CLEAR_REG(RCC->PLLSAI2CFGR); | |
| 298 SET_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N_4 ); | |
| 299 | |
| 300 #endif /* RCC_PLLSAI2_SUPPORT */ | |
| 301 | |
| 302 /* Reset HSEBYP bit */ | |
| 303 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); | |
| 304 | |
| 305 /* Disable all interrupts */ | |
| 306 CLEAR_REG(RCC->CIER); | |
| 307 | |
| 308 /* Update the SystemCoreClock global variable */ | |
| 309 SystemCoreClock = MSI_VALUE; | |
| 310 } | |
| 311 | |
| 312 /** | |
| 313 * @brief Initialize the RCC Oscillators according to the specified parameters in the | |
| 314 * RCC_OscInitTypeDef. | |
| 315 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that | |
| 316 * contains the configuration information for the RCC Oscillators. | |
| 317 * @note The PLL is not disabled when used as system clock. | |
| 318 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not | |
| 319 * supported by this macro. User should request a transition to LSE Off | |
| 320 * first and then LSE On or LSE Bypass. | |
| 321 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not | |
| 322 * supported by this macro. User should request a transition to HSE Off | |
| 323 * first and then HSE On or HSE Bypass. | |
| 324 * @retval HAL status | |
| 325 */ | |
| 326 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) | |
| 327 { | |
| 328 uint32_t tickstart = 0; | |
| 329 | |
| 330 /* Check the parameters */ | |
| 331 assert_param(RCC_OscInitStruct != NULL); | |
| 332 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); | |
| 333 | |
| 334 /*----------------------------- MSI Configuration --------------------------*/ | |
| 335 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI) | |
| 336 { | |
| 337 /* Check the parameters */ | |
| 338 assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState)); | |
| 339 assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue)); | |
| 340 assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange)); | |
| 341 | |
| 342 /* When the MSI is used as system clock it will not be disabled */ | |
| 343 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) ) | |
| 344 { | |
| 345 if((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF)) | |
| 346 { | |
| 347 return HAL_ERROR; | |
| 348 } | |
| 349 | |
| 350 /* Otherwise, just the calibration and MSI range change are allowed */ | |
| 351 else | |
| 352 { | |
| 353 /* To correctly read data from FLASH memory, the number of wait states (LATENCY) | |
| 354 must be correctly programmed according to the frequency of the CPU clock | |
| 355 (HCLK) and the supply voltage of the device. */ | |
| 356 if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE()) | |
| 357 { | |
| 358 /* First increase number of wait states update if necessary */ | |
| 359 if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) | |
| 360 { | |
| 361 return HAL_ERROR; | |
| 362 } | |
| 363 | |
| 364 /* Selects the Multiple Speed oscillator (MSI) clock range .*/ | |
| 365 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); | |
| 366 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ | |
| 367 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); | |
| 368 } | |
| 369 else | |
| 370 { | |
| 371 /* Else, keep current flash latency while decreasing applies */ | |
| 372 /* Selects the Multiple Speed oscillator (MSI) clock range .*/ | |
| 373 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); | |
| 374 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ | |
| 375 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); | |
| 376 | |
| 377 /* Decrease number of wait states update if necessary */ | |
| 378 if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK) | |
| 379 { | |
| 380 return HAL_ERROR; | |
| 381 } | |
| 382 } | |
| 383 | |
| 384 /* Update the SystemCoreClock global variable */ | |
| 385 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)]; | |
| 386 | |
| 387 /* Configure the source of time base considering new system clocks settings*/ | |
| 388 HAL_InitTick (TICK_INT_PRIORITY); | |
| 389 } | |
| 390 } | |
| 391 else | |
| 392 { | |
| 393 /* Check the MSI State */ | |
| 394 if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF) | |
| 395 { | |
| 396 /* Enable the Internal High Speed oscillator (MSI). */ | |
| 397 __HAL_RCC_MSI_ENABLE(); | |
| 398 | |
| 399 /* Get timeout */ | |
| 400 tickstart = HAL_GetTick(); | |
| 401 | |
| 402 /* Wait till MSI is ready */ | |
| 403 while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET) | |
| 404 { | |
| 405 if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) | |
| 406 { | |
| 407 return HAL_TIMEOUT; | |
| 408 } | |
| 409 } | |
| 410 /* Selects the Multiple Speed oscillator (MSI) clock range .*/ | |
| 411 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange); | |
| 412 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/ | |
| 413 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue); | |
| 414 | |
| 415 } | |
| 416 else | |
| 417 { | |
| 418 /* Disable the Internal High Speed oscillator (MSI). */ | |
| 419 __HAL_RCC_MSI_DISABLE(); | |
| 420 | |
| 421 /* Get timeout */ | |
| 422 tickstart = HAL_GetTick(); | |
| 423 | |
| 424 /* Wait till MSI is ready */ | |
| 425 while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) != RESET) | |
| 426 { | |
| 427 if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE) | |
| 428 { | |
| 429 return HAL_TIMEOUT; | |
| 430 } | |
| 431 } | |
| 432 } | |
| 433 } | |
| 434 } | |
| 435 /*------------------------------- HSE Configuration ------------------------*/ | |
| 436 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) | |
| 437 { | |
| 438 /* Check the parameters */ | |
| 439 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); | |
| 440 | |
| 441 /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ | |
| 442 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) || | |
| 443 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) | |
| 444 { | |
| 445 if((READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) | |
| 446 { | |
| 447 return HAL_ERROR; | |
| 448 } | |
| 449 } | |
| 450 else | |
| 451 { | |
| 452 /* Set the new HSE configuration ---------------------------------------*/ | |
| 453 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); | |
| 454 | |
| 455 /* Check the HSE State */ | |
| 456 if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) | |
| 457 { | |
| 458 /* Get Start Tick*/ | |
| 459 tickstart = HAL_GetTick(); | |
| 460 | |
| 461 /* Wait till HSE is ready */ | |
| 462 while(READ_BIT(RCC->CR, RCC_CR_HSERDY) == RESET) | |
| 463 { | |
| 464 if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) | |
| 465 { | |
| 466 return HAL_TIMEOUT; | |
| 467 } | |
| 468 } | |
| 469 } | |
| 470 else | |
| 471 { | |
| 472 /* Get Start Tick*/ | |
| 473 tickstart = HAL_GetTick(); | |
| 474 | |
| 475 /* Wait till HSE is disabled */ | |
| 476 while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) | |
| 477 { | |
| 478 if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) | |
| 479 { | |
| 480 return HAL_TIMEOUT; | |
| 481 } | |
| 482 } | |
| 483 } | |
| 484 } | |
| 485 } | |
| 486 /*----------------------------- HSI Configuration --------------------------*/ | |
| 487 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) | |
| 488 { | |
| 489 /* Check the parameters */ | |
| 490 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); | |
| 491 assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); | |
| 492 | |
| 493 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ | |
| 494 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) || | |
| 495 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI))) | |
| 496 { | |
| 497 /* When HSI is used as system clock it will not be disabled */ | |
| 498 if((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF)) | |
| 499 { | |
| 500 return HAL_ERROR; | |
| 501 } | |
| 502 /* Otherwise, just the calibration is allowed */ | |
| 503 else | |
| 504 { | |
| 505 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ | |
| 506 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); | |
| 507 } | |
| 508 } | |
| 509 else | |
| 510 { | |
| 511 /* Check the HSI State */ | |
| 512 if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) | |
| 513 { | |
| 514 /* Enable the Internal High Speed oscillator (HSI). */ | |
| 515 __HAL_RCC_HSI_ENABLE(); | |
| 516 | |
| 517 /* Get Start Tick*/ | |
| 518 tickstart = HAL_GetTick(); | |
| 519 | |
| 520 /* Wait till HSI is ready */ | |
| 521 while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) | |
| 522 { | |
| 523 if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) | |
| 524 { | |
| 525 return HAL_TIMEOUT; | |
| 526 } | |
| 527 } | |
| 528 | |
| 529 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ | |
| 530 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); | |
| 531 } | |
| 532 else | |
| 533 { | |
| 534 /* Disable the Internal High Speed oscillator (HSI). */ | |
| 535 __HAL_RCC_HSI_DISABLE(); | |
| 536 | |
| 537 /* Get Start Tick*/ | |
| 538 tickstart = HAL_GetTick(); | |
| 539 | |
| 540 /* Wait till HSI is disabled */ | |
| 541 while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) != RESET) | |
| 542 { | |
| 543 if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) | |
| 544 { | |
| 545 return HAL_TIMEOUT; | |
| 546 } | |
| 547 } | |
| 548 } | |
| 549 } | |
| 550 } | |
| 551 /*------------------------------ LSI Configuration -------------------------*/ | |
| 552 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) | |
| 553 { | |
| 554 /* Check the parameters */ | |
| 555 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); | |
| 556 | |
| 557 /* Check the LSI State */ | |
| 558 if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) | |
| 559 { | |
| 560 /* Enable the Internal Low Speed oscillator (LSI). */ | |
| 561 __HAL_RCC_LSI_ENABLE(); | |
| 562 | |
| 563 /* Get Start Tick*/ | |
| 564 tickstart = HAL_GetTick(); | |
| 565 | |
| 566 /* Wait till LSI is ready */ | |
| 567 while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == RESET) | |
| 568 { | |
| 569 if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) | |
| 570 { | |
| 571 return HAL_TIMEOUT; | |
| 572 } | |
| 573 } | |
| 574 } | |
| 575 else | |
| 576 { | |
| 577 /* Disable the Internal Low Speed oscillator (LSI). */ | |
| 578 __HAL_RCC_LSI_DISABLE(); | |
| 579 | |
| 580 /* Get Start Tick*/ | |
| 581 tickstart = HAL_GetTick(); | |
| 582 | |
| 583 /* Wait till LSI is disabled */ | |
| 584 while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != RESET) | |
| 585 { | |
| 586 if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE) | |
| 587 { | |
| 588 return HAL_TIMEOUT; | |
| 589 } | |
| 590 } | |
| 591 } | |
| 592 } | |
| 593 /*------------------------------ LSE Configuration -------------------------*/ | |
| 594 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) | |
| 595 { | |
| 596 FlagStatus pwrclkchanged = RESET; | |
| 597 | |
| 598 /* Check the parameters */ | |
| 599 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); | |
| 600 | |
| 601 /* Update LSE configuration in Backup Domain control register */ | |
| 602 /* Requires to enable write access to Backup Domain of necessary */ | |
| 603 if(HAL_IS_BIT_CLR(RCC->APB1ENR1, RCC_APB1ENR1_PWREN)) | |
| 604 { | |
| 605 __HAL_RCC_PWR_CLK_ENABLE(); | |
| 606 pwrclkchanged = SET; | |
| 607 } | |
| 608 | |
| 609 if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) | |
| 610 { | |
| 611 /* Enable write access to Backup domain */ | |
| 612 SET_BIT(PWR->CR1, PWR_CR1_DBP); | |
| 613 | |
| 614 /* Wait for Backup domain Write protection disable */ | |
| 615 tickstart = HAL_GetTick(); | |
| 616 | |
| 617 while(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP)) | |
| 618 { | |
| 619 if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) | |
| 620 { | |
| 621 return HAL_TIMEOUT; | |
| 622 } | |
| 623 } | |
| 624 } | |
| 625 | |
| 626 /* Set the new LSE configuration -----------------------------------------*/ | |
| 627 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); | |
| 628 | |
| 629 /* Check the LSE State */ | |
| 630 if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) | |
| 631 { | |
| 632 /* Get Start Tick*/ | |
| 633 tickstart = HAL_GetTick(); | |
| 634 | |
| 635 /* Wait till LSE is ready */ | |
| 636 while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == RESET) | |
| 637 { | |
| 638 if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) | |
| 639 { | |
| 640 return HAL_TIMEOUT; | |
| 641 } | |
| 642 } | |
| 643 } | |
| 644 else | |
| 645 { | |
| 646 /* Get Start Tick*/ | |
| 647 tickstart = HAL_GetTick(); | |
| 648 | |
| 649 /* Wait till LSE is disabled */ | |
| 650 while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != RESET) | |
| 651 { | |
| 652 if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE) | |
| 653 { | |
| 654 return HAL_TIMEOUT; | |
| 655 } | |
| 656 } | |
| 657 } | |
| 658 | |
| 659 /* Restore clock configuration if changed */ | |
| 660 if(pwrclkchanged == SET) | |
| 661 { | |
| 662 __HAL_RCC_PWR_CLK_DISABLE(); | |
| 663 } | |
| 664 } | |
| 665 #if defined(RCC_HSI48_SUPPORT) | |
| 666 /*------------------------------ HSI48 Configuration -----------------------*/ | |
| 667 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) | |
| 668 { | |
| 669 /* Check the parameters */ | |
| 670 assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State)); | |
| 671 | |
| 672 /* Check the LSI State */ | |
| 673 if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF) | |
| 674 { | |
| 675 /* Enable the Internal Low Speed oscillator (HSI48). */ | |
| 676 __HAL_RCC_HSI48_ENABLE(); | |
| 677 | |
| 678 /* Get Start Tick*/ | |
| 679 tickstart = HAL_GetTick(); | |
| 680 | |
| 681 /* Wait till HSI48 is ready */ | |
| 682 while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == RESET) | |
| 683 { | |
| 684 if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) | |
| 685 { | |
| 686 return HAL_TIMEOUT; | |
| 687 } | |
| 688 } | |
| 689 } | |
| 690 else | |
| 691 { | |
| 692 /* Disable the Internal Low Speed oscillator (HSI48). */ | |
| 693 __HAL_RCC_HSI48_DISABLE(); | |
| 694 | |
| 695 /* Get Start Tick*/ | |
| 696 tickstart = HAL_GetTick(); | |
| 697 | |
| 698 /* Wait till HSI48 is disabled */ | |
| 699 while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) != RESET) | |
| 700 { | |
| 701 if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE) | |
| 702 { | |
| 703 return HAL_TIMEOUT; | |
| 704 } | |
| 705 } | |
| 706 } | |
| 707 } | |
| 708 #endif /* RCC_HSI48_SUPPORT */ | |
| 709 /*-------------------------------- PLL Configuration -----------------------*/ | |
| 710 /* Check the parameters */ | |
| 711 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); | |
| 712 | |
| 713 if(RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE) | |
| 714 { | |
| 715 /* Check if the PLL is used as system clock or not */ | |
| 716 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) | |
| 717 { | |
| 718 if(RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON) | |
| 719 { | |
| 720 /* Check the parameters */ | |
| 721 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); | |
| 722 assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); | |
| 723 assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); | |
| 724 assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); | |
| 725 assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); | |
| 726 assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); | |
| 727 | |
| 728 /* Disable the main PLL. */ | |
| 729 __HAL_RCC_PLL_DISABLE(); | |
| 730 | |
| 731 /* Get Start Tick*/ | |
| 732 tickstart = HAL_GetTick(); | |
| 733 | |
| 734 /* Wait till PLL is ready */ | |
| 735 while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) | |
| 736 { | |
| 737 if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) | |
| 738 { | |
| 739 return HAL_TIMEOUT; | |
| 740 } | |
| 741 } | |
| 742 | |
| 743 /* Configure the main PLL clock source, multiplication and division factors. */ | |
| 744 __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, | |
| 745 RCC_OscInitStruct->PLL.PLLM, | |
| 746 RCC_OscInitStruct->PLL.PLLN, | |
| 747 RCC_OscInitStruct->PLL.PLLP, | |
| 748 RCC_OscInitStruct->PLL.PLLQ, | |
| 749 RCC_OscInitStruct->PLL.PLLR); | |
| 750 | |
| 751 /* Enable the main PLL. */ | |
| 752 __HAL_RCC_PLL_ENABLE(); | |
| 753 | |
| 754 /* Enable PLL System Clock output. */ | |
| 755 __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK); | |
| 756 | |
| 757 /* Get Start Tick*/ | |
| 758 tickstart = HAL_GetTick(); | |
| 759 | |
| 760 /* Wait till PLL is ready */ | |
| 761 while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET) | |
| 762 { | |
| 763 if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) | |
| 764 { | |
| 765 return HAL_TIMEOUT; | |
| 766 } | |
| 767 } | |
| 768 } | |
| 769 else | |
| 770 { | |
| 771 /* Disable the main PLL. */ | |
| 772 __HAL_RCC_PLL_DISABLE(); | |
| 773 | |
| 774 /* Disable all PLL outputs to save power if no PLLs on */ | |
| 775 if((READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == RESET) | |
| 776 #if defined(RCC_PLLSAI2_SUPPORT) | |
| 777 && | |
| 778 (READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == RESET) | |
| 779 #endif /* RCC_PLLSAI2_SUPPORT */ | |
| 780 ) | |
| 781 { | |
| 782 MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE); | |
| 783 } | |
| 784 | |
| 785 #if defined(RCC_PLLSAI2_SUPPORT) | |
| 786 __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI3CLK); | |
| 787 #else | |
| 788 __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI2CLK); | |
| 789 #endif /* RCC_PLLSAI2_SUPPORT */ | |
| 790 | |
| 791 /* Get Start Tick*/ | |
| 792 tickstart = HAL_GetTick(); | |
| 793 | |
| 794 /* Wait till PLL is disabled */ | |
| 795 while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) | |
| 796 { | |
| 797 if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) | |
| 798 { | |
| 799 return HAL_TIMEOUT; | |
| 800 } | |
| 801 } | |
| 802 } | |
| 803 } | |
| 804 else | |
| 805 { | |
| 806 return HAL_ERROR; | |
| 807 } | |
| 808 } | |
| 809 return HAL_OK; | |
| 810 } | |
| 811 | |
| 812 /** | |
| 813 * @brief Initialize the CPU, AHB and APB busses clocks according to the specified | |
| 814 * parameters in the RCC_ClkInitStruct. | |
| 815 * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that | |
| 816 * contains the configuration information for the RCC peripheral. | |
| 817 * @param FLatency FLASH Latency | |
| 818 * This parameter can be one of the following values: | |
| 819 * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle | |
| 820 * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle | |
| 821 * @arg FLASH_LATENCY_2 FLASH 2 Latency cycle | |
| 822 * @arg FLASH_LATENCY_3 FLASH 3 Latency cycle | |
| 823 * @arg FLASH_LATENCY_4 FLASH 4 Latency cycle | |
| 824 * | |
| 825 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency | |
| 826 * and updated by HAL_RCC_GetHCLKFreq() function called within this function | |
| 827 * | |
| 828 * @note The MSI is used by default as system clock source after | |
| 829 * startup from Reset, wake-up from STANDBY mode. After restart from Reset, | |
| 830 * the MSI frequency is set to its default value 4 MHz. | |
| 831 * | |
| 832 * @note The HSI can be selected as system clock source after | |
| 833 * from STOP modes or in case of failure of the HSE used directly or indirectly | |
| 834 * as system clock (if the Clock Security System CSS is enabled). | |
| 835 * | |
| 836 * @note A switch from one clock source to another occurs only if the target | |
| 837 * clock source is ready (clock stable after startup delay or PLL locked). | |
| 838 * If a clock source which is not yet ready is selected, the switch will | |
| 839 * occur when the clock source is ready. | |
| 840 * | |
| 841 * @note You can use HAL_RCC_GetClockConfig() function to know which clock is | |
| 842 * currently used as system clock source. | |
| 843 * | |
| 844 * @note Depending on the device voltage range, the software has to set correctly | |
| 845 * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency | |
| 846 * (for more details refer to section above "Initialization/de-initialization functions") | |
| 847 * @retval None | |
| 848 */ | |
| 849 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) | |
| 850 { | |
| 851 uint32_t tickstart = 0; | |
| 852 | |
| 853 /* Check the parameters */ | |
| 854 assert_param(RCC_ClkInitStruct != NULL); | |
| 855 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); | |
| 856 assert_param(IS_FLASH_LATENCY(FLatency)); | |
| 857 | |
| 858 /* To correctly read data from FLASH memory, the number of wait states (LATENCY) | |
| 859 must be correctly programmed according to the frequency of the CPU clock | |
| 860 (HCLK) and the supply voltage of the device. */ | |
| 861 | |
| 862 /* Increasing the number of wait states because of higher CPU frequency */ | |
| 863 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) | |
| 864 { | |
| 865 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ | |
| 866 __HAL_FLASH_SET_LATENCY(FLatency); | |
| 867 | |
| 868 /* Check that the new number of wait states is taken into account to access the Flash | |
| 869 memory by reading the FLASH_ACR register */ | |
| 870 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) | |
| 871 { | |
| 872 return HAL_ERROR; | |
| 873 } | |
| 874 } | |
| 875 | |
| 876 /*-------------------------- HCLK Configuration --------------------------*/ | |
| 877 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) | |
| 878 { | |
| 879 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); | |
| 880 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); | |
| 881 } | |
| 882 | |
| 883 /*------------------------- SYSCLK Configuration ---------------------------*/ | |
| 884 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) | |
| 885 { | |
| 886 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); | |
| 887 | |
| 888 /* HSE is selected as System Clock Source */ | |
| 889 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) | |
| 890 { | |
| 891 /* Check the HSE ready flag */ | |
| 892 if(READ_BIT(RCC->CR, RCC_CR_HSERDY) == RESET) | |
| 893 { | |
| 894 return HAL_ERROR; | |
| 895 } | |
| 896 } | |
| 897 /* PLL is selected as System Clock Source */ | |
| 898 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) | |
| 899 { | |
| 900 /* Check the PLL ready flag */ | |
| 901 if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET) | |
| 902 { | |
| 903 return HAL_ERROR; | |
| 904 } | |
| 905 } | |
| 906 /* MSI is selected as System Clock Source */ | |
| 907 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI) | |
| 908 { | |
| 909 /* Check the MSI ready flag */ | |
| 910 if(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET) | |
| 911 { | |
| 912 return HAL_ERROR; | |
| 913 } | |
| 914 } | |
| 915 /* HSI is selected as System Clock Source */ | |
| 916 else | |
| 917 { | |
| 918 /* Check the HSI ready flag */ | |
| 919 if(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) | |
| 920 { | |
| 921 return HAL_ERROR; | |
| 922 } | |
| 923 } | |
| 924 MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource); | |
| 925 | |
| 926 /* Get Start Tick*/ | |
| 927 tickstart = HAL_GetTick(); | |
| 928 | |
| 929 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) | |
| 930 { | |
| 931 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSE) | |
| 932 { | |
| 933 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) | |
| 934 { | |
| 935 return HAL_TIMEOUT; | |
| 936 } | |
| 937 } | |
| 938 } | |
| 939 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) | |
| 940 { | |
| 941 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) | |
| 942 { | |
| 943 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) | |
| 944 { | |
| 945 return HAL_TIMEOUT; | |
| 946 } | |
| 947 } | |
| 948 } | |
| 949 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI) | |
| 950 { | |
| 951 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_MSI) | |
| 952 { | |
| 953 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) | |
| 954 { | |
| 955 return HAL_TIMEOUT; | |
| 956 } | |
| 957 } | |
| 958 } | |
| 959 else | |
| 960 { | |
| 961 while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSI) | |
| 962 { | |
| 963 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) | |
| 964 { | |
| 965 return HAL_TIMEOUT; | |
| 966 } | |
| 967 } | |
| 968 } | |
| 969 } | |
| 970 | |
| 971 /* Decreasing the number of wait states because of lower CPU frequency */ | |
| 972 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY)) | |
| 973 { | |
| 974 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ | |
| 975 __HAL_FLASH_SET_LATENCY(FLatency); | |
| 976 | |
| 977 /* Check that the new number of wait states is taken into account to access the Flash | |
| 978 memory by reading the FLASH_ACR register */ | |
| 979 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) | |
| 980 { | |
| 981 return HAL_ERROR; | |
| 982 } | |
| 983 } | |
| 984 | |
| 985 /*-------------------------- PCLK1 Configuration ---------------------------*/ | |
| 986 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) | |
| 987 { | |
| 988 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); | |
| 989 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); | |
| 990 } | |
| 991 | |
| 992 /*-------------------------- PCLK2 Configuration ---------------------------*/ | |
| 993 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) | |
| 994 { | |
| 995 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); | |
| 996 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U)); | |
| 997 } | |
| 998 | |
| 999 /* Update the SystemCoreClock global variable */ | |
| 1000 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)]; | |
| 1001 | |
| 1002 /* Configure the source of time base considering new system clocks settings*/ | |
| 1003 HAL_InitTick (TICK_INT_PRIORITY); | |
| 1004 | |
| 1005 return HAL_OK; | |
| 1006 } | |
| 1007 | |
| 1008 /** | |
| 1009 * @} | |
| 1010 */ | |
| 1011 | |
| 1012 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions | |
| 1013 * @brief RCC clocks control functions | |
| 1014 * | |
| 1015 @verbatim | |
| 1016 =============================================================================== | |
| 1017 ##### Peripheral Control functions ##### | |
| 1018 =============================================================================== | |
| 1019 [..] | |
| 1020 This subsection provides a set of functions allowing to: | |
| 1021 | |
| 1022 (+) Ouput clock to MCO pin. | |
| 1023 (+) Retrieve current clock frequencies. | |
| 1024 (+) Enable the Clock Security System. | |
| 1025 | |
| 1026 @endverbatim | |
| 1027 * @{ | |
| 1028 */ | |
| 1029 | |
| 1030 /** | |
| 1031 * @brief Select the clock source to output on MCO pin(PA8). | |
| 1032 * @note PA8 should be configured in alternate function mode. | |
| 1033 * @param RCC_MCOx specifies the output direction for the clock source. | |
| 1034 * For STM32L4xx family this parameter can have only one value: | |
| 1035 * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). | |
| 1036 * @param RCC_MCOSource specifies the clock source to output. | |
| 1037 * This parameter can be one of the following values: | |
| 1038 * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO | |
| 1039 * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source | |
| 1040 * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source | |
| 1041 * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source | |
| 1042 * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee | |
| 1043 * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source | |
| 1044 * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source | |
| 1045 * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source | |
| 1046 @if STM32L443xx | |
| 1047 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48 | |
| 1048 @endif | |
| 1049 * @param RCC_MCODiv specifies the MCO prescaler. | |
| 1050 * This parameter can be one of the following values: | |
| 1051 * @arg @ref RCC_MCODIV_1 no division applied to MCO clock | |
| 1052 * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock | |
| 1053 * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock | |
| 1054 * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock | |
| 1055 * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock | |
| 1056 * @retval None | |
| 1057 */ | |
| 1058 void HAL_RCC_MCOConfig( uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) | |
| 1059 { | |
| 1060 GPIO_InitTypeDef GPIO_InitStruct; | |
| 1061 /* Check the parameters */ | |
| 1062 assert_param(IS_RCC_MCO(RCC_MCOx)); | |
| 1063 assert_param(IS_RCC_MCODIV(RCC_MCODiv)); | |
| 1064 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); | |
| 1065 | |
| 1066 /* MCO Clock Enable */ | |
| 1067 __MCO1_CLK_ENABLE(); | |
| 1068 | |
| 1069 /* Configue the MCO1 pin in alternate function mode */ | |
| 1070 GPIO_InitStruct.Pin = MCO1_PIN; | |
| 1071 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; | |
| 1072 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; | |
| 1073 GPIO_InitStruct.Pull = GPIO_NOPULL; | |
| 1074 GPIO_InitStruct.Alternate = GPIO_AF0_MCO; | |
| 1075 HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); | |
| 1076 | |
| 1077 /* Mask MCOSEL[] and MCOPRE[] bits then set MCO1 clock source and prescaler */ | |
| 1078 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv )); | |
| 1079 } | |
| 1080 | |
| 1081 /** | |
| 1082 * @brief Return the SYSCLK frequency. | |
| 1083 * | |
| 1084 * @note The system frequency computed by this function is not the real | |
| 1085 * frequency in the chip. It is calculated based on the predefined | |
| 1086 * constant and the selected clock source: | |
| 1087 * @note If SYSCLK source is MSI, function returns values based on MSI | |
| 1088 * Value as defined by the MSI range. | |
| 1089 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) | |
| 1090 * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) | |
| 1091 * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**), | |
| 1092 * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors. | |
| 1093 * @note (*) HSI_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value | |
| 1094 * 16 MHz) but the real value may vary depending on the variations | |
| 1095 * in voltage and temperature. | |
| 1096 * @note (**) HSE_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value | |
| 1097 * 8 MHz), user has to ensure that HSE_VALUE is same as the real | |
| 1098 * frequency of the crystal used. Otherwise, this function may | |
| 1099 * have wrong result. | |
| 1100 * | |
| 1101 * @note The result of this function could be not correct when using fractional | |
| 1102 * value for HSE crystal. | |
| 1103 * | |
| 1104 * @note This function can be used by the user application to compute the | |
| 1105 * baudrate for the communication peripherals or configure other parameters. | |
| 1106 * | |
| 1107 * @note Each time SYSCLK changes, this function must be called to update the | |
| 1108 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. | |
| 1109 * | |
| 1110 * | |
| 1111 * @retval SYSCLK frequency | |
| 1112 */ | |
| 1113 uint32_t HAL_RCC_GetSysClockFreq(void) | |
| 1114 { | |
| 1115 uint32_t msirange = 0U, pllvco = 0U, pllsource = 0U, pllr = 2U, pllm = 2U; | |
| 1116 uint32_t sysclockfreq = 0U; | |
| 1117 | |
| 1118 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) || | |
| 1119 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_MSI))) | |
| 1120 { | |
| 1121 /* MSI or PLL with MSI source used as system clock source */ | |
| 1122 | |
| 1123 /* Get SYSCLK source */ | |
| 1124 if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == RESET) | |
| 1125 { /* MSISRANGE from RCC_CSR applies */ | |
| 1126 msirange = (RCC->CSR & RCC_CSR_MSISRANGE) >> POSITION_VAL(RCC_CSR_MSISRANGE); | |
| 1127 } | |
| 1128 else | |
| 1129 { /* MSIRANGE from RCC_CR applies */ | |
| 1130 msirange = (RCC->CR & RCC_CR_MSIRANGE) >> POSITION_VAL(RCC_CR_MSIRANGE); | |
| 1131 } | |
| 1132 /*MSI frequency range in HZ*/ | |
| 1133 msirange = MSIRangeTable[msirange]; | |
| 1134 | |
| 1135 if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) | |
| 1136 { | |
| 1137 /* MSI used as system clock source */ | |
| 1138 sysclockfreq = msirange; | |
| 1139 } | |
| 1140 } | |
| 1141 else if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) | |
| 1142 { | |
| 1143 /* HSI used as system clock source */ | |
| 1144 sysclockfreq = HSI_VALUE; | |
| 1145 } | |
| 1146 else if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) | |
| 1147 { | |
| 1148 /* HSE used as system clock source */ | |
| 1149 sysclockfreq = HSE_VALUE; | |
| 1150 } | |
| 1151 | |
| 1152 if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) | |
| 1153 { | |
| 1154 /* PLL used as system clock source */ | |
| 1155 | |
| 1156 /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN | |
| 1157 SYSCLK = PLL_VCO / PLLR | |
| 1158 */ | |
| 1159 pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); | |
| 1160 pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U ; | |
| 1161 | |
| 1162 switch (pllsource) | |
| 1163 { | |
| 1164 case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ | |
| 1165 pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); | |
| 1166 break; | |
| 1167 | |
| 1168 case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ | |
| 1169 pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); | |
| 1170 break; | |
| 1171 | |
| 1172 case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */ | |
| 1173 default: | |
| 1174 pllvco = (msirange / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); | |
| 1175 break; | |
| 1176 } | |
| 1177 pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)) + 1U ) * 2U; | |
| 1178 sysclockfreq = pllvco/pllr; | |
| 1179 } | |
| 1180 | |
| 1181 return sysclockfreq; | |
| 1182 } | |
| 1183 | |
| 1184 /** | |
| 1185 * @brief Return the HCLK frequency. | |
| 1186 * @note Each time HCLK changes, this function must be called to update the | |
| 1187 * right HCLK value. Otherwise, any configuration based on this function will be incorrect. | |
| 1188 * | |
| 1189 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency. | |
| 1190 * @retval HCLK frequency in Hz | |
| 1191 */ | |
| 1192 uint32_t HAL_RCC_GetHCLKFreq(void) | |
| 1193 { | |
| 1194 return SystemCoreClock; | |
| 1195 } | |
| 1196 | |
| 1197 /** | |
| 1198 * @brief Return the PCLK1 frequency. | |
| 1199 * @note Each time PCLK1 changes, this function must be called to update the | |
| 1200 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. | |
| 1201 * @retval PCLK1 frequency in Hz | |
| 1202 */ | |
| 1203 uint32_t HAL_RCC_GetPCLK1Freq(void) | |
| 1204 { | |
| 1205 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ | |
| 1206 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]); | |
| 1207 } | |
| 1208 | |
| 1209 /** | |
| 1210 * @brief Return the PCLK2 frequency. | |
| 1211 * @note Each time PCLK2 changes, this function must be called to update the | |
| 1212 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. | |
| 1213 * @retval PCLK2 frequency in Hz | |
| 1214 */ | |
| 1215 uint32_t HAL_RCC_GetPCLK2Freq(void) | |
| 1216 { | |
| 1217 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ | |
| 1218 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]); | |
| 1219 } | |
| 1220 | |
| 1221 /** | |
| 1222 * @brief Configure the RCC_OscInitStruct according to the internal | |
| 1223 * RCC configuration registers. | |
| 1224 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that | |
| 1225 * will be configured. | |
| 1226 * @retval None | |
| 1227 */ | |
| 1228 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) | |
| 1229 { | |
| 1230 /* Check the parameters */ | |
| 1231 assert_param(RCC_OscInitStruct != NULL); | |
| 1232 | |
| 1233 /* Set all possible values for the Oscillator type parameter ---------------*/ | |
| 1234 #if defined(RCC_HSI48_SUPPORT) | |
| 1235 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ | |
| 1236 RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48; | |
| 1237 #else | |
| 1238 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \ | |
| 1239 RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; | |
| 1240 #endif /* RCC_HSI48_SUPPORT */ | |
| 1241 | |
| 1242 /* Get the HSE configuration -----------------------------------------------*/ | |
| 1243 if((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP) | |
| 1244 { | |
| 1245 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; | |
| 1246 } | |
| 1247 else if((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON) | |
| 1248 { | |
| 1249 RCC_OscInitStruct->HSEState = RCC_HSE_ON; | |
| 1250 } | |
| 1251 else | |
| 1252 { | |
| 1253 RCC_OscInitStruct->HSEState = RCC_HSE_OFF; | |
| 1254 } | |
| 1255 | |
| 1256 /* Get the MSI configuration -----------------------------------------------*/ | |
| 1257 if((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION) | |
| 1258 { | |
| 1259 RCC_OscInitStruct->MSIState = RCC_MSI_ON; | |
| 1260 } | |
| 1261 else | |
| 1262 { | |
| 1263 RCC_OscInitStruct->MSIState = RCC_MSI_OFF; | |
| 1264 } | |
| 1265 | |
| 1266 RCC_OscInitStruct->MSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSITRIM) >> POSITION_VAL(RCC_ICSCR_MSITRIM)); | |
| 1267 RCC_OscInitStruct->MSIClockRange = (uint32_t)((RCC->CR & RCC_CR_MSIRANGE) ); | |
| 1268 | |
| 1269 /* Get the HSI configuration -----------------------------------------------*/ | |
| 1270 if((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION) | |
| 1271 { | |
| 1272 RCC_OscInitStruct->HSIState = RCC_HSI_ON; | |
| 1273 } | |
| 1274 else | |
| 1275 { | |
| 1276 RCC_OscInitStruct->HSIState = RCC_HSI_OFF; | |
| 1277 } | |
| 1278 | |
| 1279 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> POSITION_VAL(RCC_ICSCR_HSITRIM)); | |
| 1280 | |
| 1281 /* Get the LSE configuration -----------------------------------------------*/ | |
| 1282 if((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) | |
| 1283 { | |
| 1284 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; | |
| 1285 } | |
| 1286 else if((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON) | |
| 1287 { | |
| 1288 RCC_OscInitStruct->LSEState = RCC_LSE_ON; | |
| 1289 } | |
| 1290 else | |
| 1291 { | |
| 1292 RCC_OscInitStruct->LSEState = RCC_LSE_OFF; | |
| 1293 } | |
| 1294 | |
| 1295 /* Get the LSI configuration -----------------------------------------------*/ | |
| 1296 if((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION) | |
| 1297 { | |
| 1298 RCC_OscInitStruct->LSIState = RCC_LSI_ON; | |
| 1299 } | |
| 1300 else | |
| 1301 { | |
| 1302 RCC_OscInitStruct->LSIState = RCC_LSI_OFF; | |
| 1303 } | |
| 1304 | |
| 1305 #if defined(RCC_HSI48_SUPPORT) | |
| 1306 /* Get the HSI48 configuration ---------------------------------------------*/ | |
| 1307 if((RCC->CRRCR & RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON) | |
| 1308 { | |
| 1309 RCC_OscInitStruct->HSI48State = RCC_HSI48_ON; | |
| 1310 } | |
| 1311 else | |
| 1312 { | |
| 1313 RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; | |
| 1314 } | |
| 1315 #else | |
| 1316 RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF; | |
| 1317 #endif /* RCC_HSI48_SUPPORT */ | |
| 1318 | |
| 1319 /* Get the PLL configuration -----------------------------------------------*/ | |
| 1320 if((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON) | |
| 1321 { | |
| 1322 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; | |
| 1323 } | |
| 1324 else | |
| 1325 { | |
| 1326 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; | |
| 1327 } | |
| 1328 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); | |
| 1329 RCC_OscInitStruct->PLL.PLLM = (uint32_t)(((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U); | |
| 1330 RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); | |
| 1331 RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)) + 1U) << 1U); | |
| 1332 RCC_OscInitStruct->PLL.PLLR = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)) + 1U) << 1U); | |
| 1333 #if defined(RCC_PLLP_DIV_2_31_SUPPORT) | |
| 1334 RCC_OscInitStruct->PLL.PLLP = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLPDIV) >> POSITION_VAL(RCC_PLLCFGR_PLLPDIV)); | |
| 1335 #else | |
| 1336 if((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) != RESET) | |
| 1337 { | |
| 1338 RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV17; | |
| 1339 } | |
| 1340 else | |
| 1341 { | |
| 1342 RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV7; | |
| 1343 } | |
| 1344 #endif /* RCC_PLLP_DIV_2_31_SUPPORT */ | |
| 1345 } | |
| 1346 | |
| 1347 /** | |
| 1348 * @brief Configure the RCC_ClkInitStruct according to the internal | |
| 1349 * RCC configuration registers. | |
| 1350 * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that | |
| 1351 * will be configured. | |
| 1352 * @param pFLatency Pointer on the Flash Latency. | |
| 1353 * @retval None | |
| 1354 */ | |
| 1355 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) | |
| 1356 { | |
| 1357 /* Check the parameters */ | |
| 1358 assert_param(RCC_ClkInitStruct != NULL); | |
| 1359 assert_param(pFLatency != NULL); | |
| 1360 | |
| 1361 /* Set all possible values for the Clock type parameter --------------------*/ | |
| 1362 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; | |
| 1363 | |
| 1364 /* Get the SYSCLK configuration --------------------------------------------*/ | |
| 1365 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); | |
| 1366 | |
| 1367 /* Get the HCLK configuration ----------------------------------------------*/ | |
| 1368 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); | |
| 1369 | |
| 1370 /* Get the APB1 configuration ----------------------------------------------*/ | |
| 1371 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); | |
| 1372 | |
| 1373 /* Get the APB2 configuration ----------------------------------------------*/ | |
| 1374 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U); | |
| 1375 | |
| 1376 /* Get the Flash Wait State (Latency) configuration ------------------------*/ | |
| 1377 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); | |
| 1378 } | |
| 1379 | |
| 1380 /** | |
| 1381 * @brief Enable the Clock Security System. | |
| 1382 * @note If a failure is detected on the HSE oscillator clock, this oscillator | |
| 1383 * is automatically disabled and an interrupt is generated to inform the | |
| 1384 * software about the failure (Clock Security System Interrupt, CSSI), | |
| 1385 * allowing the MCU to perform rescue operations. The CSSI is linked to | |
| 1386 * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector. | |
| 1387 * @note The Clock Security System can only be cleared by reset. | |
| 1388 * @retval None | |
| 1389 */ | |
| 1390 void HAL_RCC_EnableCSS(void) | |
| 1391 { | |
| 1392 SET_BIT(RCC->CR, RCC_CR_CSSON) ; | |
| 1393 } | |
| 1394 | |
| 1395 /** | |
| 1396 * @brief Handle the RCC Clock Security System interrupt request. | |
| 1397 * @note This API should be called under the NMI_Handler(). | |
| 1398 * @retval None | |
| 1399 */ | |
| 1400 void HAL_RCC_NMI_IRQHandler(void) | |
| 1401 { | |
| 1402 /* Check RCC CSSF interrupt flag */ | |
| 1403 if(__HAL_RCC_GET_IT(RCC_IT_CSS)) | |
| 1404 { | |
| 1405 /* RCC Clock Security System interrupt user callback */ | |
| 1406 HAL_RCC_CSSCallback(); | |
| 1407 | |
| 1408 /* Clear RCC CSS pending bit */ | |
| 1409 __HAL_RCC_CLEAR_IT(RCC_IT_CSS); | |
| 1410 } | |
| 1411 } | |
| 1412 | |
| 1413 /** | |
| 1414 * @brief RCC Clock Security System interrupt callback. | |
| 1415 * @retval none | |
| 1416 */ | |
| 1417 __weak void HAL_RCC_CSSCallback(void) | |
| 1418 { | |
| 1419 /* NOTE : This function should not be modified, when the callback is needed, | |
| 1420 the HAL_RCC_CSSCallback should be implemented in the user file | |
| 1421 */ | |
| 1422 } | |
| 1423 | |
| 1424 /** | |
| 1425 * @} | |
| 1426 */ | |
| 1427 | |
| 1428 /** | |
| 1429 * @} | |
| 1430 */ | |
| 1431 | |
| 1432 /* Private function prototypes -----------------------------------------------*/ | |
| 1433 /** @addtogroup RCC_Private_Functions | |
| 1434 * @{ | |
| 1435 */ | |
| 1436 /** | |
| 1437 * @brief Update number of Flash wait states in line with MSI range and current | |
| 1438 voltage range. | |
| 1439 * @param msirange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_11 | |
| 1440 * @retval HAL status | |
| 1441 */ | |
| 1442 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange) | |
| 1443 { | |
| 1444 uint32_t vos = 0; | |
| 1445 uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */ | |
| 1446 | |
| 1447 if(__HAL_RCC_PWR_IS_CLK_ENABLED()) | |
| 1448 { | |
| 1449 vos = HAL_PWREx_GetVoltageRange(); | |
| 1450 } | |
| 1451 else | |
| 1452 { | |
| 1453 __HAL_RCC_PWR_CLK_ENABLE(); | |
| 1454 vos = HAL_PWREx_GetVoltageRange(); | |
| 1455 __HAL_RCC_PWR_CLK_DISABLE(); | |
| 1456 } | |
| 1457 | |
| 1458 if(vos == PWR_REGULATOR_VOLTAGE_SCALE1) | |
| 1459 { | |
| 1460 if(msirange > RCC_MSIRANGE_8) | |
| 1461 { | |
| 1462 /* MSI > 16Mhz */ | |
| 1463 if(msirange > RCC_MSIRANGE_10) | |
| 1464 { | |
| 1465 /* MSI 48Mhz */ | |
| 1466 latency = FLASH_LATENCY_2; /* 2WS */ | |
| 1467 } | |
| 1468 else | |
| 1469 { | |
| 1470 /* MSI 24Mhz or 32Mhz */ | |
| 1471 latency = FLASH_LATENCY_1; /* 1WS */ | |
| 1472 } | |
| 1473 } | |
| 1474 /* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */ | |
| 1475 } | |
| 1476 else | |
| 1477 { | |
| 1478 if(msirange > RCC_MSIRANGE_8) | |
| 1479 { | |
| 1480 /* MSI > 16Mhz */ | |
| 1481 latency = FLASH_LATENCY_3; /* 3WS */ | |
| 1482 } | |
| 1483 else | |
| 1484 { | |
| 1485 if(msirange == RCC_MSIRANGE_8) | |
| 1486 { | |
| 1487 /* MSI 16Mhz */ | |
| 1488 latency = FLASH_LATENCY_2; /* 2WS */ | |
| 1489 } | |
| 1490 else if(msirange == RCC_MSIRANGE_7) | |
| 1491 { | |
| 1492 /* MSI 8Mhz */ | |
| 1493 latency = FLASH_LATENCY_1; /* 1WS */ | |
| 1494 } | |
| 1495 /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */ | |
| 1496 } | |
| 1497 } | |
| 1498 | |
| 1499 __HAL_FLASH_SET_LATENCY(latency); | |
| 1500 | |
| 1501 /* Check that the new number of wait states is taken into account to access the Flash | |
| 1502 memory by reading the FLASH_ACR register */ | |
| 1503 if((FLASH->ACR & FLASH_ACR_LATENCY) != latency) | |
| 1504 { | |
| 1505 return HAL_ERROR; | |
| 1506 } | |
| 1507 | |
| 1508 return HAL_OK; | |
| 1509 } | |
| 1510 | |
| 1511 /** | |
| 1512 * @} | |
| 1513 */ | |
| 1514 | |
| 1515 #endif /* HAL_RCC_MODULE_ENABLED */ | |
| 1516 /** | |
| 1517 * @} | |
| 1518 */ | |
| 1519 | |
| 1520 /** | |
| 1521 * @} | |
| 1522 */ | |
| 1523 | |
| 1524 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
