0
|
1 /**
|
|
2 ******************************************************************************
|
|
3 * @file stm32l4xx_hal_rcc.c
|
|
4 * @author MCD Application Team
|
|
5 * @version V1.6.0
|
|
6 * @date 28-October-2016
|
|
7 * @brief RCC HAL module driver.
|
|
8 * This file provides firmware functions to manage the following
|
|
9 * functionalities of the Reset and Clock Control (RCC) peripheral:
|
|
10 * + Initialization and de-initialization functions
|
|
11 * + Peripheral Control functions
|
|
12 *
|
|
13 @verbatim
|
|
14 ==============================================================================
|
|
15 ##### RCC specific features #####
|
|
16 ==============================================================================
|
|
17 [..]
|
|
18 After reset the device is running from Multiple Speed Internal oscillator
|
|
19 (4 MHz) with Flash 0 wait state. Flash prefetch buffer, D-Cache
|
|
20 and I-Cache are disabled, and all peripherals are off except internal
|
|
21 SRAM, Flash and JTAG.
|
|
22
|
|
23 (+) There is no prescaler on High speed (AHBs) and Low speed (APBs) busses:
|
|
24 all peripherals mapped on these busses are running at MSI speed.
|
|
25 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
|
|
26 (+) All GPIOs are in analog mode, except the JTAG pins which
|
|
27 are assigned to be used for debug purpose.
|
|
28
|
|
29 [..]
|
|
30 Once the device started from reset, the user application has to:
|
|
31 (+) Configure the clock source to be used to drive the System clock
|
|
32 (if the application needs higher frequency/performance)
|
|
33 (+) Configure the System clock frequency and Flash settings
|
|
34 (+) Configure the AHB and APB busses prescalers
|
|
35 (+) Enable the clock for the peripheral(s) to be used
|
|
36 (+) Configure the clock source(s) for peripherals which clocks are not
|
|
37 derived from the System clock (SAIx, RTC, ADC, USB OTG FS/SDMMC1/RNG)
|
|
38
|
|
39 @endverbatim
|
|
40 ******************************************************************************
|
|
41 * @attention
|
|
42 *
|
|
43 * <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
|
|
44 *
|
|
45 * Redistribution and use in source and binary forms, with or without modification,
|
|
46 * are permitted provided that the following conditions are met:
|
|
47 * 1. Redistributions of source code must retain the above copyright notice,
|
|
48 * this list of conditions and the following disclaimer.
|
|
49 * 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
50 * this list of conditions and the following disclaimer in the documentation
|
|
51 * and/or other materials provided with the distribution.
|
|
52 * 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
53 * may be used to endorse or promote products derived from this software
|
|
54 * without specific prior written permission.
|
|
55 *
|
|
56 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
57 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
59 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
62 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
63 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
64 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
65 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
66 *
|
|
67 ******************************************************************************
|
|
68 */
|
|
69
|
|
70 /* Includes ------------------------------------------------------------------*/
|
|
71 #include "stm32l4xx_hal.h"
|
|
72
|
|
73 /** @addtogroup STM32L4xx_HAL_Driver
|
|
74 * @{
|
|
75 */
|
|
76
|
|
77 /** @defgroup RCC RCC
|
|
78 * @brief RCC HAL module driver
|
|
79 * @{
|
|
80 */
|
|
81
|
|
82 #ifdef HAL_RCC_MODULE_ENABLED
|
|
83
|
|
84 /* Private typedef -----------------------------------------------------------*/
|
|
85 /* Private define ------------------------------------------------------------*/
|
|
86 /** @defgroup RCC_Private_Constants RCC Private Constants
|
|
87 * @{
|
|
88 */
|
|
89 #define HSE_TIMEOUT_VALUE HSE_STARTUP_TIMEOUT
|
|
90 #define HSI_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */
|
|
91 #define MSI_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */
|
|
92 #define LSI_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */
|
|
93 #define HSI48_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */
|
|
94 #define PLL_TIMEOUT_VALUE ((uint32_t)2U) /* 2 ms (minimum Tick + 1) */
|
|
95 #define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000U) /* 5 s */
|
|
96 /**
|
|
97 * @}
|
|
98 */
|
|
99
|
|
100 /* Private macro -------------------------------------------------------------*/
|
|
101 /** @defgroup RCC_Private_Macros RCC Private Macros
|
|
102 * @{
|
|
103 */
|
|
104 #define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()
|
|
105 #define MCO1_GPIO_PORT GPIOA
|
|
106 #define MCO1_PIN GPIO_PIN_8
|
|
107
|
|
108 #define RCC_PLL_OSCSOURCE_CONFIG(__HAL_RCC_PLLSOURCE__) \
|
|
109 (MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, (uint32_t)(__HAL_RCC_PLLSOURCE__)))
|
|
110 /**
|
|
111 * @}
|
|
112 */
|
|
113
|
|
114 /* Private variables ---------------------------------------------------------*/
|
|
115 /** @defgroup RCC_Private_Variables RCC Private Variables
|
|
116 * @{
|
|
117 */
|
|
118
|
|
119 /**
|
|
120 * @}
|
|
121 */
|
|
122
|
|
123 /* Private function prototypes -----------------------------------------------*/
|
|
124 /** @defgroup RCC_Private_Functions RCC Private Functions
|
|
125 * @{
|
|
126 */
|
|
127 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange);
|
|
128 /**
|
|
129 * @}
|
|
130 */
|
|
131
|
|
132 /* Exported functions --------------------------------------------------------*/
|
|
133
|
|
134 /** @defgroup RCC_Exported_Functions RCC Exported Functions
|
|
135 * @{
|
|
136 */
|
|
137
|
|
138 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
139 * @brief Initialization and Configuration functions
|
|
140 *
|
|
141 @verbatim
|
|
142 ===============================================================================
|
|
143 ##### Initialization and de-initialization functions #####
|
|
144 ===============================================================================
|
|
145 [..]
|
|
146 This section provides functions allowing to configure the internal and external oscillators
|
|
147 (HSE, HSI, LSE, MSI, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1
|
|
148 and APB2).
|
|
149
|
|
150 [..] Internal/external clock and PLL configuration
|
|
151 (+) HSI (high-speed internal): 16 MHz factory-trimmed RC used directly or through
|
|
152 the PLL as System clock source.
|
|
153
|
|
154 (+) MSI (Mutiple Speed Internal): Its frequency is software trimmable from 100KHZ to 48MHZ.
|
|
155 It can be used to generate the clock for the USB OTG FS (48 MHz).
|
|
156 The number of flash wait states is automatically adjusted when MSI range is updated with
|
|
157 HAL_RCC_OscConfig() and the MSI is used as System clock source.
|
|
158
|
|
159 (+) LSI (low-speed internal): 32 KHz low consumption RC used as IWDG and/or RTC
|
|
160 clock source.
|
|
161
|
|
162 (+) HSE (high-speed external): 4 to 48 MHz crystal oscillator used directly or
|
|
163 through the PLL as System clock source. Can be used also optionally as RTC clock source.
|
|
164
|
|
165 (+) LSE (low-speed external): 32.768 KHz oscillator used optionally as RTC clock source.
|
|
166
|
|
167 (+) PLL (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
168 (++) The first output is used to generate the high speed system clock (up to 80MHz).
|
|
169 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
|
|
170 the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
|
|
171 (++) The third output is used to generate an accurate clock to achieve
|
|
172 high-quality audio performance on SAI interface.
|
|
173
|
|
174 (+) PLLSAI1 (clocked by HSI, HSE or MSI) providing up to three independent output clocks:
|
|
175 (++) The first output is used to generate SAR ADC1 clock.
|
|
176 (++) The second output is used to generate the clock for the USB OTG FS (48 MHz),
|
|
177 the random analog generator (<=48 MHz) and the SDMMC1 (<= 48 MHz).
|
|
178 (++) The Third output is used to generate an accurate clock to achieve
|
|
179 high-quality audio performance on SAI interface.
|
|
180
|
|
181 (+) PLLSAI2 (clocked by HSI , HSE or MSI) providing up to two independent output clocks:
|
|
182 (++) The first output is used to generate SAR ADC2 clock.
|
|
183 (++) The second output is used to generate an accurate clock to achieve
|
|
184 high-quality audio performance on SAI interface.
|
|
185
|
|
186 (+) CSS (Clock security system): once enabled, if a HSE clock failure occurs
|
|
187 (HSE used directly or through PLL as System clock source), the System clock
|
|
188 is automatically switched to HSI and an interrupt is generated if enabled.
|
|
189 The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt)
|
|
190 exception vector.
|
|
191
|
|
192 (+) MCO (microcontroller clock output): used to output MSI, LSI, HSI, LSE, HSE or
|
|
193 main PLL clock (through a configurable prescaler) on PA8 pin.
|
|
194
|
|
195 [..] System, AHB and APB busses clocks configuration
|
|
196 (+) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
|
|
197 HSE and main PLL.
|
|
198 The AHB clock (HCLK) is derived from System clock through configurable
|
|
199 prescaler and used to clock the CPU, memory and peripherals mapped
|
|
200 on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
|
|
201 from AHB clock through configurable prescalers and used to clock
|
|
202 the peripherals mapped on these busses. You can use
|
|
203 "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
|
|
204
|
|
205 -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
|
|
206
|
|
207 (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLSAI1) or (PLLSAI2) or
|
|
208 from an external clock mapped on the SAI_CKIN pin.
|
|
209 You have to use HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
|
|
210 (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock
|
|
211 divided by 2 to 31.
|
|
212 You have to use __HAL_RCC_RTC_ENABLE() and HAL_RCCEx_PeriphCLKConfig() function
|
|
213 to configure this clock.
|
|
214 (+@) USB OTG FS, SDMMC1 and RNG: USB OTG FS requires a frequency equal to 48 MHz
|
|
215 to work correctly, while the SDMMC1 and RNG peripherals require a frequency
|
|
216 equal or lower than to 48 MHz. This clock is derived of the main PLL or PLLSAI1
|
|
217 through PLLQ divider. You have to enable the peripheral clock and use
|
|
218 HAL_RCCEx_PeriphCLKConfig() function to configure this clock.
|
|
219 (+@) IWDG clock which is always the LSI clock.
|
|
220
|
|
221
|
|
222 (+) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 80 MHz.
|
|
223 The clock source frequency should be adapted depending on the device voltage range
|
|
224 as listed in the Reference Manual "Clock source frequency versus voltage scaling" chapter.
|
|
225
|
|
226 @endverbatim
|
|
227
|
|
228 Table 1. HCLK clock frequency.
|
|
229 +-------------------------------------------------------+
|
|
230 | Latency | HCLK clock frequency (MHz) |
|
|
231 | |-------------------------------------|
|
|
232 | | voltage range 1 | voltage range 2 |
|
|
233 | | 1.2 V | 1.0 V |
|
|
234 |-----------------|------------------|------------------|
|
|
235 |0WS(1 CPU cycles)| 0 < HCLK <= 16 | 0 < HCLK <= 6 |
|
|
236 |-----------------|------------------|------------------|
|
|
237 |1WS(2 CPU cycles)| 16 < HCLK <= 32 | 6 < HCLK <= 12 |
|
|
238 |-----------------|------------------|------------------|
|
|
239 |2WS(3 CPU cycles)| 32 < HCLK <= 48 | 12 < HCLK <= 18 |
|
|
240 |-----------------|------------------|------------------|
|
|
241 |3WS(4 CPU cycles)| 48 < HCLK <= 64 | 18 < HCLK <= 26 |
|
|
242 |-----------------|------------------|------------------|
|
|
243 |4WS(5 CPU cycles)| 64 < HCLK <= 80 | 18 < HCLK <= 26 |
|
|
244 +-------------------------------------------------------+
|
|
245 * @{
|
|
246 */
|
|
247
|
|
248 /**
|
|
249 * @brief Reset the RCC clock configuration to the default reset state.
|
|
250 * @note The default reset state of the clock configuration is given below:
|
|
251 * - MSI ON and used as system clock source
|
|
252 * - HSE, HSI, PLL, PLLSAI1 and PLLISAI2 OFF
|
|
253 * - AHB, APB1 and APB2 prescaler set to 1.
|
|
254 * - CSS, MCO1 OFF
|
|
255 * - All interrupts disabled
|
|
256 * @note This function doesn't modify the configuration of the
|
|
257 * - Peripheral clocks
|
|
258 * - LSI, LSE and RTC clocks
|
|
259 * @retval None
|
|
260 */
|
|
261 void HAL_RCC_DeInit(void)
|
|
262 {
|
|
263 /* Set MSION bit */
|
|
264 SET_BIT(RCC->CR, RCC_CR_MSION);
|
|
265
|
|
266 /* Insure MSIRDY bit is set before writing default MSIRANGE value */
|
|
267 while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET) { __NOP(); }
|
|
268
|
|
269 /* Set MSIRANGE default value */
|
|
270 MODIFY_REG(RCC->CR, RCC_CR_MSIRANGE, RCC_MSIRANGE_6);
|
|
271
|
|
272 /* Reset CFGR register (MSI is selected as system clock source) */
|
|
273 CLEAR_REG(RCC->CFGR);
|
|
274
|
|
275 /* Reset HSION, HSIKERON, HSIASFS, HSEON, HSECSSON, PLLON, PLLSAIxON bits */
|
|
276 #if defined(RCC_PLLSAI2_SUPPORT)
|
|
277
|
|
278 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON | RCC_CR_PLLSAI2ON);
|
|
279
|
|
280 #else
|
|
281
|
|
282 CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_HSION | RCC_CR_HSIKERON| RCC_CR_HSIASFS | RCC_CR_PLLON | RCC_CR_PLLSAI1ON);
|
|
283
|
|
284 #endif /* RCC_PLLSAI2_SUPPORT */
|
|
285
|
|
286 /* Reset PLLCFGR register */
|
|
287 CLEAR_REG(RCC->PLLCFGR);
|
|
288 SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLN_4 );
|
|
289
|
|
290 /* Reset PLLSAI1CFGR register */
|
|
291 CLEAR_REG(RCC->PLLSAI1CFGR);
|
|
292 SET_BIT(RCC->PLLSAI1CFGR, RCC_PLLSAI1CFGR_PLLSAI1N_4 );
|
|
293
|
|
294 #if defined(RCC_PLLSAI2_SUPPORT)
|
|
295
|
|
296 /* Reset PLLSAI2CFGR register */
|
|
297 CLEAR_REG(RCC->PLLSAI2CFGR);
|
|
298 SET_BIT(RCC->PLLSAI2CFGR, RCC_PLLSAI2CFGR_PLLSAI2N_4 );
|
|
299
|
|
300 #endif /* RCC_PLLSAI2_SUPPORT */
|
|
301
|
|
302 /* Reset HSEBYP bit */
|
|
303 CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
|
|
304
|
|
305 /* Disable all interrupts */
|
|
306 CLEAR_REG(RCC->CIER);
|
|
307
|
|
308 /* Update the SystemCoreClock global variable */
|
|
309 SystemCoreClock = MSI_VALUE;
|
|
310 }
|
|
311
|
|
312 /**
|
|
313 * @brief Initialize the RCC Oscillators according to the specified parameters in the
|
|
314 * RCC_OscInitTypeDef.
|
|
315 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
316 * contains the configuration information for the RCC Oscillators.
|
|
317 * @note The PLL is not disabled when used as system clock.
|
|
318 * @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
|
|
319 * supported by this macro. User should request a transition to LSE Off
|
|
320 * first and then LSE On or LSE Bypass.
|
|
321 * @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
|
|
322 * supported by this macro. User should request a transition to HSE Off
|
|
323 * first and then HSE On or HSE Bypass.
|
|
324 * @retval HAL status
|
|
325 */
|
|
326 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
327 {
|
|
328 uint32_t tickstart = 0;
|
|
329
|
|
330 /* Check the parameters */
|
|
331 assert_param(RCC_OscInitStruct != NULL);
|
|
332 assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
|
|
333
|
|
334 /*----------------------------- MSI Configuration --------------------------*/
|
|
335 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
|
|
336 {
|
|
337 /* Check the parameters */
|
|
338 assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
|
|
339 assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
|
|
340 assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
|
|
341
|
|
342 /* When the MSI is used as system clock it will not be disabled */
|
|
343 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) )
|
|
344 {
|
|
345 if((READ_BIT(RCC->CR, RCC_CR_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
|
|
346 {
|
|
347 return HAL_ERROR;
|
|
348 }
|
|
349
|
|
350 /* Otherwise, just the calibration and MSI range change are allowed */
|
|
351 else
|
|
352 {
|
|
353 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
354 must be correctly programmed according to the frequency of the CPU clock
|
|
355 (HCLK) and the supply voltage of the device. */
|
|
356 if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
|
|
357 {
|
|
358 /* First increase number of wait states update if necessary */
|
|
359 if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
|
|
360 {
|
|
361 return HAL_ERROR;
|
|
362 }
|
|
363
|
|
364 /* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
365 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
366 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
367 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
368 }
|
|
369 else
|
|
370 {
|
|
371 /* Else, keep current flash latency while decreasing applies */
|
|
372 /* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
373 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
374 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
375 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
376
|
|
377 /* Decrease number of wait states update if necessary */
|
|
378 if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
|
|
379 {
|
|
380 return HAL_ERROR;
|
|
381 }
|
|
382 }
|
|
383
|
|
384 /* Update the SystemCoreClock global variable */
|
|
385 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
|
|
386
|
|
387 /* Configure the source of time base considering new system clocks settings*/
|
|
388 HAL_InitTick (TICK_INT_PRIORITY);
|
|
389 }
|
|
390 }
|
|
391 else
|
|
392 {
|
|
393 /* Check the MSI State */
|
|
394 if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
|
|
395 {
|
|
396 /* Enable the Internal High Speed oscillator (MSI). */
|
|
397 __HAL_RCC_MSI_ENABLE();
|
|
398
|
|
399 /* Get timeout */
|
|
400 tickstart = HAL_GetTick();
|
|
401
|
|
402 /* Wait till MSI is ready */
|
|
403 while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET)
|
|
404 {
|
|
405 if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
406 {
|
|
407 return HAL_TIMEOUT;
|
|
408 }
|
|
409 }
|
|
410 /* Selects the Multiple Speed oscillator (MSI) clock range .*/
|
|
411 __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
|
|
412 /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
|
|
413 __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
|
|
414
|
|
415 }
|
|
416 else
|
|
417 {
|
|
418 /* Disable the Internal High Speed oscillator (MSI). */
|
|
419 __HAL_RCC_MSI_DISABLE();
|
|
420
|
|
421 /* Get timeout */
|
|
422 tickstart = HAL_GetTick();
|
|
423
|
|
424 /* Wait till MSI is ready */
|
|
425 while(READ_BIT(RCC->CR, RCC_CR_MSIRDY) != RESET)
|
|
426 {
|
|
427 if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
|
|
428 {
|
|
429 return HAL_TIMEOUT;
|
|
430 }
|
|
431 }
|
|
432 }
|
|
433 }
|
|
434 }
|
|
435 /*------------------------------- HSE Configuration ------------------------*/
|
|
436 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
|
|
437 {
|
|
438 /* Check the parameters */
|
|
439 assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
|
|
440
|
|
441 /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
|
|
442 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||
|
|
443 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
|
|
444 {
|
|
445 if((READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
|
|
446 {
|
|
447 return HAL_ERROR;
|
|
448 }
|
|
449 }
|
|
450 else
|
|
451 {
|
|
452 /* Set the new HSE configuration ---------------------------------------*/
|
|
453 __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
|
|
454
|
|
455 /* Check the HSE State */
|
|
456 if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
|
|
457 {
|
|
458 /* Get Start Tick*/
|
|
459 tickstart = HAL_GetTick();
|
|
460
|
|
461 /* Wait till HSE is ready */
|
|
462 while(READ_BIT(RCC->CR, RCC_CR_HSERDY) == RESET)
|
|
463 {
|
|
464 if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
465 {
|
|
466 return HAL_TIMEOUT;
|
|
467 }
|
|
468 }
|
|
469 }
|
|
470 else
|
|
471 {
|
|
472 /* Get Start Tick*/
|
|
473 tickstart = HAL_GetTick();
|
|
474
|
|
475 /* Wait till HSE is disabled */
|
|
476 while(READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET)
|
|
477 {
|
|
478 if((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE)
|
|
479 {
|
|
480 return HAL_TIMEOUT;
|
|
481 }
|
|
482 }
|
|
483 }
|
|
484 }
|
|
485 }
|
|
486 /*----------------------------- HSI Configuration --------------------------*/
|
|
487 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
|
|
488 {
|
|
489 /* Check the parameters */
|
|
490 assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
|
|
491 assert_param(IS_RCC_HSI_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
|
|
492
|
|
493 /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
|
|
494 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||
|
|
495 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
|
|
496 {
|
|
497 /* When HSI is used as system clock it will not be disabled */
|
|
498 if((READ_BIT(RCC->CR, RCC_CR_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState == RCC_HSI_OFF))
|
|
499 {
|
|
500 return HAL_ERROR;
|
|
501 }
|
|
502 /* Otherwise, just the calibration is allowed */
|
|
503 else
|
|
504 {
|
|
505 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
506 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
507 }
|
|
508 }
|
|
509 else
|
|
510 {
|
|
511 /* Check the HSI State */
|
|
512 if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
|
|
513 {
|
|
514 /* Enable the Internal High Speed oscillator (HSI). */
|
|
515 __HAL_RCC_HSI_ENABLE();
|
|
516
|
|
517 /* Get Start Tick*/
|
|
518 tickstart = HAL_GetTick();
|
|
519
|
|
520 /* Wait till HSI is ready */
|
|
521 while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET)
|
|
522 {
|
|
523 if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
524 {
|
|
525 return HAL_TIMEOUT;
|
|
526 }
|
|
527 }
|
|
528
|
|
529 /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
|
|
530 __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
|
|
531 }
|
|
532 else
|
|
533 {
|
|
534 /* Disable the Internal High Speed oscillator (HSI). */
|
|
535 __HAL_RCC_HSI_DISABLE();
|
|
536
|
|
537 /* Get Start Tick*/
|
|
538 tickstart = HAL_GetTick();
|
|
539
|
|
540 /* Wait till HSI is disabled */
|
|
541 while(READ_BIT(RCC->CR, RCC_CR_HSIRDY) != RESET)
|
|
542 {
|
|
543 if((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE)
|
|
544 {
|
|
545 return HAL_TIMEOUT;
|
|
546 }
|
|
547 }
|
|
548 }
|
|
549 }
|
|
550 }
|
|
551 /*------------------------------ LSI Configuration -------------------------*/
|
|
552 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
|
|
553 {
|
|
554 /* Check the parameters */
|
|
555 assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
|
|
556
|
|
557 /* Check the LSI State */
|
|
558 if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
|
|
559 {
|
|
560 /* Enable the Internal Low Speed oscillator (LSI). */
|
|
561 __HAL_RCC_LSI_ENABLE();
|
|
562
|
|
563 /* Get Start Tick*/
|
|
564 tickstart = HAL_GetTick();
|
|
565
|
|
566 /* Wait till LSI is ready */
|
|
567 while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == RESET)
|
|
568 {
|
|
569 if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
570 {
|
|
571 return HAL_TIMEOUT;
|
|
572 }
|
|
573 }
|
|
574 }
|
|
575 else
|
|
576 {
|
|
577 /* Disable the Internal Low Speed oscillator (LSI). */
|
|
578 __HAL_RCC_LSI_DISABLE();
|
|
579
|
|
580 /* Get Start Tick*/
|
|
581 tickstart = HAL_GetTick();
|
|
582
|
|
583 /* Wait till LSI is disabled */
|
|
584 while(READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) != RESET)
|
|
585 {
|
|
586 if((HAL_GetTick() - tickstart) > LSI_TIMEOUT_VALUE)
|
|
587 {
|
|
588 return HAL_TIMEOUT;
|
|
589 }
|
|
590 }
|
|
591 }
|
|
592 }
|
|
593 /*------------------------------ LSE Configuration -------------------------*/
|
|
594 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
|
|
595 {
|
|
596 FlagStatus pwrclkchanged = RESET;
|
|
597
|
|
598 /* Check the parameters */
|
|
599 assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
|
|
600
|
|
601 /* Update LSE configuration in Backup Domain control register */
|
|
602 /* Requires to enable write access to Backup Domain of necessary */
|
|
603 if(HAL_IS_BIT_CLR(RCC->APB1ENR1, RCC_APB1ENR1_PWREN))
|
|
604 {
|
|
605 __HAL_RCC_PWR_CLK_ENABLE();
|
|
606 pwrclkchanged = SET;
|
|
607 }
|
|
608
|
|
609 if(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
610 {
|
|
611 /* Enable write access to Backup domain */
|
|
612 SET_BIT(PWR->CR1, PWR_CR1_DBP);
|
|
613
|
|
614 /* Wait for Backup domain Write protection disable */
|
|
615 tickstart = HAL_GetTick();
|
|
616
|
|
617 while(HAL_IS_BIT_CLR(PWR->CR1, PWR_CR1_DBP))
|
|
618 {
|
|
619 if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
|
620 {
|
|
621 return HAL_TIMEOUT;
|
|
622 }
|
|
623 }
|
|
624 }
|
|
625
|
|
626 /* Set the new LSE configuration -----------------------------------------*/
|
|
627 __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
|
|
628
|
|
629 /* Check the LSE State */
|
|
630 if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
|
|
631 {
|
|
632 /* Get Start Tick*/
|
|
633 tickstart = HAL_GetTick();
|
|
634
|
|
635 /* Wait till LSE is ready */
|
|
636 while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == RESET)
|
|
637 {
|
|
638 if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
639 {
|
|
640 return HAL_TIMEOUT;
|
|
641 }
|
|
642 }
|
|
643 }
|
|
644 else
|
|
645 {
|
|
646 /* Get Start Tick*/
|
|
647 tickstart = HAL_GetTick();
|
|
648
|
|
649 /* Wait till LSE is disabled */
|
|
650 while(READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) != RESET)
|
|
651 {
|
|
652 if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
|
653 {
|
|
654 return HAL_TIMEOUT;
|
|
655 }
|
|
656 }
|
|
657 }
|
|
658
|
|
659 /* Restore clock configuration if changed */
|
|
660 if(pwrclkchanged == SET)
|
|
661 {
|
|
662 __HAL_RCC_PWR_CLK_DISABLE();
|
|
663 }
|
|
664 }
|
|
665 #if defined(RCC_HSI48_SUPPORT)
|
|
666 /*------------------------------ HSI48 Configuration -----------------------*/
|
|
667 if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
|
|
668 {
|
|
669 /* Check the parameters */
|
|
670 assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
|
|
671
|
|
672 /* Check the LSI State */
|
|
673 if(RCC_OscInitStruct->HSI48State != RCC_HSI48_OFF)
|
|
674 {
|
|
675 /* Enable the Internal Low Speed oscillator (HSI48). */
|
|
676 __HAL_RCC_HSI48_ENABLE();
|
|
677
|
|
678 /* Get Start Tick*/
|
|
679 tickstart = HAL_GetTick();
|
|
680
|
|
681 /* Wait till HSI48 is ready */
|
|
682 while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) == RESET)
|
|
683 {
|
|
684 if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
685 {
|
|
686 return HAL_TIMEOUT;
|
|
687 }
|
|
688 }
|
|
689 }
|
|
690 else
|
|
691 {
|
|
692 /* Disable the Internal Low Speed oscillator (HSI48). */
|
|
693 __HAL_RCC_HSI48_DISABLE();
|
|
694
|
|
695 /* Get Start Tick*/
|
|
696 tickstart = HAL_GetTick();
|
|
697
|
|
698 /* Wait till HSI48 is disabled */
|
|
699 while(READ_BIT(RCC->CRRCR, RCC_CRRCR_HSI48RDY) != RESET)
|
|
700 {
|
|
701 if((HAL_GetTick() - tickstart) > HSI48_TIMEOUT_VALUE)
|
|
702 {
|
|
703 return HAL_TIMEOUT;
|
|
704 }
|
|
705 }
|
|
706 }
|
|
707 }
|
|
708 #endif /* RCC_HSI48_SUPPORT */
|
|
709 /*-------------------------------- PLL Configuration -----------------------*/
|
|
710 /* Check the parameters */
|
|
711 assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
|
|
712
|
|
713 if(RCC_OscInitStruct->PLL.PLLState != RCC_PLL_NONE)
|
|
714 {
|
|
715 /* Check if the PLL is used as system clock or not */
|
|
716 if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
|
|
717 {
|
|
718 if(RCC_OscInitStruct->PLL.PLLState == RCC_PLL_ON)
|
|
719 {
|
|
720 /* Check the parameters */
|
|
721 assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
|
|
722 assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
|
|
723 assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
|
|
724 assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
|
|
725 assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
|
|
726 assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
|
|
727
|
|
728 /* Disable the main PLL. */
|
|
729 __HAL_RCC_PLL_DISABLE();
|
|
730
|
|
731 /* Get Start Tick*/
|
|
732 tickstart = HAL_GetTick();
|
|
733
|
|
734 /* Wait till PLL is ready */
|
|
735 while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET)
|
|
736 {
|
|
737 if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
738 {
|
|
739 return HAL_TIMEOUT;
|
|
740 }
|
|
741 }
|
|
742
|
|
743 /* Configure the main PLL clock source, multiplication and division factors. */
|
|
744 __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
|
|
745 RCC_OscInitStruct->PLL.PLLM,
|
|
746 RCC_OscInitStruct->PLL.PLLN,
|
|
747 RCC_OscInitStruct->PLL.PLLP,
|
|
748 RCC_OscInitStruct->PLL.PLLQ,
|
|
749 RCC_OscInitStruct->PLL.PLLR);
|
|
750
|
|
751 /* Enable the main PLL. */
|
|
752 __HAL_RCC_PLL_ENABLE();
|
|
753
|
|
754 /* Enable PLL System Clock output. */
|
|
755 __HAL_RCC_PLLCLKOUT_ENABLE(RCC_PLL_SYSCLK);
|
|
756
|
|
757 /* Get Start Tick*/
|
|
758 tickstart = HAL_GetTick();
|
|
759
|
|
760 /* Wait till PLL is ready */
|
|
761 while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET)
|
|
762 {
|
|
763 if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
764 {
|
|
765 return HAL_TIMEOUT;
|
|
766 }
|
|
767 }
|
|
768 }
|
|
769 else
|
|
770 {
|
|
771 /* Disable the main PLL. */
|
|
772 __HAL_RCC_PLL_DISABLE();
|
|
773
|
|
774 /* Disable all PLL outputs to save power if no PLLs on */
|
|
775 if((READ_BIT(RCC->CR, RCC_CR_PLLSAI1RDY) == RESET)
|
|
776 #if defined(RCC_PLLSAI2_SUPPORT)
|
|
777 &&
|
|
778 (READ_BIT(RCC->CR, RCC_CR_PLLSAI2RDY) == RESET)
|
|
779 #endif /* RCC_PLLSAI2_SUPPORT */
|
|
780 )
|
|
781 {
|
|
782 MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLSRC, RCC_PLLSOURCE_NONE);
|
|
783 }
|
|
784
|
|
785 #if defined(RCC_PLLSAI2_SUPPORT)
|
|
786 __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI3CLK);
|
|
787 #else
|
|
788 __HAL_RCC_PLLCLKOUT_DISABLE(RCC_PLL_SYSCLK | RCC_PLL_48M1CLK | RCC_PLL_SAI2CLK);
|
|
789 #endif /* RCC_PLLSAI2_SUPPORT */
|
|
790
|
|
791 /* Get Start Tick*/
|
|
792 tickstart = HAL_GetTick();
|
|
793
|
|
794 /* Wait till PLL is disabled */
|
|
795 while(READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET)
|
|
796 {
|
|
797 if((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
|
|
798 {
|
|
799 return HAL_TIMEOUT;
|
|
800 }
|
|
801 }
|
|
802 }
|
|
803 }
|
|
804 else
|
|
805 {
|
|
806 return HAL_ERROR;
|
|
807 }
|
|
808 }
|
|
809 return HAL_OK;
|
|
810 }
|
|
811
|
|
812 /**
|
|
813 * @brief Initialize the CPU, AHB and APB busses clocks according to the specified
|
|
814 * parameters in the RCC_ClkInitStruct.
|
|
815 * @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
816 * contains the configuration information for the RCC peripheral.
|
|
817 * @param FLatency FLASH Latency
|
|
818 * This parameter can be one of the following values:
|
|
819 * @arg FLASH_LATENCY_0 FLASH 0 Latency cycle
|
|
820 * @arg FLASH_LATENCY_1 FLASH 1 Latency cycle
|
|
821 * @arg FLASH_LATENCY_2 FLASH 2 Latency cycle
|
|
822 * @arg FLASH_LATENCY_3 FLASH 3 Latency cycle
|
|
823 * @arg FLASH_LATENCY_4 FLASH 4 Latency cycle
|
|
824 *
|
|
825 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency
|
|
826 * and updated by HAL_RCC_GetHCLKFreq() function called within this function
|
|
827 *
|
|
828 * @note The MSI is used by default as system clock source after
|
|
829 * startup from Reset, wake-up from STANDBY mode. After restart from Reset,
|
|
830 * the MSI frequency is set to its default value 4 MHz.
|
|
831 *
|
|
832 * @note The HSI can be selected as system clock source after
|
|
833 * from STOP modes or in case of failure of the HSE used directly or indirectly
|
|
834 * as system clock (if the Clock Security System CSS is enabled).
|
|
835 *
|
|
836 * @note A switch from one clock source to another occurs only if the target
|
|
837 * clock source is ready (clock stable after startup delay or PLL locked).
|
|
838 * If a clock source which is not yet ready is selected, the switch will
|
|
839 * occur when the clock source is ready.
|
|
840 *
|
|
841 * @note You can use HAL_RCC_GetClockConfig() function to know which clock is
|
|
842 * currently used as system clock source.
|
|
843 *
|
|
844 * @note Depending on the device voltage range, the software has to set correctly
|
|
845 * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
|
|
846 * (for more details refer to section above "Initialization/de-initialization functions")
|
|
847 * @retval None
|
|
848 */
|
|
849 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency)
|
|
850 {
|
|
851 uint32_t tickstart = 0;
|
|
852
|
|
853 /* Check the parameters */
|
|
854 assert_param(RCC_ClkInitStruct != NULL);
|
|
855 assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
|
|
856 assert_param(IS_FLASH_LATENCY(FLatency));
|
|
857
|
|
858 /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
|
|
859 must be correctly programmed according to the frequency of the CPU clock
|
|
860 (HCLK) and the supply voltage of the device. */
|
|
861
|
|
862 /* Increasing the number of wait states because of higher CPU frequency */
|
|
863 if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
|
|
864 {
|
|
865 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
866 __HAL_FLASH_SET_LATENCY(FLatency);
|
|
867
|
|
868 /* Check that the new number of wait states is taken into account to access the Flash
|
|
869 memory by reading the FLASH_ACR register */
|
|
870 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
871 {
|
|
872 return HAL_ERROR;
|
|
873 }
|
|
874 }
|
|
875
|
|
876 /*-------------------------- HCLK Configuration --------------------------*/
|
|
877 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
|
|
878 {
|
|
879 assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
|
|
880 MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
|
|
881 }
|
|
882
|
|
883 /*------------------------- SYSCLK Configuration ---------------------------*/
|
|
884 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
|
|
885 {
|
|
886 assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
|
|
887
|
|
888 /* HSE is selected as System Clock Source */
|
|
889 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
890 {
|
|
891 /* Check the HSE ready flag */
|
|
892 if(READ_BIT(RCC->CR, RCC_CR_HSERDY) == RESET)
|
|
893 {
|
|
894 return HAL_ERROR;
|
|
895 }
|
|
896 }
|
|
897 /* PLL is selected as System Clock Source */
|
|
898 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
899 {
|
|
900 /* Check the PLL ready flag */
|
|
901 if(READ_BIT(RCC->CR, RCC_CR_PLLRDY) == RESET)
|
|
902 {
|
|
903 return HAL_ERROR;
|
|
904 }
|
|
905 }
|
|
906 /* MSI is selected as System Clock Source */
|
|
907 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
|
|
908 {
|
|
909 /* Check the MSI ready flag */
|
|
910 if(READ_BIT(RCC->CR, RCC_CR_MSIRDY) == RESET)
|
|
911 {
|
|
912 return HAL_ERROR;
|
|
913 }
|
|
914 }
|
|
915 /* HSI is selected as System Clock Source */
|
|
916 else
|
|
917 {
|
|
918 /* Check the HSI ready flag */
|
|
919 if(READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET)
|
|
920 {
|
|
921 return HAL_ERROR;
|
|
922 }
|
|
923 }
|
|
924 MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_ClkInitStruct->SYSCLKSource);
|
|
925
|
|
926 /* Get Start Tick*/
|
|
927 tickstart = HAL_GetTick();
|
|
928
|
|
929 if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
|
|
930 {
|
|
931 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSE)
|
|
932 {
|
|
933 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
934 {
|
|
935 return HAL_TIMEOUT;
|
|
936 }
|
|
937 }
|
|
938 }
|
|
939 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
|
|
940 {
|
|
941 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
|
|
942 {
|
|
943 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
944 {
|
|
945 return HAL_TIMEOUT;
|
|
946 }
|
|
947 }
|
|
948 }
|
|
949 else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_MSI)
|
|
950 {
|
|
951 while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_MSI)
|
|
952 {
|
|
953 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
954 {
|
|
955 return HAL_TIMEOUT;
|
|
956 }
|
|
957 }
|
|
958 }
|
|
959 else
|
|
960 {
|
|
961 while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSI)
|
|
962 {
|
|
963 if((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
|
|
964 {
|
|
965 return HAL_TIMEOUT;
|
|
966 }
|
|
967 }
|
|
968 }
|
|
969 }
|
|
970
|
|
971 /* Decreasing the number of wait states because of lower CPU frequency */
|
|
972 if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
|
|
973 {
|
|
974 /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
|
|
975 __HAL_FLASH_SET_LATENCY(FLatency);
|
|
976
|
|
977 /* Check that the new number of wait states is taken into account to access the Flash
|
|
978 memory by reading the FLASH_ACR register */
|
|
979 if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
|
|
980 {
|
|
981 return HAL_ERROR;
|
|
982 }
|
|
983 }
|
|
984
|
|
985 /*-------------------------- PCLK1 Configuration ---------------------------*/
|
|
986 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
|
|
987 {
|
|
988 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
|
|
989 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
|
|
990 }
|
|
991
|
|
992 /*-------------------------- PCLK2 Configuration ---------------------------*/
|
|
993 if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
|
|
994 {
|
|
995 assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
|
|
996 MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
|
|
997 }
|
|
998
|
|
999 /* Update the SystemCoreClock global variable */
|
|
1000 SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)];
|
|
1001
|
|
1002 /* Configure the source of time base considering new system clocks settings*/
|
|
1003 HAL_InitTick (TICK_INT_PRIORITY);
|
|
1004
|
|
1005 return HAL_OK;
|
|
1006 }
|
|
1007
|
|
1008 /**
|
|
1009 * @}
|
|
1010 */
|
|
1011
|
|
1012 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
|
|
1013 * @brief RCC clocks control functions
|
|
1014 *
|
|
1015 @verbatim
|
|
1016 ===============================================================================
|
|
1017 ##### Peripheral Control functions #####
|
|
1018 ===============================================================================
|
|
1019 [..]
|
|
1020 This subsection provides a set of functions allowing to:
|
|
1021
|
|
1022 (+) Ouput clock to MCO pin.
|
|
1023 (+) Retrieve current clock frequencies.
|
|
1024 (+) Enable the Clock Security System.
|
|
1025
|
|
1026 @endverbatim
|
|
1027 * @{
|
|
1028 */
|
|
1029
|
|
1030 /**
|
|
1031 * @brief Select the clock source to output on MCO pin(PA8).
|
|
1032 * @note PA8 should be configured in alternate function mode.
|
|
1033 * @param RCC_MCOx specifies the output direction for the clock source.
|
|
1034 * For STM32L4xx family this parameter can have only one value:
|
|
1035 * @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
|
|
1036 * @param RCC_MCOSource specifies the clock source to output.
|
|
1037 * This parameter can be one of the following values:
|
|
1038 * @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled, no clock on MCO
|
|
1039 * @arg @ref RCC_MCO1SOURCE_SYSCLK system clock selected as MCO source
|
|
1040 * @arg @ref RCC_MCO1SOURCE_MSI MSI clock selected as MCO source
|
|
1041 * @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
|
|
1042 * @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO sourcee
|
|
1043 * @arg @ref RCC_MCO1SOURCE_PLLCLK main PLL clock selected as MCO source
|
|
1044 * @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
|
|
1045 * @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
|
|
1046 @if STM32L443xx
|
|
1047 * @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48
|
|
1048 @endif
|
|
1049 * @param RCC_MCODiv specifies the MCO prescaler.
|
|
1050 * This parameter can be one of the following values:
|
|
1051 * @arg @ref RCC_MCODIV_1 no division applied to MCO clock
|
|
1052 * @arg @ref RCC_MCODIV_2 division by 2 applied to MCO clock
|
|
1053 * @arg @ref RCC_MCODIV_4 division by 4 applied to MCO clock
|
|
1054 * @arg @ref RCC_MCODIV_8 division by 8 applied to MCO clock
|
|
1055 * @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
|
|
1056 * @retval None
|
|
1057 */
|
|
1058 void HAL_RCC_MCOConfig( uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
|
|
1059 {
|
|
1060 GPIO_InitTypeDef GPIO_InitStruct;
|
|
1061 /* Check the parameters */
|
|
1062 assert_param(IS_RCC_MCO(RCC_MCOx));
|
|
1063 assert_param(IS_RCC_MCODIV(RCC_MCODiv));
|
|
1064 assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
|
|
1065
|
|
1066 /* MCO Clock Enable */
|
|
1067 __MCO1_CLK_ENABLE();
|
|
1068
|
|
1069 /* Configue the MCO1 pin in alternate function mode */
|
|
1070 GPIO_InitStruct.Pin = MCO1_PIN;
|
|
1071 GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
|
|
1072 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
|
|
1073 GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
1074 GPIO_InitStruct.Alternate = GPIO_AF0_MCO;
|
|
1075 HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct);
|
|
1076
|
|
1077 /* Mask MCOSEL[] and MCOPRE[] bits then set MCO1 clock source and prescaler */
|
|
1078 MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), (RCC_MCOSource | RCC_MCODiv ));
|
|
1079 }
|
|
1080
|
|
1081 /**
|
|
1082 * @brief Return the SYSCLK frequency.
|
|
1083 *
|
|
1084 * @note The system frequency computed by this function is not the real
|
|
1085 * frequency in the chip. It is calculated based on the predefined
|
|
1086 * constant and the selected clock source:
|
|
1087 * @note If SYSCLK source is MSI, function returns values based on MSI
|
|
1088 * Value as defined by the MSI range.
|
|
1089 * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
|
|
1090 * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
|
|
1091 * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**),
|
|
1092 * HSI_VALUE(*) or MSI Value multiplied/divided by the PLL factors.
|
|
1093 * @note (*) HSI_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
|
|
1094 * 16 MHz) but the real value may vary depending on the variations
|
|
1095 * in voltage and temperature.
|
|
1096 * @note (**) HSE_VALUE is a constant defined in stm32l4xx_hal_conf.h file (default value
|
|
1097 * 8 MHz), user has to ensure that HSE_VALUE is same as the real
|
|
1098 * frequency of the crystal used. Otherwise, this function may
|
|
1099 * have wrong result.
|
|
1100 *
|
|
1101 * @note The result of this function could be not correct when using fractional
|
|
1102 * value for HSE crystal.
|
|
1103 *
|
|
1104 * @note This function can be used by the user application to compute the
|
|
1105 * baudrate for the communication peripherals or configure other parameters.
|
|
1106 *
|
|
1107 * @note Each time SYSCLK changes, this function must be called to update the
|
|
1108 * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
1109 *
|
|
1110 *
|
|
1111 * @retval SYSCLK frequency
|
|
1112 */
|
|
1113 uint32_t HAL_RCC_GetSysClockFreq(void)
|
|
1114 {
|
|
1115 uint32_t msirange = 0U, pllvco = 0U, pllsource = 0U, pllr = 2U, pllm = 2U;
|
|
1116 uint32_t sysclockfreq = 0U;
|
|
1117
|
|
1118 if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) ||
|
|
1119 ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_MSI)))
|
|
1120 {
|
|
1121 /* MSI or PLL with MSI source used as system clock source */
|
|
1122
|
|
1123 /* Get SYSCLK source */
|
|
1124 if(READ_BIT(RCC->CR, RCC_CR_MSIRGSEL) == RESET)
|
|
1125 { /* MSISRANGE from RCC_CSR applies */
|
|
1126 msirange = (RCC->CSR & RCC_CSR_MSISRANGE) >> POSITION_VAL(RCC_CSR_MSISRANGE);
|
|
1127 }
|
|
1128 else
|
|
1129 { /* MSIRANGE from RCC_CR applies */
|
|
1130 msirange = (RCC->CR & RCC_CR_MSIRANGE) >> POSITION_VAL(RCC_CR_MSIRANGE);
|
|
1131 }
|
|
1132 /*MSI frequency range in HZ*/
|
|
1133 msirange = MSIRangeTable[msirange];
|
|
1134
|
|
1135 if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI)
|
|
1136 {
|
|
1137 /* MSI used as system clock source */
|
|
1138 sysclockfreq = msirange;
|
|
1139 }
|
|
1140 }
|
|
1141 else if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI)
|
|
1142 {
|
|
1143 /* HSI used as system clock source */
|
|
1144 sysclockfreq = HSI_VALUE;
|
|
1145 }
|
|
1146 else if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE)
|
|
1147 {
|
|
1148 /* HSE used as system clock source */
|
|
1149 sysclockfreq = HSE_VALUE;
|
|
1150 }
|
|
1151
|
|
1152 if(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL)
|
|
1153 {
|
|
1154 /* PLL used as system clock source */
|
|
1155
|
|
1156 /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN
|
|
1157 SYSCLK = PLL_VCO / PLLR
|
|
1158 */
|
|
1159 pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
|
|
1160 pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U ;
|
|
1161
|
|
1162 switch (pllsource)
|
|
1163 {
|
|
1164 case RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */
|
|
1165 pllvco = (HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
|
|
1166 break;
|
|
1167
|
|
1168 case RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */
|
|
1169 pllvco = (HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
|
|
1170 break;
|
|
1171
|
|
1172 case RCC_PLLSOURCE_MSI: /* MSI used as PLL clock source */
|
|
1173 default:
|
|
1174 pllvco = (msirange / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
|
|
1175 break;
|
|
1176 }
|
|
1177 pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)) + 1U ) * 2U;
|
|
1178 sysclockfreq = pllvco/pllr;
|
|
1179 }
|
|
1180
|
|
1181 return sysclockfreq;
|
|
1182 }
|
|
1183
|
|
1184 /**
|
|
1185 * @brief Return the HCLK frequency.
|
|
1186 * @note Each time HCLK changes, this function must be called to update the
|
|
1187 * right HCLK value. Otherwise, any configuration based on this function will be incorrect.
|
|
1188 *
|
|
1189 * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency.
|
|
1190 * @retval HCLK frequency in Hz
|
|
1191 */
|
|
1192 uint32_t HAL_RCC_GetHCLKFreq(void)
|
|
1193 {
|
|
1194 return SystemCoreClock;
|
|
1195 }
|
|
1196
|
|
1197 /**
|
|
1198 * @brief Return the PCLK1 frequency.
|
|
1199 * @note Each time PCLK1 changes, this function must be called to update the
|
|
1200 * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
|
|
1201 * @retval PCLK1 frequency in Hz
|
|
1202 */
|
|
1203 uint32_t HAL_RCC_GetPCLK1Freq(void)
|
|
1204 {
|
|
1205 /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
|
|
1206 return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]);
|
|
1207 }
|
|
1208
|
|
1209 /**
|
|
1210 * @brief Return the PCLK2 frequency.
|
|
1211 * @note Each time PCLK2 changes, this function must be called to update the
|
|
1212 * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
|
|
1213 * @retval PCLK2 frequency in Hz
|
|
1214 */
|
|
1215 uint32_t HAL_RCC_GetPCLK2Freq(void)
|
|
1216 {
|
|
1217 /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
|
|
1218 return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]);
|
|
1219 }
|
|
1220
|
|
1221 /**
|
|
1222 * @brief Configure the RCC_OscInitStruct according to the internal
|
|
1223 * RCC configuration registers.
|
|
1224 * @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
|
|
1225 * will be configured.
|
|
1226 * @retval None
|
|
1227 */
|
|
1228 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
|
|
1229 {
|
|
1230 /* Check the parameters */
|
|
1231 assert_param(RCC_OscInitStruct != NULL);
|
|
1232
|
|
1233 /* Set all possible values for the Oscillator type parameter ---------------*/
|
|
1234 #if defined(RCC_HSI48_SUPPORT)
|
|
1235 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
|
|
1236 RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48;
|
|
1237 #else
|
|
1238 RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_MSI | \
|
|
1239 RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
|
|
1240 #endif /* RCC_HSI48_SUPPORT */
|
|
1241
|
|
1242 /* Get the HSE configuration -----------------------------------------------*/
|
|
1243 if((RCC->CR & RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
|
|
1244 {
|
|
1245 RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
|
|
1246 }
|
|
1247 else if((RCC->CR & RCC_CR_HSEON) == RCC_CR_HSEON)
|
|
1248 {
|
|
1249 RCC_OscInitStruct->HSEState = RCC_HSE_ON;
|
|
1250 }
|
|
1251 else
|
|
1252 {
|
|
1253 RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
|
|
1254 }
|
|
1255
|
|
1256 /* Get the MSI configuration -----------------------------------------------*/
|
|
1257 if((RCC->CR & RCC_CR_MSION) == RCC_CR_MSION)
|
|
1258 {
|
|
1259 RCC_OscInitStruct->MSIState = RCC_MSI_ON;
|
|
1260 }
|
|
1261 else
|
|
1262 {
|
|
1263 RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
|
|
1264 }
|
|
1265
|
|
1266 RCC_OscInitStruct->MSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSITRIM) >> POSITION_VAL(RCC_ICSCR_MSITRIM));
|
|
1267 RCC_OscInitStruct->MSIClockRange = (uint32_t)((RCC->CR & RCC_CR_MSIRANGE) );
|
|
1268
|
|
1269 /* Get the HSI configuration -----------------------------------------------*/
|
|
1270 if((RCC->CR & RCC_CR_HSION) == RCC_CR_HSION)
|
|
1271 {
|
|
1272 RCC_OscInitStruct->HSIState = RCC_HSI_ON;
|
|
1273 }
|
|
1274 else
|
|
1275 {
|
|
1276 RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
|
|
1277 }
|
|
1278
|
|
1279 RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> POSITION_VAL(RCC_ICSCR_HSITRIM));
|
|
1280
|
|
1281 /* Get the LSE configuration -----------------------------------------------*/
|
|
1282 if((RCC->BDCR & RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
|
|
1283 {
|
|
1284 RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
|
|
1285 }
|
|
1286 else if((RCC->BDCR & RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
|
|
1287 {
|
|
1288 RCC_OscInitStruct->LSEState = RCC_LSE_ON;
|
|
1289 }
|
|
1290 else
|
|
1291 {
|
|
1292 RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
|
|
1293 }
|
|
1294
|
|
1295 /* Get the LSI configuration -----------------------------------------------*/
|
|
1296 if((RCC->CSR & RCC_CSR_LSION) == RCC_CSR_LSION)
|
|
1297 {
|
|
1298 RCC_OscInitStruct->LSIState = RCC_LSI_ON;
|
|
1299 }
|
|
1300 else
|
|
1301 {
|
|
1302 RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
|
|
1303 }
|
|
1304
|
|
1305 #if defined(RCC_HSI48_SUPPORT)
|
|
1306 /* Get the HSI48 configuration ---------------------------------------------*/
|
|
1307 if((RCC->CRRCR & RCC_CRRCR_HSI48ON) == RCC_CRRCR_HSI48ON)
|
|
1308 {
|
|
1309 RCC_OscInitStruct->HSI48State = RCC_HSI48_ON;
|
|
1310 }
|
|
1311 else
|
|
1312 {
|
|
1313 RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
1314 }
|
|
1315 #else
|
|
1316 RCC_OscInitStruct->HSI48State = RCC_HSI48_OFF;
|
|
1317 #endif /* RCC_HSI48_SUPPORT */
|
|
1318
|
|
1319 /* Get the PLL configuration -----------------------------------------------*/
|
|
1320 if((RCC->CR & RCC_CR_PLLON) == RCC_CR_PLLON)
|
|
1321 {
|
|
1322 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
|
|
1323 }
|
|
1324 else
|
|
1325 {
|
|
1326 RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
|
|
1327 }
|
|
1328 RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
|
|
1329 RCC_OscInitStruct->PLL.PLLM = (uint32_t)(((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> POSITION_VAL(RCC_PLLCFGR_PLLM)) + 1U);
|
|
1330 RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
|
|
1331 RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)) + 1U) << 1U);
|
|
1332 RCC_OscInitStruct->PLL.PLLR = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)) + 1U) << 1U);
|
|
1333 #if defined(RCC_PLLP_DIV_2_31_SUPPORT)
|
|
1334 RCC_OscInitStruct->PLL.PLLP = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLPDIV) >> POSITION_VAL(RCC_PLLCFGR_PLLPDIV));
|
|
1335 #else
|
|
1336 if((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) != RESET)
|
|
1337 {
|
|
1338 RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV17;
|
|
1339 }
|
|
1340 else
|
|
1341 {
|
|
1342 RCC_OscInitStruct->PLL.PLLP = RCC_PLLP_DIV7;
|
|
1343 }
|
|
1344 #endif /* RCC_PLLP_DIV_2_31_SUPPORT */
|
|
1345 }
|
|
1346
|
|
1347 /**
|
|
1348 * @brief Configure the RCC_ClkInitStruct according to the internal
|
|
1349 * RCC configuration registers.
|
|
1350 * @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
|
|
1351 * will be configured.
|
|
1352 * @param pFLatency Pointer on the Flash Latency.
|
|
1353 * @retval None
|
|
1354 */
|
|
1355 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency)
|
|
1356 {
|
|
1357 /* Check the parameters */
|
|
1358 assert_param(RCC_ClkInitStruct != NULL);
|
|
1359 assert_param(pFLatency != NULL);
|
|
1360
|
|
1361 /* Set all possible values for the Clock type parameter --------------------*/
|
|
1362 RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
|
|
1363
|
|
1364 /* Get the SYSCLK configuration --------------------------------------------*/
|
|
1365 RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
|
|
1366
|
|
1367 /* Get the HCLK configuration ----------------------------------------------*/
|
|
1368 RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
|
|
1369
|
|
1370 /* Get the APB1 configuration ----------------------------------------------*/
|
|
1371 RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
|
|
1372
|
|
1373 /* Get the APB2 configuration ----------------------------------------------*/
|
|
1374 RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U);
|
|
1375
|
|
1376 /* Get the Flash Wait State (Latency) configuration ------------------------*/
|
|
1377 *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY);
|
|
1378 }
|
|
1379
|
|
1380 /**
|
|
1381 * @brief Enable the Clock Security System.
|
|
1382 * @note If a failure is detected on the HSE oscillator clock, this oscillator
|
|
1383 * is automatically disabled and an interrupt is generated to inform the
|
|
1384 * software about the failure (Clock Security System Interrupt, CSSI),
|
|
1385 * allowing the MCU to perform rescue operations. The CSSI is linked to
|
|
1386 * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.
|
|
1387 * @note The Clock Security System can only be cleared by reset.
|
|
1388 * @retval None
|
|
1389 */
|
|
1390 void HAL_RCC_EnableCSS(void)
|
|
1391 {
|
|
1392 SET_BIT(RCC->CR, RCC_CR_CSSON) ;
|
|
1393 }
|
|
1394
|
|
1395 /**
|
|
1396 * @brief Handle the RCC Clock Security System interrupt request.
|
|
1397 * @note This API should be called under the NMI_Handler().
|
|
1398 * @retval None
|
|
1399 */
|
|
1400 void HAL_RCC_NMI_IRQHandler(void)
|
|
1401 {
|
|
1402 /* Check RCC CSSF interrupt flag */
|
|
1403 if(__HAL_RCC_GET_IT(RCC_IT_CSS))
|
|
1404 {
|
|
1405 /* RCC Clock Security System interrupt user callback */
|
|
1406 HAL_RCC_CSSCallback();
|
|
1407
|
|
1408 /* Clear RCC CSS pending bit */
|
|
1409 __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
|
|
1410 }
|
|
1411 }
|
|
1412
|
|
1413 /**
|
|
1414 * @brief RCC Clock Security System interrupt callback.
|
|
1415 * @retval none
|
|
1416 */
|
|
1417 __weak void HAL_RCC_CSSCallback(void)
|
|
1418 {
|
|
1419 /* NOTE : This function should not be modified, when the callback is needed,
|
|
1420 the HAL_RCC_CSSCallback should be implemented in the user file
|
|
1421 */
|
|
1422 }
|
|
1423
|
|
1424 /**
|
|
1425 * @}
|
|
1426 */
|
|
1427
|
|
1428 /**
|
|
1429 * @}
|
|
1430 */
|
|
1431
|
|
1432 /* Private function prototypes -----------------------------------------------*/
|
|
1433 /** @addtogroup RCC_Private_Functions
|
|
1434 * @{
|
|
1435 */
|
|
1436 /**
|
|
1437 * @brief Update number of Flash wait states in line with MSI range and current
|
|
1438 voltage range.
|
|
1439 * @param msirange MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_11
|
|
1440 * @retval HAL status
|
|
1441 */
|
|
1442 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t msirange)
|
|
1443 {
|
|
1444 uint32_t vos = 0;
|
|
1445 uint32_t latency = FLASH_LATENCY_0; /* default value 0WS */
|
|
1446
|
|
1447 if(__HAL_RCC_PWR_IS_CLK_ENABLED())
|
|
1448 {
|
|
1449 vos = HAL_PWREx_GetVoltageRange();
|
|
1450 }
|
|
1451 else
|
|
1452 {
|
|
1453 __HAL_RCC_PWR_CLK_ENABLE();
|
|
1454 vos = HAL_PWREx_GetVoltageRange();
|
|
1455 __HAL_RCC_PWR_CLK_DISABLE();
|
|
1456 }
|
|
1457
|
|
1458 if(vos == PWR_REGULATOR_VOLTAGE_SCALE1)
|
|
1459 {
|
|
1460 if(msirange > RCC_MSIRANGE_8)
|
|
1461 {
|
|
1462 /* MSI > 16Mhz */
|
|
1463 if(msirange > RCC_MSIRANGE_10)
|
|
1464 {
|
|
1465 /* MSI 48Mhz */
|
|
1466 latency = FLASH_LATENCY_2; /* 2WS */
|
|
1467 }
|
|
1468 else
|
|
1469 {
|
|
1470 /* MSI 24Mhz or 32Mhz */
|
|
1471 latency = FLASH_LATENCY_1; /* 1WS */
|
|
1472 }
|
|
1473 }
|
|
1474 /* else MSI <= 16Mhz default FLASH_LATENCY_0 0WS */
|
|
1475 }
|
|
1476 else
|
|
1477 {
|
|
1478 if(msirange > RCC_MSIRANGE_8)
|
|
1479 {
|
|
1480 /* MSI > 16Mhz */
|
|
1481 latency = FLASH_LATENCY_3; /* 3WS */
|
|
1482 }
|
|
1483 else
|
|
1484 {
|
|
1485 if(msirange == RCC_MSIRANGE_8)
|
|
1486 {
|
|
1487 /* MSI 16Mhz */
|
|
1488 latency = FLASH_LATENCY_2; /* 2WS */
|
|
1489 }
|
|
1490 else if(msirange == RCC_MSIRANGE_7)
|
|
1491 {
|
|
1492 /* MSI 8Mhz */
|
|
1493 latency = FLASH_LATENCY_1; /* 1WS */
|
|
1494 }
|
|
1495 /* else MSI < 8Mhz default FLASH_LATENCY_0 0WS */
|
|
1496 }
|
|
1497 }
|
|
1498
|
|
1499 __HAL_FLASH_SET_LATENCY(latency);
|
|
1500
|
|
1501 /* Check that the new number of wait states is taken into account to access the Flash
|
|
1502 memory by reading the FLASH_ACR register */
|
|
1503 if((FLASH->ACR & FLASH_ACR_LATENCY) != latency)
|
|
1504 {
|
|
1505 return HAL_ERROR;
|
|
1506 }
|
|
1507
|
|
1508 return HAL_OK;
|
|
1509 }
|
|
1510
|
|
1511 /**
|
|
1512 * @}
|
|
1513 */
|
|
1514
|
|
1515 #endif /* HAL_RCC_MODULE_ENABLED */
|
|
1516 /**
|
|
1517 * @}
|
|
1518 */
|
|
1519
|
|
1520 /**
|
|
1521 * @}
|
|
1522 */
|
|
1523
|
|
1524 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|