Mercurial > pub > halpp
view f103c8/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q7.c @ 2:0c59e7a7782a
Working on GPIO and RCC
author | cin |
---|---|
date | Mon, 16 Jan 2017 11:04:47 +0300 |
parents | |
children |
line wrap: on
line source
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 19. March 2015 * $Revision: V.1.4.5 * * Project: CMSIS DSP Library * Title: arm_mult_q7.c * * Description: Q7 vector multiplication. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup BasicMult * @{ */ /** * @brief Q7 vector multiplication * @param[in] *pSrcA points to the first input vector * @param[in] *pSrcB points to the second input vector * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in each vector * @return none. * * <b>Scaling and Overflow Behavior:</b> * \par * The function uses saturating arithmetic. * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. */ void arm_mult_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counters */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q7_t out1, out2, out3, out4; /* Temporary variables to store the product */ /* loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A * B */ /* Multiply the inputs and store the results in temporary variables */ out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); /* Store the results of 4 inputs in the destination buffer in single cycle by packing */ *__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4); /* Decrement the blockSize loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ while(blkCnt > 0u) { /* C = A * B */ /* Multiply the inputs and store the result in the destination buffer */ *pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); /* Decrement the blockSize loop counter */ blkCnt--; } } /** * @} end of BasicMult group */